3b1b-manim/manimlib/utils/space_ops.py

440 lines
12 KiB
Python
Raw Normal View History

import numpy as np
2021-02-02 17:20:48 -08:00
import itertools as it
2020-02-21 10:57:10 -08:00
import math
from mapbox_earcut import triangulate_float32 as earcut
2020-06-04 11:29:36 -07:00
from manimlib.constants import RIGHT
from manimlib.constants import DOWN
from manimlib.constants import OUT
from manimlib.constants import PI
from manimlib.constants import TAU
from manimlib.utils.iterables import adjacent_pairs
2018-08-15 17:30:24 -07:00
def get_norm(vect):
return sum([x**2 for x in vect])**0.5
# Quaternions
# TODO, implement quaternion type
def quaternion_mult(*quats):
if len(quats) == 0:
return [1, 0, 0, 0]
result = quats[0]
for next_quat in quats[1:]:
w1, x1, y1, z1 = result
w2, x2, y2, z2 = next_quat
result = [
w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2,
w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2,
w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2,
w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2,
]
return result
def quaternion_from_angle_axis(angle, axis, axis_normalized=False):
if not axis_normalized:
axis = normalize(axis)
return [math.cos(angle / 2), *(math.sin(angle / 2) * axis)]
2018-09-27 17:35:40 -07:00
def angle_axis_from_quaternion(quaternion):
axis = normalize(
quaternion[1:],
fall_back=[1, 0, 0]
2018-09-27 17:35:40 -07:00
)
angle = 2 * np.arccos(quaternion[0])
if angle > TAU / 2:
angle = TAU - angle
return angle, axis
def quaternion_conjugate(quaternion):
result = list(quaternion)
for i in range(1, len(result)):
result[i] *= -1
return result
def rotate_vector(vector, angle, axis=OUT):
if len(vector) == 2:
# Use complex numbers...because why not
z = complex(*vector) * np.exp(complex(0, angle))
result = [z.real, z.imag]
elif len(vector) == 3:
# Use quaternions...because why not
quat = quaternion_from_angle_axis(angle, axis)
quat_inv = quaternion_conjugate(quat)
product = quaternion_mult(quat, [0, *vector], quat_inv)
result = product[1:]
else:
raise Exception("vector must be of dimension 2 or 3")
if isinstance(vector, np.ndarray):
return np.array(result)
return result
def thick_diagonal(dim, thickness=2):
row_indices = np.arange(dim).repeat(dim).reshape((dim, dim))
col_indices = np.transpose(row_indices)
return (np.abs(row_indices - col_indices) < thickness).astype('uint8')
2020-06-01 16:21:18 -07:00
def rotation_matrix_transpose_from_quaternion(quat):
quat_inv = quaternion_conjugate(quat)
return [
quaternion_mult(quat, [0, *basis], quat_inv)[1:]
for basis in [
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
]
]
def rotation_matrix_from_quaternion(quat):
return np.transpose(rotation_matrix_transpose_from_quaternion(quat))
def rotation_matrix_transpose(angle, axis):
if axis[0] == 0 and axis[1] == 0:
# axis = [0, 0, z] case is common enough it's worth
2020-02-20 15:51:26 -08:00
# having a shortcut
sgn = 1 if axis[2] > 0 else -1
2020-02-21 10:57:10 -08:00
cos_a = math.cos(angle)
sin_a = math.sin(angle) * sgn
return [
2020-02-20 15:51:26 -08:00
[cos_a, sin_a, 0],
[-sin_a, cos_a, 0],
[0, 0, 1],
]
quat = quaternion_from_angle_axis(angle, axis)
2020-06-01 16:21:18 -07:00
return rotation_matrix_transpose_from_quaternion(quat)
def rotation_matrix(angle, axis):
"""
Rotation in R^3 about a specified axis of rotation.
"""
return np.transpose(rotation_matrix_transpose(angle, axis))
def rotation_about_z(angle):
return [
2020-02-21 10:57:10 -08:00
[math.cos(angle), -math.sin(angle), 0],
[math.sin(angle), math.cos(angle), 0],
[0, 0, 1]
]
def z_to_vector(vector):
"""
Returns some matrix in SO(3) which takes the z-axis to the
(normalized) vector provided as an argument
"""
axis = cross(OUT, vector)
if get_norm(axis) == 0:
if vector[2] > 0:
return np.identity(3)
else:
return rotation_matrix(PI, RIGHT)
angle = np.arccos(np.dot(OUT, normalize(vector)))
return rotation_matrix(angle, axis=axis)
def angle_of_vector(vector):
"""
Returns polar coordinate theta when vector is project on xy plane
"""
return np.angle(complex(*vector[:2]))
def angle_between_vectors(v1, v2):
"""
Returns the angle between two 3D vectors.
This angle will always be btw 0 and pi
"""
2020-02-11 19:48:50 -08:00
diff = (angle_of_vector(v2) - angle_of_vector(v1)) % TAU
return min(diff, TAU - diff)
def project_along_vector(point, vector):
matrix = np.identity(3) - np.outer(vector, vector)
return np.dot(point, matrix.T)
def normalize(vect, fall_back=None):
norm = get_norm(vect)
if norm > 0:
2018-08-30 14:24:57 -07:00
return np.array(vect) / norm
2020-02-21 10:57:10 -08:00
elif fall_back is not None:
return fall_back
else:
2020-02-21 10:57:10 -08:00
return np.zeros(len(vect))
2020-06-05 11:12:11 -07:00
def normalize_along_axis(array, axis, fall_back=None):
norms = np.sqrt((array * array).sum(axis))
norms[norms == 0] = 1
buffed_norms = np.repeat(norms, array.shape[axis]).reshape(array.shape)
array /= buffed_norms
return array
def cross(v1, v2):
return np.array([
v1[1] * v2[2] - v1[2] * v2[1],
v1[2] * v2[0] - v1[0] * v2[2],
v1[0] * v2[1] - v1[1] * v2[0]
])
def get_unit_normal(v1, v2, tol=1e-6):
v1 = normalize(v1)
v2 = normalize(v2)
cp = cross(v1, v2)
cp_norm = get_norm(cp)
if cp_norm < tol:
# Vectors align, so find a normal to them in the plane shared with the z-axis
new_cp = cross(cross(v1, OUT), v1)
new_cp_norm = get_norm(new_cp)
if new_cp_norm < tol:
return DOWN
return new_cp / new_cp_norm
return cp / cp_norm
###
def compass_directions(n=4, start_vect=RIGHT):
2018-10-05 17:19:48 -07:00
angle = TAU / n
return np.array([
rotate_vector(start_vect, k * angle)
for k in range(n)
])
def complex_to_R3(complex_num):
return np.array((complex_num.real, complex_num.imag, 0))
def R3_to_complex(point):
return complex(*point[:2])
2018-05-30 12:02:25 -07:00
def complex_func_to_R3_func(complex_func):
return lambda p: complex_to_R3(complex_func(R3_to_complex(p)))
def center_of_mass(points):
points = [np.array(point).astype("float") for point in points]
return sum(points) / len(points)
2018-07-14 10:32:13 -07:00
2019-05-27 19:48:33 -07:00
def midpoint(point1, point2):
return center_of_mass([point1, point2])
2018-07-14 10:32:13 -07:00
def line_intersection(line1, line2):
"""
return intersection point of two lines,
each defined with a pair of vectors determining
the end points
"""
x_diff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0])
y_diff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1])
def det(a, b):
return a[0] * b[1] - a[1] * b[0]
div = det(x_diff, y_diff)
if div == 0:
raise Exception("Lines do not intersect")
d = (det(*line1), det(*line2))
x = det(d, x_diff) / div
y = det(d, y_diff) / div
return np.array([x, y, 0])
2018-08-28 09:45:12 -07:00
2020-02-04 15:24:16 -08:00
def find_intersection(p0, v0, p1, v1, threshold=1e-5):
"""
Return the intersection of a line passing through p0 in direction v0
with one passing through p1 in direction v1. (Or array of intersections
from arrays of such points/directions).
For 3d values, it returns the point on the ray p0 + v0 * t closest to the
ray p1 + v1 * t
"""
p0 = np.array(p0, ndmin=2)
v0 = np.array(v0, ndmin=2)
p1 = np.array(p1, ndmin=2)
v1 = np.array(v1, ndmin=2)
m, n = np.shape(p0)
assert(n in [2, 3])
numer = np.cross(v1, p1 - p0)
denom = np.cross(v1, v0)
if n == 3:
d = len(np.shape(numer))
new_numer = np.multiply(numer, numer).sum(d - 1)
new_denom = np.multiply(denom, numer).sum(d - 1)
numer, denom = new_numer, new_denom
denom[abs(denom) < threshold] = np.inf # So that ratio goes to 0 there
ratio = numer / denom
ratio = np.repeat(ratio, n).reshape((m, n))
return p0 + ratio * v0
2021-01-28 14:02:43 +05:30
def get_closest_point_on_line(a, b, p):
"""
It returns point x such that
x is on line ab and xp is perpendicular to ab.
If x lies beyond ab line, then it returns nearest edge(a or b).
"""
# x = b + t*(a-b) = t*a + (1-t)*b
t = np.dot(p - b, a - b) / np.dot(a - b, a - b)
if t < 0:
t = 0
if t > 1:
t = 1
return ((t * a) + ((1 - t) * b))
2018-08-28 09:45:12 -07:00
def get_winding_number(points):
total_angle = 0
for p1, p2 in adjacent_pairs(points):
d_angle = angle_of_vector(p2) - angle_of_vector(p1)
d_angle = ((d_angle + PI) % TAU) - PI
total_angle += d_angle
return total_angle / TAU
##
def cross2d(a, b):
if len(a.shape) == 2:
return a[:, 0] * b[:, 1] - a[:, 1] * b[:, 0]
else:
return a[0] * b[1] - b[0] * a[1]
def tri_area(a, b, c):
return 0.5 * abs(
a[0] * (b[1] - c[1]) +
b[0] * (c[1] - a[1]) +
c[0] * (a[1] - b[1])
)
def is_inside_triangle(p, a, b, c):
"""
Test if point p is inside triangle abc
"""
crosses = np.array([
cross2d(p - a, b - p),
cross2d(p - b, c - p),
cross2d(p - c, a - p),
])
return np.all(crosses > 0) or np.all(crosses < 0)
def norm_squared(v):
2021-02-02 16:43:24 -08:00
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2]
2020-02-11 19:48:50 -08:00
# TODO, fails for polygons drawn over themselves
2021-02-02 17:20:48 -08:00
def earclip_triangulation(verts, ring_ends):
"""
Returns a list of indices giving a triangulation
of a polygon, potentially with holes
2021-02-02 16:43:24 -08:00
- verts is a numpy array of points
2021-02-02 17:20:48 -08:00
- ring_ends is a list of indices indicating where
the ends of new paths are
"""
2021-02-02 17:20:48 -08:00
# First, connect all the rings so that the polygon
# with holes is instead treated as a (very convex)
# polygon with one edge. Do this by drawing connections
# between rings close to each other
rings = [
list(range(e0, e1))
for e0, e1 in zip([0, *ring_ends], ring_ends)
]
# Points at the same position may cause problems
for i in rings:
verts[i[0]] += (verts[i[1]]-verts[i[0]])*5e-6
verts[i[-1]] += (verts[i[-2]]-verts[i[-1]])*5e-6
2021-02-02 17:20:48 -08:00
attached_rings = rings[:1]
detached_rings = rings[1:]
loop_connections = dict()
2021-02-02 17:20:48 -08:00
while detached_rings:
i_range, j_range = [
list(filter(
# Ignore indices that are already being
# used to draw some connection
lambda i: i not in loop_connections,
it.chain(*ring_group)
))
for ring_group in (attached_rings, detached_rings)
]
# Closet point on the atttached rings to an estimated midpoint
2021-02-02 17:20:48 -08:00
# of the detached rings
tmp_j_vert = midpoint(
verts[j_range[0]],
verts[j_range[len(j_range) // 2]]
)
i = min(i_range, key=lambda i: norm_squared(verts[i] - tmp_j_vert))
2021-02-02 17:20:48 -08:00
# Closet point of the detached rings to the aforementioned
# point of the attached rings
j = min(j_range, key=lambda j: norm_squared(verts[i] - verts[j]))
# Recalculate i based on new j
i = min(i_range, key=lambda i: norm_squared(verts[i] - verts[j]))
2021-02-02 17:20:48 -08:00
# Remember to connect the polygon at these points
loop_connections[i] = j
loop_connections[j] = i
2021-02-02 17:20:48 -08:00
# Move the ring which j belongs to from the
# attached list to the detached list
new_ring = next(filter(
lambda ring: ring[0] <= j <= ring[-1],
2021-02-02 17:20:48 -08:00
detached_rings
))
detached_rings.remove(new_ring)
attached_rings.append(new_ring)
# Setup linked list
after = []
2021-02-02 15:56:55 -08:00
end0 = 0
2021-02-02 17:20:48 -08:00
for end1 in ring_ends:
2021-02-02 15:56:55 -08:00
after.extend(range(end0 + 1, end1))
after.append(end0)
end0 = end1
# Find an ordering of indices walking around the polygon
indices = []
i = 0
2021-02-02 17:20:48 -08:00
for x in range(len(verts) + len(ring_ends) - 1):
2020-02-11 19:48:50 -08:00
# starting = False
if i in loop_connections:
j = loop_connections[i]
indices.extend([i, j])
i = after[j]
else:
indices.append(i)
i = after[i]
2020-02-11 19:48:50 -08:00
if i == 0:
break
meta_indices = earcut(verts[indices, :2], [len(indices)])
return [indices[mi] for mi in meta_indices]