2018-03-30 18:19:23 -07:00
|
|
|
import numpy as np
|
2018-03-31 15:11:35 -07:00
|
|
|
|
|
|
|
from constants import OUT
|
|
|
|
from constants import RIGHT
|
2018-07-11 11:38:59 -07:00
|
|
|
from functools import reduce
|
2018-03-30 18:19:23 -07:00
|
|
|
|
2018-04-06 13:58:59 -07:00
|
|
|
# Matrix operations
|
2018-03-30 18:19:23 -07:00
|
|
|
|
2018-04-06 13:58:59 -07:00
|
|
|
|
|
|
|
def thick_diagonal(dim, thickness=2):
|
2018-03-30 18:19:23 -07:00
|
|
|
row_indices = np.arange(dim).repeat(dim).reshape((dim, dim))
|
|
|
|
col_indices = np.transpose(row_indices)
|
2018-04-06 13:58:59 -07:00
|
|
|
return (np.abs(row_indices - col_indices) < thickness).astype('uint8')
|
|
|
|
|
2018-03-30 18:19:23 -07:00
|
|
|
|
|
|
|
def rotation_matrix(angle, axis):
|
|
|
|
"""
|
|
|
|
Rotation in R^3 about a specified axis of rotation.
|
|
|
|
"""
|
|
|
|
about_z = rotation_about_z(angle)
|
|
|
|
z_to_axis = z_to_vector(axis)
|
|
|
|
axis_to_z = np.linalg.inv(z_to_axis)
|
|
|
|
return reduce(np.dot, [z_to_axis, about_z, axis_to_z])
|
|
|
|
|
2018-04-06 13:58:59 -07:00
|
|
|
|
2018-03-30 18:19:23 -07:00
|
|
|
def rotation_about_z(angle):
|
|
|
|
return [
|
|
|
|
[np.cos(angle), -np.sin(angle), 0],
|
2018-04-06 13:58:59 -07:00
|
|
|
[np.sin(angle), np.cos(angle), 0],
|
2018-03-30 18:19:23 -07:00
|
|
|
[0, 0, 1]
|
|
|
|
]
|
|
|
|
|
2018-04-06 13:58:59 -07:00
|
|
|
|
2018-03-30 18:19:23 -07:00
|
|
|
def z_to_vector(vector):
|
|
|
|
"""
|
2018-04-06 13:58:59 -07:00
|
|
|
Returns some matrix in SO(3) which takes the z-axis to the
|
2018-03-30 18:19:23 -07:00
|
|
|
(normalized) vector provided as an argument
|
|
|
|
"""
|
|
|
|
norm = np.linalg.norm(vector)
|
|
|
|
if norm == 0:
|
|
|
|
return np.identity(3)
|
|
|
|
v = np.array(vector) / norm
|
|
|
|
phi = np.arccos(v[2])
|
|
|
|
if any(v[:2]):
|
2018-04-06 13:58:59 -07:00
|
|
|
# projection of vector to unit circle
|
2018-03-30 18:19:23 -07:00
|
|
|
axis_proj = v[:2] / np.linalg.norm(v[:2])
|
|
|
|
theta = np.arccos(axis_proj[0])
|
|
|
|
if axis_proj[1] < 0:
|
|
|
|
theta = -theta
|
|
|
|
else:
|
|
|
|
theta = 0
|
|
|
|
phi_down = np.array([
|
|
|
|
[np.cos(phi), 0, np.sin(phi)],
|
|
|
|
[0, 1, 0],
|
|
|
|
[-np.sin(phi), 0, np.cos(phi)]
|
|
|
|
])
|
|
|
|
return np.dot(rotation_about_z(theta), phi_down)
|
|
|
|
|
2018-04-06 13:58:59 -07:00
|
|
|
|
|
|
|
def rotate_vector(vector, angle, axis=OUT):
|
2018-03-30 18:19:23 -07:00
|
|
|
return np.dot(rotation_matrix(angle, axis), vector)
|
|
|
|
|
2018-04-06 13:58:59 -07:00
|
|
|
|
2018-03-30 18:19:23 -07:00
|
|
|
def angle_between(v1, v2):
|
|
|
|
return np.arccos(np.dot(
|
2018-04-06 13:58:59 -07:00
|
|
|
v1 / np.linalg.norm(v1),
|
2018-03-30 18:19:23 -07:00
|
|
|
v2 / np.linalg.norm(v2)
|
|
|
|
))
|
|
|
|
|
2018-04-06 13:58:59 -07:00
|
|
|
|
2018-03-30 18:19:23 -07:00
|
|
|
def angle_of_vector(vector):
|
|
|
|
"""
|
|
|
|
Returns polar coordinate theta when vector is project on xy plane
|
|
|
|
"""
|
|
|
|
z = complex(*vector[:2])
|
|
|
|
if z == 0:
|
|
|
|
return 0
|
|
|
|
return np.angle(complex(*vector[:2]))
|
|
|
|
|
2018-04-06 13:58:59 -07:00
|
|
|
|
2018-03-30 18:19:23 -07:00
|
|
|
def angle_between_vectors(v1, v2):
|
|
|
|
"""
|
|
|
|
Returns the angle between two 3D vectors.
|
|
|
|
This angle will always be btw 0 and TAU/2.
|
|
|
|
"""
|
|
|
|
l1 = np.linalg.norm(v1)
|
|
|
|
l2 = np.linalg.norm(v2)
|
2018-04-06 13:58:59 -07:00
|
|
|
return np.arccos(np.dot(v1, v2) / (l1 * l2))
|
|
|
|
|
2018-03-30 18:19:23 -07:00
|
|
|
|
|
|
|
def project_along_vector(point, vector):
|
|
|
|
matrix = np.identity(3) - np.outer(vector, vector)
|
|
|
|
return np.dot(point, matrix.T)
|
|
|
|
|
|
|
|
###
|
|
|
|
|
2018-04-06 13:58:59 -07:00
|
|
|
|
|
|
|
def compass_directions(n=4, start_vect=RIGHT):
|
|
|
|
angle = 2 * np.pi / n
|
2018-03-30 18:19:23 -07:00
|
|
|
return np.array([
|
2018-04-06 13:58:59 -07:00
|
|
|
rotate_vector(start_vect, k * angle)
|
2018-03-30 18:19:23 -07:00
|
|
|
for k in range(n)
|
|
|
|
])
|
|
|
|
|
2018-04-06 13:58:59 -07:00
|
|
|
|
2018-03-30 18:19:23 -07:00
|
|
|
def complex_to_R3(complex_num):
|
|
|
|
return np.array((complex_num.real, complex_num.imag, 0))
|
|
|
|
|
2018-04-06 13:58:59 -07:00
|
|
|
|
2018-03-30 18:19:23 -07:00
|
|
|
def R3_to_complex(point):
|
|
|
|
return complex(*point[:2])
|
|
|
|
|
2018-04-06 13:58:59 -07:00
|
|
|
|
2018-05-30 12:02:25 -07:00
|
|
|
def complex_func_to_R3_func(complex_func):
|
|
|
|
return lambda p: complex_to_R3(complex_func(R3_to_complex(p)))
|
|
|
|
|
|
|
|
|
2018-03-30 18:19:23 -07:00
|
|
|
def center_of_mass(points):
|
|
|
|
points = [np.array(point).astype("float") for point in points]
|
|
|
|
return sum(points) / len(points)
|
2018-07-14 10:32:13 -07:00
|
|
|
|
|
|
|
|
|
|
|
def line_intersection(line1, line2):
|
|
|
|
"""
|
|
|
|
return intersection point of two lines,
|
|
|
|
each defined with a pair of vectors determining
|
|
|
|
the end points
|
|
|
|
"""
|
|
|
|
x_diff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0])
|
|
|
|
y_diff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1])
|
|
|
|
|
|
|
|
def det(a, b):
|
|
|
|
return a[0] * b[1] - a[1] * b[0]
|
|
|
|
|
|
|
|
div = det(x_diff, y_diff)
|
|
|
|
if div == 0:
|
|
|
|
raise Exception("Lines do not intersect")
|
|
|
|
d = (det(*line1), det(*line2))
|
|
|
|
x = det(d, x_diff) / div
|
|
|
|
y = det(d, y_diff) / div
|
|
|
|
return np.array([x, y, 0])
|