3b1b-manim/manimlib/utils/space_ops.py

226 lines
5.3 KiB
Python
Raw Normal View History

from functools import reduce
import numpy as np
from manimlib.constants import OUT
from manimlib.constants import PI
from manimlib.constants import RIGHT
from manimlib.constants import TAU
from manimlib.utils.iterables import adjacent_pairs
2018-08-15 17:30:24 -07:00
def get_norm(vect):
return sum([x**2 for x in vect])**0.5
# Quaternions
# TODO, implement quaternion type
def quaternion_mult(q1, q2):
w1, x1, y1, z1 = q1
w2, x2, y2, z2 = q2
return np.array([
w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2,
w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2,
w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2,
w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2,
])
def quaternion_from_angle_axis(angle, axis):
return np.append(
np.cos(angle / 2),
np.sin(angle / 2) * normalize(axis)
)
2018-09-27 17:35:40 -07:00
def angle_axis_from_quaternion(quaternion):
axis = normalize(
quaternion[1:],
fall_back=np.array([1, 0, 0])
)
angle = 2 * np.arccos(quaternion[0])
if angle > TAU / 2:
angle = TAU - angle
return angle, axis
def quaternion_conjugate(quaternion):
result = np.array(quaternion)
result[1:] *= -1
return result
def rotate_vector(vector, angle, axis=OUT):
quat = quaternion_from_angle_axis(angle, axis)
quat_inv = quaternion_conjugate(quat)
2018-09-19 10:49:59 -07:00
product = reduce(
quaternion_mult,
[quat, np.append(0, vector), quat_inv]
)
return product[1:]
def thick_diagonal(dim, thickness=2):
row_indices = np.arange(dim).repeat(dim).reshape((dim, dim))
col_indices = np.transpose(row_indices)
return (np.abs(row_indices - col_indices) < thickness).astype('uint8')
def rotation_matrix(angle, axis):
"""
Rotation in R^3 about a specified axis of rotation.
"""
about_z = rotation_about_z(angle)
z_to_axis = z_to_vector(axis)
axis_to_z = np.linalg.inv(z_to_axis)
return reduce(np.dot, [z_to_axis, about_z, axis_to_z])
def rotation_about_z(angle):
return [
[np.cos(angle), -np.sin(angle), 0],
[np.sin(angle), np.cos(angle), 0],
[0, 0, 1]
]
def z_to_vector(vector):
"""
Returns some matrix in SO(3) which takes the z-axis to the
(normalized) vector provided as an argument
"""
2018-08-15 17:30:24 -07:00
norm = get_norm(vector)
if norm == 0:
return np.identity(3)
v = np.array(vector) / norm
phi = np.arccos(v[2])
if any(v[:2]):
# projection of vector to unit circle
2018-08-15 17:30:24 -07:00
axis_proj = v[:2] / get_norm(v[:2])
theta = np.arccos(axis_proj[0])
if axis_proj[1] < 0:
theta = -theta
else:
theta = 0
phi_down = np.array([
[np.cos(phi), 0, np.sin(phi)],
[0, 1, 0],
[-np.sin(phi), 0, np.cos(phi)]
])
return np.dot(rotation_about_z(theta), phi_down)
def angle_between(v1, v2):
return np.arccos(np.dot(
2018-08-15 17:30:24 -07:00
v1 / get_norm(v1),
v2 / get_norm(v2)
))
def angle_of_vector(vector):
"""
Returns polar coordinate theta when vector is project on xy plane
"""
z = complex(*vector[:2])
if z == 0:
return 0
return np.angle(complex(*vector[:2]))
def angle_between_vectors(v1, v2):
"""
Returns the angle between two 3D vectors.
This angle will always be btw 0 and TAU/2.
"""
2018-08-15 17:30:24 -07:00
l1 = get_norm(v1)
l2 = get_norm(v2)
return np.arccos(np.dot(v1, v2) / (l1 * l2))
def project_along_vector(point, vector):
matrix = np.identity(3) - np.outer(vector, vector)
return np.dot(point, matrix.T)
def normalize(vect, fall_back=None):
norm = get_norm(vect)
if norm > 0:
2018-08-30 14:24:57 -07:00
return np.array(vect) / norm
else:
if fall_back is not None:
return fall_back
else:
return np.zeros(len(vect))
def cross(v1, v2):
return np.array([
v1[1] * v2[2] - v1[2] * v2[1],
v1[2] * v2[0] - v1[0] * v2[2],
v1[0] * v2[1] - v1[1] * v2[0]
])
def get_unit_normal(v1, v2):
return normalize(cross(v1, v2))
###
def compass_directions(n=4, start_vect=RIGHT):
2018-10-05 17:19:48 -07:00
angle = TAU / n
return np.array([
rotate_vector(start_vect, k * angle)
for k in range(n)
])
def complex_to_R3(complex_num):
return np.array((complex_num.real, complex_num.imag, 0))
def R3_to_complex(point):
return complex(*point[:2])
2018-05-30 12:02:25 -07:00
def complex_func_to_R3_func(complex_func):
return lambda p: complex_to_R3(complex_func(R3_to_complex(p)))
def center_of_mass(points):
points = [np.array(point).astype("float") for point in points]
return sum(points) / len(points)
2018-07-14 10:32:13 -07:00
def line_intersection(line1, line2):
"""
return intersection point of two lines,
each defined with a pair of vectors determining
the end points
"""
x_diff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0])
y_diff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1])
def det(a, b):
return a[0] * b[1] - a[1] * b[0]
div = det(x_diff, y_diff)
if div == 0:
raise Exception("Lines do not intersect")
d = (det(*line1), det(*line2))
x = det(d, x_diff) / div
y = det(d, y_diff) / div
return np.array([x, y, 0])
2018-08-28 09:45:12 -07:00
def get_winding_number(points):
total_angle = 0
for p1, p2 in adjacent_pairs(points):
d_angle = angle_of_vector(p2) - angle_of_vector(p1)
d_angle = ((d_angle + PI) % TAU) - PI
total_angle += d_angle
return total_angle / TAU