3b1b-manim/manimlib/utils/bezier.py

352 lines
10 KiB
Python
Raw Normal View History

from __future__ import annotations
from typing import Iterable, Callable, TypeVar, Sequence
from scipy import linalg
import numpy as np
import numpy.typing as npt
from manimlib.utils.simple_functions import choose
from manimlib.utils.space_ops import find_intersection
from manimlib.utils.space_ops import cross2d
from manimlib.utils.space_ops import midpoint
2021-10-07 17:37:10 +08:00
from manimlib.logger import log
CLOSED_THRESHOLD = 0.001
T = TypeVar("T")
2022-02-13 12:56:03 +08:00
def bezier(
points: Iterable[float | np.ndarray]
) -> Callable[[float], float | np.ndarray]:
n = len(points) - 1
def result(t):
return sum(
((1 - t)**(n - k)) * (t**k) * choose(n, k) * point
for k, point in enumerate(points)
)
return result
def partial_bezier_points(
points: Sequence[np.ndarray],
a: float,
b: float
) -> list[float]:
"""
Given an list of points which define
a bezier curve, and two numbers 0<=a<b<=1,
return an list of the same size, which
describes the portion of the original bezier
curve on the interval [a, b].
This algorithm is pretty nifty, and pretty dense.
"""
if a == 1:
return [points[-1]] * len(points)
a_to_1 = [
bezier(points[i:])(a)
for i in range(len(points))
]
end_prop = (b - a) / (1. - a)
return [
bezier(a_to_1[:i + 1])(end_prop)
for i in range(len(points))
]
# Shortened version of partial_bezier_points just for quadratics,
# since this is called a fair amount
def partial_quadratic_bezier_points(
points: Sequence[np.ndarray],
a: float,
b: float
) -> list[float]:
2020-06-27 12:17:41 -07:00
if a == 1:
return 3 * [points[-1]]
def curve(t):
return points[0] * (1 - t) * (1 - t) + 2 * points[1] * t * (1 - t) + points[2] * t * t
# bezier(points)
h0 = curve(a) if a > 0 else points[0]
h2 = curve(b) if b < 1 else points[2]
h1_prime = (1 - a) * points[1] + a * points[2]
end_prop = (b - a) / (1. - a)
h1 = (1 - end_prop) * h0 + end_prop * h1_prime
return [h0, h1, h2]
# Linear interpolation variants
def interpolate(start: T, end: T, alpha: float) -> T:
2021-01-10 18:51:47 -08:00
try:
return (1 - alpha) * start + alpha * end
except TypeError:
log.debug(f"`start` parameter with type `{type(start)}` and dtype `{start.dtype}`")
log.debug(f"`end` parameter with type `{type(end)}` and dtype `{end.dtype}`")
log.debug(f"`alpha` parameter with value `{alpha}`")
2021-01-10 18:51:47 -08:00
import sys
sys.exit(2)
def set_array_by_interpolation(
arr: np.ndarray,
arr1: np.ndarray,
arr2: np.ndarray,
alpha: float,
interp_func: Callable[[np.ndarray, np.ndarray, float], np.ndarray] = interpolate
) -> np.ndarray:
arr[:] = interp_func(arr1, arr2, alpha)
2020-06-28 12:15:01 -07:00
return arr
def integer_interpolate(
start: T,
end: T,
alpha: float
) -> tuple[int, float]:
"""
alpha is a float between 0 and 1. This returns
an integer between start and end (inclusive) representing
appropriate interpolation between them, along with a
"residue" representing a new proportion between the
returned integer and the next one of the
list.
For example, if start=0, end=10, alpha=0.46, This
would return (4, 0.6).
"""
if alpha >= 1:
return (end - 1, 1.0)
if alpha <= 0:
return (start, 0)
value = int(interpolate(start, end, alpha))
residue = ((end - start) * alpha) % 1
return (value, residue)
def mid(start: T, end: T) -> T:
return (start + end) / 2.0
def inverse_interpolate(start: T, end: T, value: T) -> float:
return np.true_divide(value - start, end - start)
def match_interpolate(
new_start: T,
new_end: T,
old_start: T,
old_end: T,
old_value: T
) -> T:
return interpolate(
new_start, new_end,
inverse_interpolate(old_start, old_end, old_value)
)
def get_smooth_quadratic_bezier_handle_points(
points: Sequence[np.ndarray]
) -> np.ndarray | list[np.ndarray]:
"""
Figuring out which bezier curves most smoothly connect a sequence of points.
Given three successive points, P0, P1 and P2, you can compute that by defining
h = (1/4) P0 + P1 - (1/4)P2, the bezier curve defined by (P0, h, P1) will pass
through the point P2.
So for a given set of four successive points, P0, P1, P2, P3, if we want to add
a handle point h between P1 and P2 so that the quadratic bezier (P1, h, P2) is
part of a smooth curve passing through all four points, we calculate one solution
for h that would produce a parbola passing through P3, call it smooth_to_right, and
another that would produce a parabola passing through P0, call it smooth_to_left,
and use the midpoint between the two.
"""
if len(points) == 2:
return midpoint(*points)
smooth_to_right, smooth_to_left = [
0.25 * ps[0:-2] + ps[1:-1] - 0.25 * ps[2:]
for ps in (points, points[::-1])
]
2021-02-05 16:29:07 -08:00
if np.isclose(points[0], points[-1]).all():
last_str = 0.25 * points[-2] + points[-1] - 0.25 * points[1]
last_stl = 0.25 * points[1] + points[0] - 0.25 * points[-2]
else:
last_str = smooth_to_left[0]
last_stl = smooth_to_right[0]
handles = 0.5 * np.vstack([smooth_to_right, [last_str]])
handles += 0.5 * np.vstack([last_stl, smooth_to_left[::-1]])
return handles
def get_smooth_cubic_bezier_handle_points(
points: npt.ArrayLike
) -> tuple[np.ndarray, np.ndarray]:
points = np.array(points)
num_handles = len(points) - 1
dim = points.shape[1]
if num_handles < 1:
return np.zeros((0, dim)), np.zeros((0, dim))
# Must solve 2*num_handles equations to get the handles.
# l and u are the number of lower an upper diagonal rows
# in the matrix to solve.
l, u = 2, 1
# diag is a representation of the matrix in diagonal form
# See https://www.particleincell.com/2012/bezier-splines/
2021-08-07 22:25:26 +07:00
# for how to arrive at these equations
diag = np.zeros((l + u + 1, 2 * num_handles))
diag[0, 1::2] = -1
diag[0, 2::2] = 1
diag[1, 0::2] = 2
diag[1, 1::2] = 1
diag[2, 1:-2:2] = -2
diag[3, 0:-3:2] = 1
# last
diag[2, -2] = -1
diag[1, -1] = 2
# This is the b as in Ax = b, where we are solving for x,
# and A is represented using diag. However, think of entries
# to x and b as being points in space, not numbers
b = np.zeros((2 * num_handles, dim))
b[1::2] = 2 * points[1:]
b[0] = points[0]
b[-1] = points[-1]
def solve_func(b):
return linalg.solve_banded((l, u), diag, b)
use_closed_solve_function = is_closed(points)
if use_closed_solve_function:
# Get equations to relate first and last points
matrix = diag_to_matrix((l, u), diag)
# last row handles second derivative
matrix[-1, [0, 1, -2, -1]] = [2, -1, 1, -2]
# first row handles first derivative
matrix[0, :] = np.zeros(matrix.shape[1])
matrix[0, [0, -1]] = [1, 1]
b[0] = 2 * points[0]
b[-1] = np.zeros(dim)
def closed_curve_solve_func(b):
return linalg.solve(matrix, b)
handle_pairs = np.zeros((2 * num_handles, dim))
for i in range(dim):
if use_closed_solve_function:
handle_pairs[:, i] = closed_curve_solve_func(b[:, i])
else:
handle_pairs[:, i] = solve_func(b[:, i])
return handle_pairs[0::2], handle_pairs[1::2]
def diag_to_matrix(
l_and_u: tuple[int, int],
diag: np.ndarray
) -> np.ndarray:
"""
Converts array whose rows represent diagonal
entries of a matrix into the matrix itself.
See scipy.linalg.solve_banded
"""
l, u = l_and_u
dim = diag.shape[1]
matrix = np.zeros((dim, dim))
for i in range(l + u + 1):
np.fill_diagonal(
matrix[max(0, i - u):, max(0, u - i):],
diag[i, max(0, u - i):]
)
return matrix
def is_closed(points: Sequence[np.ndarray]) -> bool:
return np.allclose(points[0], points[-1])
# Given 4 control points for a cubic bezier curve (or arrays of such)
# return control points for 2 quadratics (or 2n quadratics) approximating them.
def get_quadratic_approximation_of_cubic(
a0: npt.ArrayLike,
h0: npt.ArrayLike,
h1: npt.ArrayLike,
a1: npt.ArrayLike
) -> np.ndarray:
a0 = np.array(a0, ndmin=2)
h0 = np.array(h0, ndmin=2)
h1 = np.array(h1, ndmin=2)
a1 = np.array(a1, ndmin=2)
# Tangent vectors at the start and end.
T0 = h0 - a0
T1 = a1 - h1
# Search for inflection points. If none are found, use the
# midpoint as a cut point.
# Based on http://www.caffeineowl.com/graphics/2d/vectorial/cubic-inflexion.html
has_infl = np.ones(len(a0), dtype=bool)
p = h0 - a0
q = h1 - 2 * h0 + a0
r = a1 - 3 * h1 + 3 * h0 - a0
a = cross2d(q, r)
b = cross2d(p, r)
c = cross2d(p, q)
disc = b * b - 4 * a * c
has_infl &= (disc > 0)
sqrt_disc = np.sqrt(np.abs(disc))
settings = np.seterr(all='ignore')
ti_bounds = []
for sgn in [-1, +1]:
ti = (-b + sgn * sqrt_disc) / (2 * a)
ti[a == 0] = (-c / b)[a == 0]
ti[(a == 0) & (b == 0)] = 0
ti_bounds.append(ti)
ti_min, ti_max = ti_bounds
np.seterr(**settings)
ti_min_in_range = has_infl & (0 < ti_min) & (ti_min < 1)
ti_max_in_range = has_infl & (0 < ti_max) & (ti_max < 1)
# Choose a value of t which starts at 0.5,
# but is updated to one of the inflection points
# if they lie between 0 and 1
t_mid = 0.5 * np.ones(len(a0))
t_mid[ti_min_in_range] = ti_min[ti_min_in_range]
t_mid[ti_max_in_range] = ti_max[ti_max_in_range]
m, n = a0.shape
t_mid = t_mid.repeat(n).reshape((m, n))
# Compute bezier point and tangent at the chosen value of t
mid = bezier([a0, h0, h1, a1])(t_mid)
Tm = bezier([h0 - a0, h1 - h0, a1 - h1])(t_mid)
# Intersection between tangent lines at end points
# and tangent in the middle
i0 = find_intersection(a0, T0, mid, Tm)
i1 = find_intersection(a1, T1, mid, Tm)
m, n = np.shape(a0)
result = np.zeros((6 * m, n))
result[0::6] = a0
result[1::6] = i0
result[2::6] = mid
result[3::6] = mid
result[4::6] = i1
result[5::6] = a1
return result
def get_smooth_quadratic_bezier_path_through(
points: list[np.ndarray]
) -> np.ndarray:
# TODO
h0, h1 = get_smooth_cubic_bezier_handle_points(points)
a0 = points[:-1]
a1 = points[1:]
return get_quadratic_approximation_of_cubic(a0, h0, h1, a1)