3b1b-manim/utils/bezier.py

126 lines
3.7 KiB
Python
Raw Normal View History

import numpy as np
from scipy import linalg
from utils.simple_functions import choose
CLOSED_THRESHOLD = 0.0
def bezier(points):
n = len(points) - 1
return lambda t : sum([
((1-t)**(n-k))*(t**k)*choose(n, k)*point
for k, point in enumerate(points)
])
def partial_bezier_points(points, a, b):
"""
Given an array of points which define
a bezier curve, and two numbers 0<=a<b<=1,
return an array of the same size, which
describes the portion of the original bezier
curve on the interval [a, b].
This algorithm is pretty nifty, and pretty dense.
"""
a_to_1 = np.array([
bezier(points[i:])(a)
for i in range(len(points))
])
return np.array([
bezier(a_to_1[:i+1])((b-a)/(1.-a))
for i in range(len(points))
])
# Linear interpolation variants
def interpolate(start, end, alpha):
return (1-alpha)*start + alpha*end
def mid(start, end):
return (start + end)/2.0
def inverse_interpolate(start, end, value):
return np.true_divide(value - start, end - start)
def match_interpolate(new_start, new_end, old_start, old_end, old_value):
return interpolate(
new_start, new_end,
inverse_interpolate(old_start, old_end, old_value)
)
def clamp(lower, upper, val):
if val < lower:
return lower
elif val > upper:
return upper
return val
# Figuring out which bezier curves most smoothly connect a sequence of points
def get_smooth_handle_points(points):
points = np.array(points)
num_handles = len(points) - 1
dim = points.shape[1]
if num_handles < 1:
return np.zeros((0, dim)), np.zeros((0, dim))
#Must solve 2*num_handles equations to get the handles.
#l and u are the number of lower an upper diagonal rows
#in the matrix to solve.
l, u = 2, 1
#diag is a representation of the matrix in diagonal form
#See https://www.particleincell.com/2012/bezier-splines/
#for how to arive at these equations
diag = np.zeros((l+u+1, 2*num_handles))
diag[0,1::2] = -1
diag[0,2::2] = 1
diag[1,0::2] = 2
diag[1,1::2] = 1
diag[2,1:-2:2] = -2
diag[3,0:-3:2] = 1
#last
diag[2,-2] = -1
diag[1,-1] = 2
#This is the b as in Ax = b, where we are solving for x,
#and A is represented using diag. However, think of entries
#to x and b as being points in space, not numbers
b = np.zeros((2*num_handles, dim))
b[1::2] = 2*points[1:]
b[0] = points[0]
b[-1] = points[-1]
solve_func = lambda b : linalg.solve_banded(
(l, u), diag, b
)
if is_closed(points):
#Get equations to relate first and last points
matrix = diag_to_matrix((l, u), diag)
#last row handles second derivative
matrix[-1, [0, 1, -2, -1]] = [2, -1, 1, -2]
#first row handles first derivative
matrix[0,:] = np.zeros(matrix.shape[1])
matrix[0,[0, -1]] = [1, 1]
b[0] = 2*points[0]
b[-1] = np.zeros(dim)
solve_func = lambda b : linalg.solve(matrix, b)
handle_pairs = np.zeros((2*num_handles, dim))
for i in range(dim):
handle_pairs[:,i] = solve_func(b[:,i])
return handle_pairs[0::2], handle_pairs[1::2]
def diag_to_matrix(l_and_u, diag):
"""
Converts array whose rows represent diagonal
entries of a matrix into the matrix itself.
See scipy.linalg.solve_banded
"""
l, u = l_and_u
dim = diag.shape[1]
matrix = np.zeros((dim, dim))
for i in range(l+u+1):
np.fill_diagonal(
matrix[max(0,i-u):,max(0,u-i):],
diag[i,max(0,u-i):]
)
return matrix
def is_closed(points):
return np.linalg.norm(points[0] - points[-1]) < CLOSED_THRESHOLD