Tried, but failed, to write a better smooth bezier function

This commit is contained in:
Grant Sanderson 2020-06-09 12:38:37 -07:00
parent 940432e320
commit c7a50ac7a5
2 changed files with 45 additions and 12 deletions

View file

@ -9,7 +9,8 @@ from manimlib.constants import *
from manimlib.mobject.mobject import Mobject
from manimlib.mobject.mobject import Point
from manimlib.utils.bezier import bezier
from manimlib.utils.bezier import get_smooth_handle_points
from manimlib.utils.bezier import get_smooth_cubic_bezier_handle_points
from manimlib.utils.bezier import get_smooth_quadratic_bezier_handle_points
from manimlib.utils.bezier import get_quadratic_approximation_of_cubic
from manimlib.utils.bezier import interpolate
from manimlib.utils.bezier import integer_interpolate
@ -477,7 +478,7 @@ class VMobject(Mobject):
for subpath in subpaths:
anchors = np.vstack([subpath[::nppc], subpath[-1:]])
if mode == "smooth":
h1, h2 = get_smooth_handle_points(anchors)
h1, h2 = get_smooth_cubic_bezier_handle_points(anchors)
new_subpath = get_quadratic_approximation_of_cubic(
anchors[:-1], h1, h2, anchors[1:]
)
@ -523,10 +524,7 @@ class VMobject(Mobject):
#
def consider_points_equals(self, p0, p1):
return np.allclose(
p0, p1,
atol=self.tolerance_for_point_equality
)
return get_norm(p1 - p0) < self.tolerance_for_point_equality
# Information about the curve
def get_bezier_tuples_from_points(self, points):
@ -543,10 +541,14 @@ class VMobject(Mobject):
def get_subpaths_from_points(self, points):
nppc = self.n_points_per_curve
split_indices = filter(
lambda n: not self.consider_points_equals(points[n - 1], points[n]),
range(nppc, len(points), nppc)
)
diffs = points[nppc - 1:-1:nppc] - points[nppc::nppc]
splits = (diffs * diffs).sum(1) > self.tolerance_for_point_equality
split_indices = np.arange(nppc, len(points), nppc, dtype=int)[splits]
# split_indices = filter(
# lambda n: not self.consider_points_equals(points[n - 1], points[n]),
# range(nppc, len(points), nppc)
# )
split_indices = [0, *split_indices, len(points)]
return [
points[i1:i2]

View file

@ -1,8 +1,11 @@
from scipy import linalg
import numpy as np
from manimlib.constants import PI
from manimlib.utils.simple_functions import choose
from manimlib.utils.space_ops import rotate_vector
from manimlib.utils.space_ops import find_intersection
from manimlib.utils.space_ops import cross
from manimlib.utils.space_ops import cross2d
CLOSED_THRESHOLD = 0.001
@ -83,9 +86,36 @@ def match_interpolate(new_start, new_end, old_start, old_end, old_value):
# Figuring out which bezier curves most smoothly connect a sequence of points
def get_smooth_quadratic_bezier_handle_points(points):
# Alas, this function does not actually work very well.
#
# For each point P_i, where 1 <= i <= n, draw a line through
# P_i parallel to the line through (P_{i-1}, P_{i+1}). The
# intersection of these lines form most of the handles.
#
# What remains are those near the end points. For that, we want
# the handle between P_0 and P_1 to be closest to (P_0 + P_1) / 2,
# which will minimize the second derivative of that curve. Likewise
# for the last handle point.
t01 = points[1] - points[0]
t12 = points[2] - points[1]
tm2 = points[-2] - points[-3]
tm1 = points[-1] - points[-2]
tangents = np.vstack([
rotate_vector(t01, PI / 2, cross(t01, t12)),
points[2:] - points[:-2],
rotate_vector(tm1, PI / 2, cross(tm1, tm2))
])
alt_points = np.array(points)
alt_points[0] = points[:2].mean(0)
alt_points[-1] = points[-2:].mean(0)
return find_intersection(
alt_points[:-1], tangents[:-1],
alt_points[1:], tangents[1:],
)
def get_smooth_handle_points(points):
def get_smooth_cubic_bezier_handle_points(points):
points = np.array(points)
num_handles = len(points) - 1
dim = points.shape[1]
@ -234,7 +264,8 @@ def get_quadratic_approximation_of_cubic(a0, h0, h1, a1):
def get_smooth_quadratic_bezier_path_through(points):
h0, h1 = get_smooth_handle_points(points)
# TODO
h0, h1 = get_smooth_cubic_bezier_handle_points(points)
a0 = points[:-1]
a1 = points[1:]
return get_quadratic_approximation_of_cubic(a0, h0, h1, a1)