3b1b-manim/manimlib/utils/bezier.py

198 lines
5.6 KiB
Python
Raw Normal View History

from scipy import linalg
import numpy as np
from manimlib.utils.simple_functions import choose
from manimlib.utils.space_ops import find_intersection
CLOSED_THRESHOLD = 0.001
def bezier(points):
n = len(points) - 1
return lambda t: sum([
((1 - t)**(n - k)) * (t**k) * choose(n, k) * point
for k, point in enumerate(points)
])
def partial_bezier_points(points, a, b):
"""
Given an array of points which define
a bezier curve, and two numbers 0<=a<b<=1,
return an array of the same size, which
describes the portion of the original bezier
curve on the interval [a, b].
This algorithm is pretty nifty, and pretty dense.
"""
if a == 1:
return [points[-1]] * len(points)
a_to_1 = np.array([
bezier(points[i:])(a)
for i in range(len(points))
])
end_prop = (b - a) / (1. - a)
return np.array([
bezier(a_to_1[:i + 1])(end_prop)
for i in range(len(points))
])
# Linear interpolation variants
def interpolate(start, end, alpha):
return (1 - alpha) * start + alpha * end
def integer_interpolate(start, end, alpha):
"""
alpha is a float between 0 and 1. This returns
an integer between start and end (inclusive) representing
appropriate interpolation between them, along with a
"residue" representing a new proportion between the
returned integer and the next one of the
list.
For example, if start=0, end=10, alpha=0.46, This
would return (4, 0.6).
"""
if alpha >= 1:
return (end - 1, 1.0)
if alpha <= 0:
return (start, 0)
value = int(interpolate(start, end, alpha))
residue = ((end - start) * alpha) % 1
return (value, residue)
def mid(start, end):
return (start + end) / 2.0
def inverse_interpolate(start, end, value):
return np.true_divide(value - start, end - start)
def match_interpolate(new_start, new_end, old_start, old_end, old_value):
return interpolate(
new_start, new_end,
inverse_interpolate(old_start, old_end, old_value)
)
# Figuring out which bezier curves most smoothly connect a sequence of points
def get_smooth_handle_points(points):
points = np.array(points)
num_handles = len(points) - 1
dim = points.shape[1]
if num_handles < 1:
return np.zeros((0, dim)), np.zeros((0, dim))
# Must solve 2*num_handles equations to get the handles.
# l and u are the number of lower an upper diagonal rows
# in the matrix to solve.
l, u = 2, 1
# diag is a representation of the matrix in diagonal form
# See https://www.particleincell.com/2012/bezier-splines/
# for how to arive at these equations
diag = np.zeros((l + u + 1, 2 * num_handles))
diag[0, 1::2] = -1
diag[0, 2::2] = 1
diag[1, 0::2] = 2
diag[1, 1::2] = 1
diag[2, 1:-2:2] = -2
diag[3, 0:-3:2] = 1
# last
diag[2, -2] = -1
diag[1, -1] = 2
# This is the b as in Ax = b, where we are solving for x,
# and A is represented using diag. However, think of entries
# to x and b as being points in space, not numbers
b = np.zeros((2 * num_handles, dim))
b[1::2] = 2 * points[1:]
b[0] = points[0]
b[-1] = points[-1]
def solve_func(b):
return linalg.solve_banded((l, u), diag, b)
use_closed_solve_function = is_closed(points)
if use_closed_solve_function:
# Get equations to relate first and last points
matrix = diag_to_matrix((l, u), diag)
# last row handles second derivative
matrix[-1, [0, 1, -2, -1]] = [2, -1, 1, -2]
# first row handles first derivative
matrix[0, :] = np.zeros(matrix.shape[1])
matrix[0, [0, -1]] = [1, 1]
b[0] = 2 * points[0]
b[-1] = np.zeros(dim)
def closed_curve_solve_func(b):
return linalg.solve(matrix, b)
handle_pairs = np.zeros((2 * num_handles, dim))
for i in range(dim):
if use_closed_solve_function:
handle_pairs[:, i] = closed_curve_solve_func(b[:, i])
else:
handle_pairs[:, i] = solve_func(b[:, i])
return handle_pairs[0::2], handle_pairs[1::2]
def diag_to_matrix(l_and_u, diag):
"""
Converts array whose rows represent diagonal
entries of a matrix into the matrix itself.
See scipy.linalg.solve_banded
"""
l, u = l_and_u
dim = diag.shape[1]
matrix = np.zeros((dim, dim))
for i in range(l + u + 1):
np.fill_diagonal(
matrix[max(0, i - u):, max(0, u - i):],
diag[i, max(0, u - i):]
)
return matrix
def is_closed(points):
return np.allclose(points[0], points[-1])
# Given 4 control points for a cubic bezier curve (or arrays of such)
# return control points for 2 quadratics (or 2n quadratics) approximating them.
def get_quadratic_approximation_of_cubic(a0, h0, h1, a1):
a0 = np.array(a0, ndmin=2)
h0 = np.array(h0, ndmin=2)
h1 = np.array(h1, ndmin=2)
a1 = np.array(a1, ndmin=2)
mid = (a0 + 3 * h0 + 3 * h1 + a1) / 8
# Tangent vectors at the start, middle and end.
T0 = h0 - a0
Tm = 3 * (-a0 - h0 + h1 + a1) / 4
T1 = a1 - h1
# Intersection between tangent lines at end points and tangent in the middle
i0 = find_intersection(a0, T0, mid, Tm)
i1 = find_intersection(a1, T1, mid, Tm)
m, n = np.shape(a0)
result = np.zeros((6 * m, n))
result[0::6] = a0
result[1::6] = i0
result[2::6] = mid
result[3::6] = mid
result[4::6] = i1
result[5::6] = a1
return result
def get_smooth_quadratic_bezier_path_through(points):
h0, h1 = get_smooth_handle_points(points)
a0 = points[:-1]
a1 = points[1:]
return get_quadratic_approximation_of_cubic(a0, h0, h1, a1)