2023-01-17 15:46:09 -08:00
|
|
|
vec2 xs_on_clean_parabola(vec3 b0, vec3 b1, vec3 b2){
|
|
|
|
/*
|
|
|
|
Given three control points for a quadratic bezier,
|
|
|
|
this returns the two values (x0, x2) such that the
|
|
|
|
section of the parabola y = x^2 between those values
|
|
|
|
is isometric to the given quadratic bezier.
|
|
|
|
|
|
|
|
Adapated from https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html
|
|
|
|
*/
|
|
|
|
vec3 dd = 2 * b1 - b0 - b2;
|
|
|
|
|
|
|
|
float u0 = dot(b1 - b0, dd);
|
|
|
|
float u2 = dot(b2 - b1, dd);
|
|
|
|
vec3 cp = cross(b2 - b0, dd);
|
2023-01-17 17:20:30 -08:00
|
|
|
float denom = length(cp);
|
2023-01-17 15:46:09 -08:00
|
|
|
|
|
|
|
return vec2(u0 / denom, u2 / denom);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
mat4 map_triangles(vec3 src0, vec3 src1, vec3 src2, vec3 dst0, vec3 dst1, vec3 dst2){
|
|
|
|
/*
|
|
|
|
Return an affine transform which maps the triangle (src0, src1, src2)
|
|
|
|
onto the triangle (dst0, dst1, dst2)
|
|
|
|
*/
|
|
|
|
mat4 src_mat = mat4(
|
2023-01-17 17:20:30 -08:00
|
|
|
src0, 1.0,
|
|
|
|
src1, 1.0,
|
|
|
|
src2, 1.0,
|
|
|
|
vec4(1.0)
|
2023-01-17 15:46:09 -08:00
|
|
|
);
|
|
|
|
mat4 dst_mat = mat4(
|
2023-01-17 17:20:30 -08:00
|
|
|
dst0, 1.0,
|
|
|
|
dst1, 1.0,
|
|
|
|
dst2, 1.0,
|
|
|
|
vec4(1.0)
|
2023-01-17 15:46:09 -08:00
|
|
|
);
|
|
|
|
return dst_mat * inverse(src_mat);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2023-01-17 17:39:32 -08:00
|
|
|
mat4 map_point_pairs(vec3 src0, vec3 src1, vec3 dst0, vec3 dst1){
|
2023-01-17 15:46:09 -08:00
|
|
|
/*
|
|
|
|
Returns an orthogonal matrix which will map
|
2023-01-17 17:39:32 -08:00
|
|
|
src0 onto dst0 and src1 onto dst1.
|
2023-01-17 15:46:09 -08:00
|
|
|
*/
|
2023-01-17 17:39:32 -08:00
|
|
|
mat4 shift1 = mat4(1.0);
|
|
|
|
shift1[3].xyz = -src0;
|
|
|
|
mat4 shift2 = mat4(1.0);
|
|
|
|
shift2[3].xzy = dst0;
|
2023-01-17 15:46:09 -08:00
|
|
|
|
|
|
|
// Find rotation matrix between unit vectors in each direction
|
|
|
|
vec3 src_v = src1 - src0;
|
2023-01-17 17:39:32 -08:00
|
|
|
vec3 dst_v = dst1 - dst0;
|
2023-01-17 15:46:09 -08:00
|
|
|
float src_len = length(src_v);
|
|
|
|
float dst_len = length(dst_v);
|
|
|
|
float scale = dst_len / src_len;
|
|
|
|
src_v /= src_len;
|
|
|
|
dst_v /= dst_len;
|
|
|
|
|
|
|
|
vec3 cp = cross(src_v, dst_v);
|
|
|
|
float dp = dot(src_v, dst_v);
|
|
|
|
|
|
|
|
float s = length(cp); // Sine of the angle between them
|
|
|
|
float c = dp; // Cosine of the angle between them
|
|
|
|
|
|
|
|
if(s < 1e-8){
|
|
|
|
// No rotation needed
|
|
|
|
return shift2 * shift1;
|
|
|
|
}
|
|
|
|
|
|
|
|
vec3 axis = cp / s; // Axis of rotation
|
|
|
|
float oc = 1.0 - c;
|
|
|
|
float ax = axis.x;
|
|
|
|
float ay = axis.y;
|
|
|
|
float az = axis.z;
|
|
|
|
|
|
|
|
// Rotation matrix about axis, with a given angle corresponding to s and c.
|
|
|
|
mat4 rotate = scale * mat4(
|
|
|
|
oc * ax * ax + c, oc * ax * ay + az * s, oc * az * ax - ay * s, 0.0,
|
|
|
|
oc * ax * ay - az * s, oc * ay * ay + c, oc * ay * az + ax * s, 0.0,
|
|
|
|
oc * az * ax + ay * s, oc * ay * az - ax * s, oc * az * az + c, 0.0,
|
|
|
|
0.0, 0.0, 0.0, 1.0 / scale
|
|
|
|
);
|
|
|
|
|
|
|
|
return shift2 * rotate * shift1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
mat4 get_xyz_to_uv(vec3 b0, vec3 b1, vec3 b2, float temp_is_linear, out float is_linear){
|
|
|
|
/*
|
|
|
|
Returns a matrix for an affine transformation which maps a set of quadratic
|
|
|
|
bezier controls points into a new coordinate system such that the bezier curve
|
|
|
|
coincides with y = x^2, or in the case of a linear curve, it's mapped to the x-axis.
|
|
|
|
*/
|
2023-01-17 17:39:32 -08:00
|
|
|
vec3 dst0;
|
|
|
|
vec3 dst1;
|
|
|
|
vec3 dst2;
|
2023-01-17 15:46:09 -08:00
|
|
|
is_linear = temp_is_linear;
|
|
|
|
// Portions of the parabola y = x^2 where abs(x) exceeds
|
|
|
|
// this value are treated as straight lines.
|
|
|
|
float thresh = 2.0;
|
|
|
|
if (!bool(is_linear)){
|
|
|
|
vec2 xs = xs_on_clean_parabola(b0, b1, b2);
|
|
|
|
float x0 = xs.x;
|
|
|
|
float x2 = xs.y;
|
|
|
|
if((x0 > thresh && x2 > thresh) || (x0 < -thresh && x2 < -thresh)){
|
|
|
|
is_linear = 1.0;
|
|
|
|
}else{
|
2023-01-17 17:39:32 -08:00
|
|
|
dst0 = vec3(x0, x0 * x0, 0.0);
|
|
|
|
dst1 = vec3(0.5 * (x0 + x2), x0 * x2, 0.0);
|
|
|
|
dst2 = vec3(x2, x2 * x2, 0.0);
|
2023-01-17 15:46:09 -08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
// Check if is_linear status changed above
|
|
|
|
if (bool(is_linear)){
|
2023-01-17 17:39:32 -08:00
|
|
|
dst0 = vec3(0.0, 0.0, 0.0);
|
|
|
|
dst2 = vec3(1.0, 0.0, 0.0);
|
|
|
|
return map_point_pairs(b0, b2, dst0, dst2);
|
2023-01-17 15:46:09 -08:00
|
|
|
}
|
|
|
|
|
2023-01-17 17:39:32 -08:00
|
|
|
// return map_point_pairs(b0, b2, dst0, dst1);
|
|
|
|
return map_triangles(b0, b1, b2, dst0, dst1, dst2);
|
2023-01-17 15:46:09 -08:00
|
|
|
}
|