2020-06-02 16:18:44 -07:00
|
|
|
float cross2d(vec2 v, vec2 w){
|
2020-02-03 10:52:39 -08:00
|
|
|
return v.x * w.y - w.x * v.y;
|
|
|
|
}
|
|
|
|
|
2021-01-08 22:28:34 -08:00
|
|
|
|
2023-01-09 16:46:38 -08:00
|
|
|
vec2 complex_div(vec2 v, vec2 w){
|
|
|
|
return vec2(dot(v, w), cross2d(w, v)) / dot(w, w);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2023-01-13 17:37:08 -08:00
|
|
|
vec2 xs_on_clean_parabola(vec2 b0, vec2 b1, vec2 b2){
|
2023-01-09 16:46:38 -08:00
|
|
|
/*
|
|
|
|
Given three control points for a quadratic bezier,
|
|
|
|
this returns the two values (x0, x2) such that the
|
|
|
|
section of the parabola y = x^2 between those values
|
|
|
|
is isometric to the given quadratic bezier.
|
|
|
|
|
|
|
|
Adapated from https://github.com/raphlinus/raphlinus.github.io/blob/master/_posts/2019-12-23-flatten-quadbez.md
|
|
|
|
*/
|
|
|
|
vec2 dd = normalize(2 * b1 - b0 - b2);
|
|
|
|
|
|
|
|
float u0 = dot(b1 - b0, dd);
|
|
|
|
float u2 = dot(b2 - b1, dd);
|
|
|
|
float cp = cross2d(b2 - b0, dd);
|
|
|
|
|
|
|
|
return vec2(u0 / cp, u2 / cp);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2023-01-17 15:46:09 -08:00
|
|
|
vec2 xs_on_clean_parabola(vec3 b0, vec3 b1, vec3 b2){
|
|
|
|
/*
|
|
|
|
Given three control points for a quadratic bezier,
|
|
|
|
this returns the two values (x0, x2) such that the
|
|
|
|
section of the parabola y = x^2 between those values
|
|
|
|
is isometric to the given quadratic bezier.
|
|
|
|
|
|
|
|
Adapated from https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html
|
|
|
|
*/
|
|
|
|
vec3 dd = 2 * b1 - b0 - b2;
|
|
|
|
|
|
|
|
float u0 = dot(b1 - b0, dd);
|
|
|
|
float u2 = dot(b2 - b1, dd);
|
|
|
|
vec3 cp = cross(b2 - b0, dd);
|
2023-01-17 17:20:30 -08:00
|
|
|
float denom = length(cp);
|
2023-01-17 15:46:09 -08:00
|
|
|
|
|
|
|
return vec2(u0 / denom, u2 / denom);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2023-01-09 16:46:38 -08:00
|
|
|
mat3 map_point_pairs(vec2 src0, vec2 src1, vec2 dest0, vec2 dest1){
|
|
|
|
/*
|
|
|
|
Returns an orthogonal matrix which will map
|
|
|
|
src0 onto dest0 and src1 onto dest1.
|
|
|
|
*/
|
|
|
|
mat3 shift1 = mat3(
|
2021-01-08 22:28:34 -08:00
|
|
|
1.0, 0.0, 0.0,
|
|
|
|
0.0, 1.0, 0.0,
|
2023-01-09 16:46:38 -08:00
|
|
|
-src0.x, -src0.y, 1.0
|
|
|
|
);
|
|
|
|
mat3 shift2 = mat3(
|
|
|
|
1.0, 0.0, 0.0,
|
|
|
|
0.0, 1.0, 0.0,
|
|
|
|
dest0.x, dest0.y, 1.0
|
2021-01-08 22:28:34 -08:00
|
|
|
);
|
|
|
|
|
2023-01-09 16:46:38 -08:00
|
|
|
// Compute complex division dest_vect / src_vect to determine rotation
|
|
|
|
vec2 complex_rot = complex_div(dest1 - dest0, src1 - src0);
|
2021-01-08 22:28:34 -08:00
|
|
|
mat3 rotate = mat3(
|
2023-01-09 16:46:38 -08:00
|
|
|
complex_rot.x, complex_rot.y, 0.0,
|
|
|
|
-complex_rot.y, complex_rot.x, 0.0,
|
2021-01-08 22:28:34 -08:00
|
|
|
0.0, 0.0, 1.0
|
|
|
|
);
|
2023-01-09 16:46:38 -08:00
|
|
|
|
|
|
|
return shift2 * rotate * shift1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2023-01-17 15:46:09 -08:00
|
|
|
mat4 map_triangles(vec3 src0, vec3 src1, vec3 src2, vec3 dst0, vec3 dst1, vec3 dst2){
|
|
|
|
/*
|
|
|
|
Return an affine transform which maps the triangle (src0, src1, src2)
|
|
|
|
onto the triangle (dst0, dst1, dst2)
|
|
|
|
*/
|
|
|
|
mat4 src_mat = mat4(
|
2023-01-17 17:20:30 -08:00
|
|
|
src0, 1.0,
|
|
|
|
src1, 1.0,
|
|
|
|
src2, 1.0,
|
|
|
|
vec4(1.0)
|
2023-01-17 15:46:09 -08:00
|
|
|
);
|
|
|
|
mat4 dst_mat = mat4(
|
2023-01-17 17:20:30 -08:00
|
|
|
dst0, 1.0,
|
|
|
|
dst1, 1.0,
|
|
|
|
dst2, 1.0,
|
|
|
|
vec4(1.0)
|
2023-01-17 15:46:09 -08:00
|
|
|
);
|
|
|
|
return dst_mat * inverse(src_mat);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
mat4 map_point_pairs(vec3 src0, vec3 src1, vec3 dest0, vec3 dest1){
|
|
|
|
/*
|
|
|
|
Returns an orthogonal matrix which will map
|
|
|
|
src0 onto dest0 and src1 onto dest1.
|
|
|
|
*/
|
|
|
|
mat4 shift1 = mat4(
|
|
|
|
1.0, 0.0, 0.0, 0.0,
|
|
|
|
0.0, 1.0, 0.0, 0.0,
|
|
|
|
0.0, 0.0, 1.0, 0.0,
|
|
|
|
-src0.x, -src0.y, -src0.z, 1.0
|
|
|
|
);
|
|
|
|
mat4 shift2 = mat4(
|
|
|
|
1.0, 0.0, 0.0, 0.0,
|
|
|
|
0.0, 1.0, 0.0, 0.0,
|
|
|
|
0.0, 0.0, 1.0, 0.0,
|
|
|
|
dest0.x, dest0.y, dest0.z, 1.0
|
|
|
|
);
|
|
|
|
|
|
|
|
// Find rotation matrix between unit vectors in each direction
|
|
|
|
vec3 src_v = src1 - src0;
|
|
|
|
vec3 dst_v = dest1 - dest0;
|
|
|
|
float src_len = length(src_v);
|
|
|
|
float dst_len = length(dst_v);
|
|
|
|
float scale = dst_len / src_len;
|
|
|
|
src_v /= src_len;
|
|
|
|
dst_v /= dst_len;
|
|
|
|
|
|
|
|
vec3 cp = cross(src_v, dst_v);
|
|
|
|
float dp = dot(src_v, dst_v);
|
|
|
|
|
|
|
|
float s = length(cp); // Sine of the angle between them
|
|
|
|
float c = dp; // Cosine of the angle between them
|
|
|
|
|
|
|
|
if(s < 1e-8){
|
|
|
|
// No rotation needed
|
|
|
|
return shift2 * shift1;
|
|
|
|
}
|
|
|
|
|
|
|
|
vec3 axis = cp / s; // Axis of rotation
|
|
|
|
float oc = 1.0 - c;
|
|
|
|
float ax = axis.x;
|
|
|
|
float ay = axis.y;
|
|
|
|
float az = axis.z;
|
|
|
|
|
|
|
|
// Rotation matrix about axis, with a given angle corresponding to s and c.
|
|
|
|
mat4 rotate = scale * mat4(
|
|
|
|
oc * ax * ax + c, oc * ax * ay + az * s, oc * az * ax - ay * s, 0.0,
|
|
|
|
oc * ax * ay - az * s, oc * ay * ay + c, oc * ay * az + ax * s, 0.0,
|
|
|
|
oc * az * ax + ay * s, oc * ay * az - ax * s, oc * az * az + c, 0.0,
|
|
|
|
0.0, 0.0, 0.0, 1.0 / scale
|
|
|
|
);
|
|
|
|
|
|
|
|
return shift2 * rotate * shift1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
mat4 get_xyz_to_uv(vec3 b0, vec3 b1, vec3 b2, float temp_is_linear, out float is_linear){
|
|
|
|
/*
|
|
|
|
Returns a matrix for an affine transformation which maps a set of quadratic
|
|
|
|
bezier controls points into a new coordinate system such that the bezier curve
|
|
|
|
coincides with y = x^2, or in the case of a linear curve, it's mapped to the x-axis.
|
|
|
|
*/
|
|
|
|
vec3 dest0;
|
|
|
|
vec3 dest1;
|
|
|
|
vec3 dest2;
|
|
|
|
is_linear = temp_is_linear;
|
|
|
|
// Portions of the parabola y = x^2 where abs(x) exceeds
|
|
|
|
// this value are treated as straight lines.
|
|
|
|
float thresh = 2.0;
|
|
|
|
if (!bool(is_linear)){
|
|
|
|
vec2 xs = xs_on_clean_parabola(b0, b1, b2);
|
|
|
|
float x0 = xs.x;
|
|
|
|
float x2 = xs.y;
|
|
|
|
if((x0 > thresh && x2 > thresh) || (x0 < -thresh && x2 < -thresh)){
|
|
|
|
is_linear = 1.0;
|
|
|
|
}else{
|
|
|
|
dest0 = vec3(x0, x0 * x0, 0.0);
|
|
|
|
dest1 = vec3(0.5 * (x0 + x2), x0 * x2, 0.0);
|
|
|
|
dest2 = vec3(x2, x2 * x2, 0.0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Check if is_linear status changed above
|
|
|
|
if (bool(is_linear)){
|
|
|
|
dest0 = vec3(0.0, 0.0, 0.0);
|
|
|
|
dest2 = vec3(1.0, 0.0, 0.0);
|
2023-01-17 17:20:30 -08:00
|
|
|
return map_point_pairs(b0, b2, dest0, dest2);
|
2023-01-17 15:46:09 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
// return map_point_pairs(b0, b2, dest0, dest1);
|
2023-01-17 17:20:30 -08:00
|
|
|
return map_triangles(b0, b1, b2, dest0, dest1, dest2);
|
2023-01-17 15:46:09 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2023-01-13 17:37:08 -08:00
|
|
|
mat3 get_xy_to_uv(vec2 b0, vec2 b1, vec2 b2, float temp_is_linear, out float is_linear){
|
2023-01-10 09:53:17 -08:00
|
|
|
/*
|
|
|
|
Returns a matrix for an affine transformation which maps a set of quadratic
|
|
|
|
bezier controls points into a new coordinate system such that the bezier curve
|
2023-01-10 09:55:06 -08:00
|
|
|
coincides with y = x^2, or in the case of a linear curve, it's mapped to the x-axis.
|
2023-01-10 09:53:17 -08:00
|
|
|
*/
|
2023-01-13 17:37:08 -08:00
|
|
|
vec2 dest0;
|
|
|
|
vec2 dest1;
|
2023-01-10 08:54:02 -08:00
|
|
|
is_linear = temp_is_linear;
|
2023-01-12 10:39:50 -08:00
|
|
|
// Portions of the parabola y = x^2 where abs(x) exceeds
|
|
|
|
// this value are treated as straight lines.
|
|
|
|
float thresh = 2.0;
|
2023-01-10 08:54:02 -08:00
|
|
|
if (!bool(is_linear)){
|
2023-01-13 17:37:08 -08:00
|
|
|
vec2 xs = xs_on_clean_parabola(b0, b1, b2);
|
2023-01-09 16:46:38 -08:00
|
|
|
float x0 = xs.x;
|
|
|
|
float x2 = xs.y;
|
2023-01-09 18:51:41 -08:00
|
|
|
if((x0 > thresh && x2 > thresh) || (x0 < -thresh && x2 < -thresh)){
|
2023-01-10 08:54:02 -08:00
|
|
|
is_linear = 1.0;
|
2023-01-09 18:51:41 -08:00
|
|
|
}else{
|
2023-01-13 17:37:08 -08:00
|
|
|
dest0 = vec2(x0, x0 * x0);
|
|
|
|
dest1 = vec2(x2, x2 * x2);
|
2023-01-09 18:51:41 -08:00
|
|
|
}
|
2023-01-09 16:46:38 -08:00
|
|
|
}
|
2023-01-10 08:54:02 -08:00
|
|
|
// Check if is_linear status changed above
|
|
|
|
if (bool(is_linear)){
|
2023-01-13 17:37:08 -08:00
|
|
|
dest0 = vec2(0, 0);
|
|
|
|
dest1 = vec2(1, 0);
|
2023-01-10 08:54:02 -08:00
|
|
|
}
|
|
|
|
|
2023-01-13 17:37:08 -08:00
|
|
|
return map_point_pairs(b0, b2, dest0, dest1);
|
2021-01-08 22:28:34 -08:00
|
|
|
}
|