3b1b-manim/manimlib/shaders/inserts/get_xy_to_uv.glsl

223 lines
6.4 KiB
Text
Raw Normal View History

2020-06-02 16:18:44 -07:00
float cross2d(vec2 v, vec2 w){
2020-02-03 10:52:39 -08:00
return v.x * w.y - w.x * v.y;
}
vec2 complex_div(vec2 v, vec2 w){
return vec2(dot(v, w), cross2d(w, v)) / dot(w, w);
}
2023-01-13 17:37:08 -08:00
vec2 xs_on_clean_parabola(vec2 b0, vec2 b1, vec2 b2){
/*
Given three control points for a quadratic bezier,
this returns the two values (x0, x2) such that the
section of the parabola y = x^2 between those values
is isometric to the given quadratic bezier.
Adapated from https://github.com/raphlinus/raphlinus.github.io/blob/master/_posts/2019-12-23-flatten-quadbez.md
*/
vec2 dd = normalize(2 * b1 - b0 - b2);
float u0 = dot(b1 - b0, dd);
float u2 = dot(b2 - b1, dd);
float cp = cross2d(b2 - b0, dd);
return vec2(u0 / cp, u2 / cp);
}
vec2 xs_on_clean_parabola(vec3 b0, vec3 b1, vec3 b2){
/*
Given three control points for a quadratic bezier,
this returns the two values (x0, x2) such that the
section of the parabola y = x^2 between those values
is isometric to the given quadratic bezier.
Adapated from https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html
*/
vec3 dd = 2 * b1 - b0 - b2;
float u0 = dot(b1 - b0, dd);
float u2 = dot(b2 - b1, dd);
vec3 cp = cross(b2 - b0, dd);
2023-01-17 17:20:30 -08:00
float denom = length(cp);
return vec2(u0 / denom, u2 / denom);
}
mat3 map_point_pairs(vec2 src0, vec2 src1, vec2 dest0, vec2 dest1){
/*
Returns an orthogonal matrix which will map
src0 onto dest0 and src1 onto dest1.
*/
mat3 shift1 = mat3(
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
-src0.x, -src0.y, 1.0
);
mat3 shift2 = mat3(
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
dest0.x, dest0.y, 1.0
);
// Compute complex division dest_vect / src_vect to determine rotation
vec2 complex_rot = complex_div(dest1 - dest0, src1 - src0);
mat3 rotate = mat3(
complex_rot.x, complex_rot.y, 0.0,
-complex_rot.y, complex_rot.x, 0.0,
0.0, 0.0, 1.0
);
return shift2 * rotate * shift1;
}
mat4 map_triangles(vec3 src0, vec3 src1, vec3 src2, vec3 dst0, vec3 dst1, vec3 dst2){
/*
Return an affine transform which maps the triangle (src0, src1, src2)
onto the triangle (dst0, dst1, dst2)
*/
mat4 src_mat = mat4(
2023-01-17 17:20:30 -08:00
src0, 1.0,
src1, 1.0,
src2, 1.0,
vec4(1.0)
);
mat4 dst_mat = mat4(
2023-01-17 17:20:30 -08:00
dst0, 1.0,
dst1, 1.0,
dst2, 1.0,
vec4(1.0)
);
return dst_mat * inverse(src_mat);
}
mat4 map_point_pairs(vec3 src0, vec3 src1, vec3 dest0, vec3 dest1){
/*
Returns an orthogonal matrix which will map
src0 onto dest0 and src1 onto dest1.
*/
mat4 shift1 = mat4(
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
-src0.x, -src0.y, -src0.z, 1.0
);
mat4 shift2 = mat4(
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
dest0.x, dest0.y, dest0.z, 1.0
);
// Find rotation matrix between unit vectors in each direction
vec3 src_v = src1 - src0;
vec3 dst_v = dest1 - dest0;
float src_len = length(src_v);
float dst_len = length(dst_v);
float scale = dst_len / src_len;
src_v /= src_len;
dst_v /= dst_len;
vec3 cp = cross(src_v, dst_v);
float dp = dot(src_v, dst_v);
float s = length(cp); // Sine of the angle between them
float c = dp; // Cosine of the angle between them
if(s < 1e-8){
// No rotation needed
return shift2 * shift1;
}
vec3 axis = cp / s; // Axis of rotation
float oc = 1.0 - c;
float ax = axis.x;
float ay = axis.y;
float az = axis.z;
// Rotation matrix about axis, with a given angle corresponding to s and c.
mat4 rotate = scale * mat4(
oc * ax * ax + c, oc * ax * ay + az * s, oc * az * ax - ay * s, 0.0,
oc * ax * ay - az * s, oc * ay * ay + c, oc * ay * az + ax * s, 0.0,
oc * az * ax + ay * s, oc * ay * az - ax * s, oc * az * az + c, 0.0,
0.0, 0.0, 0.0, 1.0 / scale
);
return shift2 * rotate * shift1;
}
mat4 get_xyz_to_uv(vec3 b0, vec3 b1, vec3 b2, float temp_is_linear, out float is_linear){
/*
Returns a matrix for an affine transformation which maps a set of quadratic
bezier controls points into a new coordinate system such that the bezier curve
coincides with y = x^2, or in the case of a linear curve, it's mapped to the x-axis.
*/
vec3 dest0;
vec3 dest1;
vec3 dest2;
is_linear = temp_is_linear;
// Portions of the parabola y = x^2 where abs(x) exceeds
// this value are treated as straight lines.
float thresh = 2.0;
if (!bool(is_linear)){
vec2 xs = xs_on_clean_parabola(b0, b1, b2);
float x0 = xs.x;
float x2 = xs.y;
if((x0 > thresh && x2 > thresh) || (x0 < -thresh && x2 < -thresh)){
is_linear = 1.0;
}else{
dest0 = vec3(x0, x0 * x0, 0.0);
dest1 = vec3(0.5 * (x0 + x2), x0 * x2, 0.0);
dest2 = vec3(x2, x2 * x2, 0.0);
}
}
// Check if is_linear status changed above
if (bool(is_linear)){
dest0 = vec3(0.0, 0.0, 0.0);
dest2 = vec3(1.0, 0.0, 0.0);
2023-01-17 17:20:30 -08:00
return map_point_pairs(b0, b2, dest0, dest2);
}
// return map_point_pairs(b0, b2, dest0, dest1);
2023-01-17 17:20:30 -08:00
return map_triangles(b0, b1, b2, dest0, dest1, dest2);
}
2023-01-13 17:37:08 -08:00
mat3 get_xy_to_uv(vec2 b0, vec2 b1, vec2 b2, float temp_is_linear, out float is_linear){
/*
Returns a matrix for an affine transformation which maps a set of quadratic
bezier controls points into a new coordinate system such that the bezier curve
2023-01-10 09:55:06 -08:00
coincides with y = x^2, or in the case of a linear curve, it's mapped to the x-axis.
*/
2023-01-13 17:37:08 -08:00
vec2 dest0;
vec2 dest1;
is_linear = temp_is_linear;
2023-01-12 10:39:50 -08:00
// Portions of the parabola y = x^2 where abs(x) exceeds
// this value are treated as straight lines.
float thresh = 2.0;
if (!bool(is_linear)){
2023-01-13 17:37:08 -08:00
vec2 xs = xs_on_clean_parabola(b0, b1, b2);
float x0 = xs.x;
float x2 = xs.y;
if((x0 > thresh && x2 > thresh) || (x0 < -thresh && x2 < -thresh)){
is_linear = 1.0;
}else{
2023-01-13 17:37:08 -08:00
dest0 = vec2(x0, x0 * x0);
dest1 = vec2(x2, x2 * x2);
}
}
// Check if is_linear status changed above
if (bool(is_linear)){
2023-01-13 17:37:08 -08:00
dest0 = vec2(0, 0);
dest1 = vec2(1, 0);
}
2023-01-13 17:37:08 -08:00
return map_point_pairs(b0, b2, dest0, dest1);
}