mirror of
https://github.com/3b1b/manim.git
synced 2025-11-14 03:57:46 +00:00
First attempt at finding uv coords from 3d space instead of 2d
This commit is contained in:
parent
7fe84d9263
commit
870e88f8c9
2 changed files with 150 additions and 6 deletions
|
|
@ -27,6 +27,27 @@ vec2 xs_on_clean_parabola(vec2 b0, vec2 b1, vec2 b2){
|
|||
}
|
||||
|
||||
|
||||
vec2 xs_on_clean_parabola(vec3 b0, vec3 b1, vec3 b2){
|
||||
/*
|
||||
Given three control points for a quadratic bezier,
|
||||
this returns the two values (x0, x2) such that the
|
||||
section of the parabola y = x^2 between those values
|
||||
is isometric to the given quadratic bezier.
|
||||
|
||||
Adapated from https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html
|
||||
*/
|
||||
vec3 dd = 2 * b1 - b0 - b2;
|
||||
|
||||
float u0 = dot(b1 - b0, dd);
|
||||
float u2 = dot(b2 - b1, dd);
|
||||
vec3 cp = cross(b2 - b0, dd);
|
||||
float sgn = sign(cp.z);
|
||||
float denom = sgn * length(cp);
|
||||
|
||||
return vec2(u0 / denom, u2 / denom);
|
||||
}
|
||||
|
||||
|
||||
mat3 map_point_pairs(vec2 src0, vec2 src1, vec2 dest0, vec2 dest1){
|
||||
/*
|
||||
Returns an orthogonal matrix which will map
|
||||
|
|
@ -55,6 +76,124 @@ mat3 map_point_pairs(vec2 src0, vec2 src1, vec2 dest0, vec2 dest1){
|
|||
}
|
||||
|
||||
|
||||
mat4 map_triangles(vec3 src0, vec3 src1, vec3 src2, vec3 dst0, vec3 dst1, vec3 dst2){
|
||||
/*
|
||||
Return an affine transform which maps the triangle (src0, src1, src2)
|
||||
onto the triangle (dst0, dst1, dst2)
|
||||
*/
|
||||
mat4 src_mat = mat4(
|
||||
src0.x, src0.y, src0.z, 1.0,
|
||||
src1.x, src1.y, src1.z, 1.0,
|
||||
src2.x, src2.y, src2.z, 1.0,
|
||||
1.0, 1.0, 1.0, 1.0
|
||||
);
|
||||
mat4 dst_mat = mat4(
|
||||
dst0.x, dst0.y, dst0.z, 1.0,
|
||||
dst1.x, dst1.y, dst1.z, 1.0,
|
||||
dst2.x, dst2.y, dst2.z, 1.0,
|
||||
1.0, 1.0, 1.0, 1.0
|
||||
);
|
||||
return dst_mat * inverse(src_mat);
|
||||
}
|
||||
|
||||
|
||||
mat4 map_point_pairs(vec3 src0, vec3 src1, vec3 dest0, vec3 dest1){
|
||||
/*
|
||||
Returns an orthogonal matrix which will map
|
||||
src0 onto dest0 and src1 onto dest1.
|
||||
*/
|
||||
mat4 shift1 = mat4(
|
||||
1.0, 0.0, 0.0, 0.0,
|
||||
0.0, 1.0, 0.0, 0.0,
|
||||
0.0, 0.0, 1.0, 0.0,
|
||||
-src0.x, -src0.y, -src0.z, 1.0
|
||||
);
|
||||
mat4 shift2 = mat4(
|
||||
1.0, 0.0, 0.0, 0.0,
|
||||
0.0, 1.0, 0.0, 0.0,
|
||||
0.0, 0.0, 1.0, 0.0,
|
||||
dest0.x, dest0.y, dest0.z, 1.0
|
||||
);
|
||||
|
||||
// Find rotation matrix between unit vectors in each direction
|
||||
vec3 src_v = src1 - src0;
|
||||
vec3 dst_v = dest1 - dest0;
|
||||
float src_len = length(src_v);
|
||||
float dst_len = length(dst_v);
|
||||
float scale = dst_len / src_len;
|
||||
src_v /= src_len;
|
||||
dst_v /= dst_len;
|
||||
|
||||
vec3 cp = cross(src_v, dst_v);
|
||||
float dp = dot(src_v, dst_v);
|
||||
|
||||
float s = length(cp); // Sine of the angle between them
|
||||
float c = dp; // Cosine of the angle between them
|
||||
|
||||
if(s < 1e-8){
|
||||
// No rotation needed
|
||||
return shift2 * shift1;
|
||||
}
|
||||
|
||||
vec3 axis = cp / s; // Axis of rotation
|
||||
float oc = 1.0 - c;
|
||||
float ax = axis.x;
|
||||
float ay = axis.y;
|
||||
float az = axis.z;
|
||||
|
||||
// Rotation matrix about axis, with a given angle corresponding to s and c.
|
||||
mat4 rotate = scale * mat4(
|
||||
oc * ax * ax + c, oc * ax * ay + az * s, oc * az * ax - ay * s, 0.0,
|
||||
oc * ax * ay - az * s, oc * ay * ay + c, oc * ay * az + ax * s, 0.0,
|
||||
oc * az * ax + ay * s, oc * ay * az - ax * s, oc * az * az + c, 0.0,
|
||||
0.0, 0.0, 0.0, 1.0 / scale
|
||||
);
|
||||
|
||||
return shift2 * rotate * shift1;
|
||||
}
|
||||
|
||||
|
||||
mat4 get_xyz_to_uv(vec3 b0, vec3 b1, vec3 b2, float temp_is_linear, out float is_linear){
|
||||
/*
|
||||
Returns a matrix for an affine transformation which maps a set of quadratic
|
||||
bezier controls points into a new coordinate system such that the bezier curve
|
||||
coincides with y = x^2, or in the case of a linear curve, it's mapped to the x-axis.
|
||||
*/
|
||||
vec3 dest0;
|
||||
vec3 dest1;
|
||||
vec3 dest2;
|
||||
vec3 src1;
|
||||
is_linear = temp_is_linear;
|
||||
// Portions of the parabola y = x^2 where abs(x) exceeds
|
||||
// this value are treated as straight lines.
|
||||
float thresh = 2.0;
|
||||
if (!bool(is_linear)){
|
||||
vec2 xs = xs_on_clean_parabola(b0, b1, b2);
|
||||
float x0 = xs.x;
|
||||
float x2 = xs.y;
|
||||
if((x0 > thresh && x2 > thresh) || (x0 < -thresh && x2 < -thresh)){
|
||||
is_linear = 1.0;
|
||||
}else{
|
||||
dest0 = vec3(x0, x0 * x0, 0.0);
|
||||
dest1 = vec3(0.5 * (x0 + x2), x0 * x2, 0.0);
|
||||
dest2 = vec3(x2, x2 * x2, 0.0);
|
||||
src1 = b1;
|
||||
}
|
||||
}
|
||||
// Check if is_linear status changed above
|
||||
if (bool(is_linear)){
|
||||
dest0 = vec3(0.0, 0.0, 0.0);
|
||||
dest1 = vec3(0.0, 1.0, 0.0);
|
||||
dest2 = vec3(1.0, 0.0, 0.0);
|
||||
vec3 v = b2 - b0;
|
||||
src1 = b0 + length(v) * normalize(cross(v, vec3(0, 0, 1)));
|
||||
}
|
||||
|
||||
// return map_point_pairs(b0, b2, dest0, dest1);
|
||||
return map_triangles(b0, src1, b2, dest0, dest1, dest2);
|
||||
}
|
||||
|
||||
|
||||
mat3 get_xy_to_uv(vec2 b0, vec2 b1, vec2 b2, float temp_is_linear, out float is_linear){
|
||||
/*
|
||||
Returns a matrix for an affine transformation which maps a set of quadratic
|
||||
|
|
|
|||
|
|
@ -112,9 +112,9 @@ void get_corners(
|
|||
// Unit normal and joint angles
|
||||
vec3 normal0 = get_joint_normal(v_joint_product[0]);
|
||||
vec3 normal2 = get_joint_normal(v_joint_product[2]);
|
||||
// Chose the normal in the positive z direction
|
||||
normal0 *= sign(normal0.z);
|
||||
normal2 *= sign(normal2.z);
|
||||
|
||||
// Make sure normals point in the same direction
|
||||
if(dot(normal0, normal2) < 0) normal2 *= -1;
|
||||
|
||||
// Perpendicular vectors to the left of the curve
|
||||
vec3 p0_perp;
|
||||
|
|
@ -125,6 +125,9 @@ void get_corners(
|
|||
}else{
|
||||
p0_perp = buff0 * normal0;
|
||||
p2_perp = buff2 * normal2;
|
||||
// vec3 to_cam = transpose(camera_rotation)[2];
|
||||
// p0_perp = buff0 * to_cam;
|
||||
// p2_perp = buff2 * to_cam;
|
||||
}
|
||||
vec3 p1_perp = 0.5 * (p0_perp + p2_perp);
|
||||
|
||||
|
|
@ -175,9 +178,10 @@ void main() {
|
|||
// coincides with y = x^2, between some values x0 and x2. Or, in
|
||||
// the case of a linear curve (bezier degree 1), just put it on
|
||||
// the segment from (0, 0) to (1, 0)
|
||||
mat3 xy_to_uv = get_xy_to_uv(p0.xy, p1.xy, p2.xy, is_linear, is_linear);
|
||||
// mat3 xy_to_uv = get_xy_to_uv(p0.xy, p1.xy, p2.xy, is_linear, is_linear);
|
||||
mat4 xyz_to_uv = get_xyz_to_uv(p0, p1, p2, is_linear, is_linear);
|
||||
|
||||
float uv_scale_factor = length(xy_to_uv[0].xy);
|
||||
float uv_scale_factor = length(xyz_to_uv[0].xyz);
|
||||
float scaled_aaw = anti_alias_width * (frame_shape.y / pixel_shape.y);
|
||||
uv_anti_alias_width = uv_scale_factor * scaled_aaw;
|
||||
|
||||
|
|
@ -187,7 +191,8 @@ void main() {
|
|||
// Emit each corner
|
||||
for(int i = 0; i < 6; i++){
|
||||
int vert_index = i / 2;
|
||||
uv_coords = (xy_to_uv * vec3(corners[i].xy, 1)).xy;
|
||||
// uv_coords = (xy_to_uv * vec3(corners[i].xy, 1)).xy;
|
||||
uv_coords = (xyz_to_uv * vec4(corners[i], 1)).xy;
|
||||
uv_stroke_width = uv_scale_factor * v_stroke_width[vert_index];
|
||||
color = finalize_color(
|
||||
v_color[vert_index],
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue