2022-02-15 14:37:15 +08:00
|
|
|
from __future__ import annotations
|
|
|
|
|
2022-02-08 00:24:40 +08:00
|
|
|
from isosurfaces import plot_isoline
|
2022-04-23 10:16:23 -07:00
|
|
|
import numpy as np
|
2022-02-08 00:24:40 +08:00
|
|
|
|
2022-04-12 19:19:59 +08:00
|
|
|
from manimlib.constants import FRAME_X_RADIUS, FRAME_Y_RADIUS
|
|
|
|
from manimlib.constants import YELLOW
|
2018-12-24 12:37:51 -08:00
|
|
|
from manimlib.mobject.types.vectorized_mobject import VMobject
|
2015-10-27 21:00:50 -07:00
|
|
|
|
2022-04-12 19:19:59 +08:00
|
|
|
from typing import TYPE_CHECKING
|
|
|
|
|
|
|
|
if TYPE_CHECKING:
|
2022-12-15 16:47:03 -08:00
|
|
|
from typing import Callable, Sequence, Tuple
|
2022-12-16 20:35:26 -08:00
|
|
|
from manimlib.typing import ManimColor, Vect3
|
2022-04-12 19:19:59 +08:00
|
|
|
|
2015-10-27 21:00:50 -07:00
|
|
|
|
2020-06-06 11:03:23 -07:00
|
|
|
class ParametricCurve(VMobject):
|
2022-02-15 14:37:15 +08:00
|
|
|
def __init__(
|
|
|
|
self,
|
2022-12-16 20:35:26 -08:00
|
|
|
t_func: Callable[[float], Sequence[float] | Vect3],
|
2022-12-15 16:47:03 -08:00
|
|
|
t_range: Tuple[float, float, float] = (0, 1, 0.1),
|
|
|
|
epsilon: float = 1e-8,
|
|
|
|
# TODO, automatically figure out discontinuities
|
|
|
|
discontinuities: Sequence[float] = [],
|
|
|
|
use_smoothing: bool = True,
|
2022-02-15 14:37:15 +08:00
|
|
|
**kwargs
|
|
|
|
):
|
2020-06-06 11:43:59 -07:00
|
|
|
self.t_func = t_func
|
2022-12-15 16:47:03 -08:00
|
|
|
self.t_range = t_range
|
|
|
|
self.epsilon = epsilon
|
|
|
|
self.discontinuities = discontinuities
|
|
|
|
self.use_smoothing = use_smoothing
|
|
|
|
super().__init__(**kwargs)
|
2015-10-27 21:00:50 -07:00
|
|
|
|
2022-12-16 20:35:26 -08:00
|
|
|
def get_point_from_function(self, t: float) -> Vect3:
|
2022-12-15 16:47:03 -08:00
|
|
|
return np.array(self.t_func(t))
|
2019-04-27 18:39:22 +03:00
|
|
|
|
2020-02-11 19:55:00 -08:00
|
|
|
def init_points(self):
|
2020-06-06 11:43:59 -07:00
|
|
|
t_min, t_max, step = self.t_range
|
2019-04-27 18:39:22 +03:00
|
|
|
|
2020-06-09 16:57:44 -07:00
|
|
|
jumps = np.array(self.discontinuities)
|
|
|
|
jumps = jumps[(jumps > t_min) & (jumps < t_max)]
|
|
|
|
boundary_times = [t_min, t_max, *(jumps - self.epsilon), *(jumps + self.epsilon)]
|
2019-02-06 15:18:11 -08:00
|
|
|
boundary_times.sort()
|
|
|
|
for t1, t2 in zip(boundary_times[0::2], boundary_times[1::2]):
|
2020-06-09 16:57:44 -07:00
|
|
|
t_range = [*np.arange(t1, t2, step), t2]
|
|
|
|
points = np.array([self.t_func(t) for t in t_range])
|
|
|
|
self.start_new_path(points[0])
|
|
|
|
self.add_points_as_corners(points[1:])
|
2021-02-06 11:39:19 -08:00
|
|
|
if self.use_smoothing:
|
|
|
|
self.make_approximately_smooth()
|
2022-02-13 15:16:16 -08:00
|
|
|
if not self.has_points():
|
2022-12-15 16:47:03 -08:00
|
|
|
self.set_points(np.array([self.t_func(t_min)]))
|
2019-02-06 15:18:11 -08:00
|
|
|
return self
|
2018-04-06 13:58:59 -07:00
|
|
|
|
2022-03-06 13:54:42 +08:00
|
|
|
def get_t_func(self):
|
|
|
|
return self.t_func
|
|
|
|
|
|
|
|
def get_function(self):
|
|
|
|
if hasattr(self, "underlying_function"):
|
|
|
|
return self.underlying_function
|
|
|
|
if hasattr(self, "function"):
|
|
|
|
return self.function
|
|
|
|
|
|
|
|
def get_x_range(self):
|
|
|
|
if hasattr(self, "x_range"):
|
|
|
|
return self.x_range
|
2015-10-27 21:00:50 -07:00
|
|
|
|
2022-04-27 09:51:43 -07:00
|
|
|
|
2020-06-06 11:03:23 -07:00
|
|
|
class FunctionGraph(ParametricCurve):
|
2022-02-15 14:37:15 +08:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
function: Callable[[float], float],
|
2022-12-15 16:47:03 -08:00
|
|
|
x_range: Tuple[float, float, float] = (-8, 8, 0.25),
|
|
|
|
color: ManimColor = YELLOW,
|
2022-02-15 14:37:15 +08:00
|
|
|
**kwargs
|
|
|
|
):
|
2015-10-28 16:03:33 -07:00
|
|
|
self.function = function
|
2022-12-15 16:47:03 -08:00
|
|
|
self.x_range = x_range
|
2020-06-06 11:43:59 -07:00
|
|
|
|
|
|
|
def parametric_function(t):
|
|
|
|
return [t, function(t), 0]
|
|
|
|
|
2020-06-09 12:34:43 -07:00
|
|
|
super().__init__(parametric_function, self.x_range, **kwargs)
|
2020-06-06 11:43:59 -07:00
|
|
|
|
2022-02-08 00:24:40 +08:00
|
|
|
|
|
|
|
class ImplicitFunction(VMobject):
|
2022-02-15 14:37:15 +08:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
func: Callable[[float, float], float],
|
2022-12-15 16:47:03 -08:00
|
|
|
x_range: Tuple[float, float] = (-FRAME_X_RADIUS, FRAME_X_RADIUS),
|
|
|
|
y_range: Tuple[float, float] = (-FRAME_Y_RADIUS, FRAME_Y_RADIUS),
|
|
|
|
min_depth: int = 5,
|
|
|
|
max_quads: int = 1500,
|
|
|
|
use_smoothing: bool = True,
|
2022-02-15 14:37:15 +08:00
|
|
|
**kwargs
|
|
|
|
):
|
2022-02-08 00:24:40 +08:00
|
|
|
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
p_min, p_max = (
|
2022-12-15 16:47:03 -08:00
|
|
|
np.array([x_range[0], y_range[0]]),
|
|
|
|
np.array([x_range[1], y_range[1]]),
|
2022-02-08 00:24:40 +08:00
|
|
|
)
|
|
|
|
curves = plot_isoline(
|
2022-12-15 16:47:03 -08:00
|
|
|
fn=lambda u: func(u[0], u[1]),
|
2022-02-08 00:24:40 +08:00
|
|
|
pmin=p_min,
|
|
|
|
pmax=p_max,
|
2022-12-15 16:47:03 -08:00
|
|
|
min_depth=min_depth,
|
|
|
|
max_quads=max_quads,
|
2022-02-08 00:24:40 +08:00
|
|
|
) # returns a list of lists of 2D points
|
|
|
|
curves = [
|
|
|
|
np.pad(curve, [(0, 0), (0, 1)]) for curve in curves if curve != []
|
|
|
|
] # add z coord as 0
|
|
|
|
for curve in curves:
|
|
|
|
self.start_new_path(curve[0])
|
|
|
|
self.add_points_as_corners(curve[1:])
|
2022-12-15 16:47:03 -08:00
|
|
|
if use_smoothing:
|
2022-02-08 00:24:40 +08:00
|
|
|
self.make_smooth()
|