3b1b-manim/manimlib/mobject/functions.py

93 lines
3 KiB
Python
Raw Normal View History

from manimlib.constants import *
from manimlib.mobject.types.vectorized_mobject import VMobject
from manimlib.utils.config_ops import digest_config
from manimlib.utils.space_ops import get_norm
class ParametricCurve(VMobject):
2016-02-27 16:32:53 -08:00
CONFIG = {
2020-06-06 11:43:59 -07:00
"t_range": [0, 1, 0.1],
2020-06-06 13:22:48 -07:00
"min_samples": 10,
2020-06-06 11:43:59 -07:00
"epsilon": 1e-8,
2020-02-11 19:55:00 -08:00
# TODO, automatically figure out discontinuities
"discontinuities": [],
}
2020-06-06 11:43:59 -07:00
def __init__(self, t_func, t_range=None, **kwargs):
digest_config(self, kwargs)
if t_range is not None:
self.t_range[:len(t_range)] = t_range
# To be backward compatible with all the scenes specifying t_min, t_max, step_size
self.t_range = [
kwargs.get("t_min", self.t_range[0]),
kwargs.get("t_max", self.t_range[1]),
kwargs.get("step_size", self.t_range[2]),
]
self.t_func = t_func
2016-04-19 00:20:19 -07:00
VMobject.__init__(self, **kwargs)
def get_point_from_function(self, t):
2020-06-06 11:43:59 -07:00
return self.t_func(t)
2020-02-11 19:55:00 -08:00
def init_points(self):
2020-06-06 11:43:59 -07:00
# TODO, this seems like a mess.
t_min, t_max, step = self.t_range
epsilon = self.epsilon
discontinuities = filter(
lambda t: t_min <= t <= t_max,
self.discontinuities
2018-01-18 16:46:38 -08:00
)
discontinuities = np.array(list(discontinuities))
boundary_times = [
2020-06-06 11:43:59 -07:00
t_min, t_max,
*(discontinuities - epsilon),
*(discontinuities + epsilon),
]
boundary_times.sort()
for t1, t2 in zip(boundary_times[0::2], boundary_times[1::2]):
# Get an initial sample of points
t_range = list(np.linspace(t1, t2, self.min_samples + 1))
2020-06-06 11:43:59 -07:00
samples = np.array([self.t_func(t) for t in t_range])
# Take more samples based on the distances between them
norms = [get_norm(p2 - p1) for p1, p2 in zip(samples, samples[1:])]
full_t_range = [t1]
for s1, s2, norm in zip(t_range, t_range[1:], norms):
2020-06-06 11:43:59 -07:00
n_inserts = int(norm / step)
full_t_range += list(np.linspace(s1, s2, n_inserts + 1)[1:])
2020-06-06 11:43:59 -07:00
points = np.array([self.t_func(t) for t in full_t_range])
2020-02-19 23:43:33 -08:00
valid_indices = np.isfinite(points).all(1)
points = points[valid_indices]
if len(points) > 0:
self.start_new_path(points[0])
self.add_points_as_corners(points[1:])
self.make_smooth()
return self
class FunctionGraph(ParametricCurve):
2016-02-27 16:32:53 -08:00
CONFIG = {
"color": YELLOW,
2020-06-06 11:43:59 -07:00
"x_range": [-8, 8, 0.1],
}
2020-06-06 11:43:59 -07:00
def __init__(self, function, x_range=None, **kwargs):
2018-01-18 16:46:38 -08:00
digest_config(self, kwargs)
self.function = function
2020-06-06 11:43:59 -07:00
if x_range is not None:
self.x_range[:len(x_range)] = x_range
def parametric_function(t):
return [t, function(t), 0]
super().__init__(parametric_function, x_range, **kwargs)
2018-01-18 16:46:38 -08:00
def get_function(self):
return self.function
def get_point_from_function(self, x):
2020-06-06 11:43:59 -07:00
return self.t_func(x)