3b1b-manim/manimlib/mobject/functions.py

91 lines
2.9 KiB
Python
Raw Normal View History

from manimlib.constants import *
from manimlib.mobject.types.vectorized_mobject import VMobject
from manimlib.utils.config_ops import digest_config
from manimlib.utils.space_ops import get_norm
2018-01-18 16:46:38 -08:00
class ParametricFunction(VMobject):
2016-02-27 16:32:53 -08:00
CONFIG = {
"t_min": 0,
"t_max": 1,
"step_size": 0.2,
"min_samples": 8,
"dt": 1e-8,
2020-02-11 19:55:00 -08:00
# TODO, automatically figure out discontinuities
"discontinuities": [],
}
2019-04-27 18:39:22 +03:00
def __init__(self, function=None, **kwargs):
# either get a function from __init__ or from CONFIG
self.function = function or self.function
2016-04-19 00:20:19 -07:00
VMobject.__init__(self, **kwargs)
def get_function(self):
return self.function
def get_point_from_function(self, t):
return self.function(t)
2020-02-11 19:55:00 -08:00
def init_points(self):
t_min, t_max = self.t_min, self.t_max
dt = self.dt
discontinuities = filter(
lambda t: t_min <= t <= t_max,
self.discontinuities
2018-01-18 16:46:38 -08:00
)
discontinuities = np.array(list(discontinuities))
boundary_times = [
self.t_min, self.t_max,
*(discontinuities - dt),
*(discontinuities + dt),
]
boundary_times.sort()
for t1, t2 in zip(boundary_times[0::2], boundary_times[1::2]):
# Get an initial sample of points
t_range = list(np.linspace(t1, t2, self.min_samples + 1))
samples = [self.function(t) for t in t_range]
# Take more samples based on the distances between them
norms = [get_norm(p2 - p1) for p1, p2 in zip(samples, samples[1:])]
full_t_range = [t1]
for s1, s2, norm in zip(t_range, t_range[1:], norms):
n_inserts = int(norm / self.step_size)
full_t_range += list(np.linspace(s1, s2, n_inserts + 1)[1:])
points = np.array([self.function(t) for t in full_t_range])
valid_indices = np.apply_along_axis(np.all, 1, np.isfinite(points))
points = points[valid_indices]
if len(points) > 0:
self.start_new_path(points[0])
self.add_points_as_corners(points[1:])
self.make_smooth()
return self
2018-01-18 16:46:38 -08:00
class FunctionGraph(ParametricFunction):
2016-02-27 16:32:53 -08:00
CONFIG = {
"color": YELLOW,
"x_min": -FRAME_X_RADIUS,
"x_max": FRAME_X_RADIUS,
}
def __init__(self, function, **kwargs):
2018-01-18 16:46:38 -08:00
digest_config(self, kwargs)
self.parametric_function = \
lambda t: np.array([t, function(t), 0])
2018-01-18 16:46:38 -08:00
ParametricFunction.__init__(
self,
self.parametric_function,
t_min=self.x_min,
t_max=self.x_max,
2018-01-18 16:46:38 -08:00
**kwargs
)
self.function = function
2018-01-18 16:46:38 -08:00
def get_function(self):
return self.function
def get_point_from_function(self, x):
return self.parametric_function(x)