linux/fs/bcachefs/recovery_passes.c
Kent Overstreet 7de3c8b407 bcachefs: Don't schedule non persistent passes persistently
if (!(in_recovery && (flags & RUN_RECOVERY_PASS_nopersistent)))

should have been

  if (!in_recovery && !(flags & RUN_RECOVERY_PASS_nopersistent)))

But the !in_recovery part was also wrong: the assumption is that if
we're in recovery we'll just rewind and run the recovery pass
immediately, but we're not able to do so if we've already gone RW and
the pass must be run before we go RW. In that case, we need to schedule
it in the superblock so it can be run on the next mount attempt.

Scheduling it persistently is fine, because it'll be cleared in the
superblock immediately when the pass completes successfully.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2025-07-07 14:10:47 -04:00

646 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "alloc_background.h"
#include "backpointers.h"
#include "btree_gc.h"
#include "btree_node_scan.h"
#include "disk_accounting.h"
#include "ec.h"
#include "fsck.h"
#include "inode.h"
#include "journal.h"
#include "lru.h"
#include "logged_ops.h"
#include "movinggc.h"
#include "rebalance.h"
#include "recovery.h"
#include "recovery_passes.h"
#include "snapshot.h"
#include "subvolume.h"
#include "super.h"
#include "super-io.h"
const char * const bch2_recovery_passes[] = {
#define x(_fn, ...) #_fn,
BCH_RECOVERY_PASSES()
#undef x
NULL
};
static const u8 passes_to_stable_map[] = {
#define x(n, id, ...) [BCH_RECOVERY_PASS_##n] = BCH_RECOVERY_PASS_STABLE_##n,
BCH_RECOVERY_PASSES()
#undef x
};
static const u8 passes_from_stable_map[] = {
#define x(n, id, ...) [BCH_RECOVERY_PASS_STABLE_##n] = BCH_RECOVERY_PASS_##n,
BCH_RECOVERY_PASSES()
#undef x
};
static enum bch_recovery_pass_stable bch2_recovery_pass_to_stable(enum bch_recovery_pass pass)
{
return passes_to_stable_map[pass];
}
u64 bch2_recovery_passes_to_stable(u64 v)
{
u64 ret = 0;
for (unsigned i = 0; i < ARRAY_SIZE(passes_to_stable_map); i++)
if (v & BIT_ULL(i))
ret |= BIT_ULL(passes_to_stable_map[i]);
return ret;
}
static enum bch_recovery_pass bch2_recovery_pass_from_stable(enum bch_recovery_pass_stable pass)
{
return pass < ARRAY_SIZE(passes_from_stable_map)
? passes_from_stable_map[pass]
: 0;
}
u64 bch2_recovery_passes_from_stable(u64 v)
{
u64 ret = 0;
for (unsigned i = 0; i < ARRAY_SIZE(passes_from_stable_map); i++)
if (v & BIT_ULL(i))
ret |= BIT_ULL(passes_from_stable_map[i]);
return ret;
}
static int bch2_sb_recovery_passes_validate(struct bch_sb *sb, struct bch_sb_field *f,
enum bch_validate_flags flags, struct printbuf *err)
{
return 0;
}
static void bch2_sb_recovery_passes_to_text(struct printbuf *out,
struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_recovery_passes *r =
field_to_type(f, recovery_passes);
unsigned nr = recovery_passes_nr_entries(r);
if (out->nr_tabstops < 1)
printbuf_tabstop_push(out, 32);
if (out->nr_tabstops < 2)
printbuf_tabstop_push(out, 16);
prt_printf(out, "Pass\tLast run\tLast runtime\n");
for (struct recovery_pass_entry *i = r->start; i < r->start + nr; i++) {
if (!i->last_run)
continue;
unsigned idx = i - r->start;
prt_printf(out, "%s\t", bch2_recovery_passes[bch2_recovery_pass_from_stable(idx)]);
bch2_prt_datetime(out, le64_to_cpu(i->last_run));
prt_tab(out);
bch2_pr_time_units(out, le32_to_cpu(i->last_runtime) * NSEC_PER_SEC);
if (BCH_RECOVERY_PASS_NO_RATELIMIT(i))
prt_str(out, " (no ratelimit)");
prt_newline(out);
}
}
static struct recovery_pass_entry *bch2_sb_recovery_pass_entry(struct bch_fs *c,
enum bch_recovery_pass pass)
{
enum bch_recovery_pass_stable stable = bch2_recovery_pass_to_stable(pass);
lockdep_assert_held(&c->sb_lock);
struct bch_sb_field_recovery_passes *r =
bch2_sb_field_get(c->disk_sb.sb, recovery_passes);
if (stable >= recovery_passes_nr_entries(r)) {
unsigned u64s = struct_size(r, start, stable + 1) / sizeof(u64);
r = bch2_sb_field_resize(&c->disk_sb, recovery_passes, u64s);
if (!r) {
bch_err(c, "error creating recovery_passes sb section");
return NULL;
}
}
return r->start + stable;
}
static void bch2_sb_recovery_pass_complete(struct bch_fs *c,
enum bch_recovery_pass pass,
s64 start_time)
{
guard(mutex)(&c->sb_lock);
struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
__clear_bit_le64(bch2_recovery_pass_to_stable(pass),
ext->recovery_passes_required);
struct recovery_pass_entry *e = bch2_sb_recovery_pass_entry(c, pass);
if (e) {
s64 end_time = ktime_get_real_seconds();
e->last_run = cpu_to_le64(end_time);
e->last_runtime = cpu_to_le32(max(0, end_time - start_time));
SET_BCH_RECOVERY_PASS_NO_RATELIMIT(e, false);
}
bch2_write_super(c);
}
void bch2_recovery_pass_set_no_ratelimit(struct bch_fs *c,
enum bch_recovery_pass pass)
{
guard(mutex)(&c->sb_lock);
struct recovery_pass_entry *e = bch2_sb_recovery_pass_entry(c, pass);
if (e && !BCH_RECOVERY_PASS_NO_RATELIMIT(e)) {
SET_BCH_RECOVERY_PASS_NO_RATELIMIT(e, false);
bch2_write_super(c);
}
}
static bool bch2_recovery_pass_want_ratelimit(struct bch_fs *c, enum bch_recovery_pass pass)
{
enum bch_recovery_pass_stable stable = bch2_recovery_pass_to_stable(pass);
bool ret = false;
lockdep_assert_held(&c->sb_lock);
struct bch_sb_field_recovery_passes *r =
bch2_sb_field_get(c->disk_sb.sb, recovery_passes);
if (stable < recovery_passes_nr_entries(r)) {
struct recovery_pass_entry *i = r->start + stable;
/*
* Ratelimit if the last runtime was more than 1% of the time
* since we last ran
*/
ret = (u64) le32_to_cpu(i->last_runtime) * 100 >
ktime_get_real_seconds() - le64_to_cpu(i->last_run);
if (BCH_RECOVERY_PASS_NO_RATELIMIT(i))
ret = false;
}
return ret;
}
const struct bch_sb_field_ops bch_sb_field_ops_recovery_passes = {
.validate = bch2_sb_recovery_passes_validate,
.to_text = bch2_sb_recovery_passes_to_text
};
/* Fake recovery pass, so that scan_for_btree_nodes isn't 0: */
static int bch2_recovery_pass_empty(struct bch_fs *c)
{
return 0;
}
static int bch2_set_may_go_rw(struct bch_fs *c)
{
struct journal_keys *keys = &c->journal_keys;
/*
* After we go RW, the journal keys buffer can't be modified (except for
* setting journal_key->overwritten: it will be accessed by multiple
* threads
*/
move_gap(keys, keys->nr);
set_bit(BCH_FS_may_go_rw, &c->flags);
if (go_rw_in_recovery(c)) {
if (c->sb.features & BIT_ULL(BCH_FEATURE_no_alloc_info)) {
bch_info(c, "mounting a filesystem with no alloc info read-write; will recreate");
bch2_reconstruct_alloc(c);
}
return bch2_fs_read_write_early(c);
}
return 0;
}
/*
* Make sure root inode is readable while we're still in recovery and can rewind
* for repair:
*/
static int bch2_lookup_root_inode(struct bch_fs *c)
{
subvol_inum inum = BCACHEFS_ROOT_SUBVOL_INUM;
struct bch_inode_unpacked inode_u;
struct bch_subvolume subvol;
return bch2_trans_do(c,
bch2_subvolume_get(trans, inum.subvol, true, &subvol) ?:
bch2_inode_find_by_inum_trans(trans, inum, &inode_u));
}
struct recovery_pass_fn {
int (*fn)(struct bch_fs *);
unsigned when;
};
static struct recovery_pass_fn recovery_pass_fns[] = {
#define x(_fn, _id, _when) { .fn = bch2_##_fn, .when = _when },
BCH_RECOVERY_PASSES()
#undef x
};
static u64 bch2_recovery_passes_match(unsigned flags)
{
u64 ret = 0;
for (unsigned i = 0; i < ARRAY_SIZE(recovery_pass_fns); i++)
if (recovery_pass_fns[i].when & flags)
ret |= BIT_ULL(i);
return ret;
}
u64 bch2_fsck_recovery_passes(void)
{
return bch2_recovery_passes_match(PASS_FSCK);
}
static void bch2_run_async_recovery_passes(struct bch_fs *c)
{
if (!down_trylock(&c->recovery.run_lock))
return;
if (!enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_async_recovery_passes))
goto unlock;
if (queue_work(system_long_wq, &c->recovery.work))
return;
enumerated_ref_put(&c->writes, BCH_WRITE_REF_async_recovery_passes);
unlock:
up(&c->recovery.run_lock);
}
static bool recovery_pass_needs_set(struct bch_fs *c,
enum bch_recovery_pass pass,
enum bch_run_recovery_pass_flags *flags)
{
struct bch_fs_recovery *r = &c->recovery;
/*
* Never run scan_for_btree_nodes persistently: check_topology will run
* it if required
*/
if (pass == BCH_RECOVERY_PASS_scan_for_btree_nodes)
*flags |= RUN_RECOVERY_PASS_nopersistent;
if ((*flags & RUN_RECOVERY_PASS_ratelimit) &&
!bch2_recovery_pass_want_ratelimit(c, pass))
*flags &= ~RUN_RECOVERY_PASS_ratelimit;
/*
* If RUN_RECOVERY_PASS_nopersistent is set, we don't want to do
* anything if the pass has already run: these mean we need a prior pass
* to run before we continue to repair, we don't expect that pass to fix
* the damage we encountered.
*
* Otherwise, we run run_explicit_recovery_pass when we find damage, so
* it should run again even if it's already run:
*/
bool in_recovery = test_bit(BCH_FS_in_recovery, &c->flags);
bool persistent = !in_recovery || !(*flags & RUN_RECOVERY_PASS_nopersistent);
bool rewind = in_recovery &&
r->curr_pass > pass &&
!(r->passes_complete & BIT_ULL(pass));
if (persistent
? !(c->sb.recovery_passes_required & BIT_ULL(pass))
: !((r->passes_to_run|r->passes_complete) & BIT_ULL(pass)))
return true;
if (!(*flags & RUN_RECOVERY_PASS_ratelimit) &&
(r->passes_ratelimiting & BIT_ULL(pass)))
return true;
if (rewind)
return true;
return false;
}
/*
* For when we need to rewind recovery passes and run a pass we skipped:
*/
int __bch2_run_explicit_recovery_pass(struct bch_fs *c,
struct printbuf *out,
enum bch_recovery_pass pass,
enum bch_run_recovery_pass_flags flags)
{
struct bch_fs_recovery *r = &c->recovery;
int ret = 0;
lockdep_assert_held(&c->sb_lock);
bch2_printbuf_make_room(out, 1024);
out->atomic++;
unsigned long lockflags;
spin_lock_irqsave(&r->lock, lockflags);
if (!recovery_pass_needs_set(c, pass, &flags))
goto out;
bool in_recovery = test_bit(BCH_FS_in_recovery, &c->flags);
bool rewind = in_recovery &&
r->curr_pass > pass &&
!(r->passes_complete & BIT_ULL(pass));
bool ratelimit = flags & RUN_RECOVERY_PASS_ratelimit;
if (!(flags & RUN_RECOVERY_PASS_nopersistent)) {
struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
__set_bit_le64(bch2_recovery_pass_to_stable(pass), ext->recovery_passes_required);
}
if (pass < BCH_RECOVERY_PASS_set_may_go_rw &&
(!in_recovery || r->curr_pass >= BCH_RECOVERY_PASS_set_may_go_rw)) {
prt_printf(out, "need recovery pass %s (%u), but already rw\n",
bch2_recovery_passes[pass], pass);
ret = bch_err_throw(c, cannot_rewind_recovery);
goto out;
}
if (ratelimit)
r->passes_ratelimiting |= BIT_ULL(pass);
else
r->passes_ratelimiting &= ~BIT_ULL(pass);
if (in_recovery && !ratelimit) {
prt_printf(out, "running recovery pass %s (%u), currently at %s (%u)%s\n",
bch2_recovery_passes[pass], pass,
bch2_recovery_passes[r->curr_pass], r->curr_pass,
rewind ? " - rewinding" : "");
r->passes_to_run |= BIT_ULL(pass);
if (rewind) {
r->next_pass = pass;
r->passes_complete &= (1ULL << pass) >> 1;
ret = bch_err_throw(c, restart_recovery);
}
} else {
prt_printf(out, "scheduling recovery pass %s (%u)%s\n",
bch2_recovery_passes[pass], pass,
ratelimit ? " - ratelimiting" : "");
struct recovery_pass_fn *p = recovery_pass_fns + pass;
if (p->when & PASS_ONLINE)
bch2_run_async_recovery_passes(c);
}
out:
spin_unlock_irqrestore(&r->lock, lockflags);
--out->atomic;
return ret;
}
int bch2_run_explicit_recovery_pass(struct bch_fs *c,
struct printbuf *out,
enum bch_recovery_pass pass,
enum bch_run_recovery_pass_flags flags)
{
int ret = 0;
if (recovery_pass_needs_set(c, pass, &flags)) {
guard(mutex)(&c->sb_lock);
ret = __bch2_run_explicit_recovery_pass(c, out, pass, flags);
bch2_write_super(c);
}
return ret;
}
/*
* Returns 0 if @pass has run recently, otherwise one of
* -BCH_ERR_restart_recovery
* -BCH_ERR_recovery_pass_will_run
*/
int bch2_require_recovery_pass(struct bch_fs *c,
struct printbuf *out,
enum bch_recovery_pass pass)
{
if (test_bit(BCH_FS_in_recovery, &c->flags) &&
c->recovery.passes_complete & BIT_ULL(pass))
return 0;
guard(mutex)(&c->sb_lock);
if (bch2_recovery_pass_want_ratelimit(c, pass))
return 0;
enum bch_run_recovery_pass_flags flags = 0;
int ret = 0;
if (recovery_pass_needs_set(c, pass, &flags)) {
ret = __bch2_run_explicit_recovery_pass(c, out, pass, flags);
bch2_write_super(c);
}
return ret ?: bch_err_throw(c, recovery_pass_will_run);
}
int bch2_run_print_explicit_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass)
{
enum bch_run_recovery_pass_flags flags = 0;
if (!recovery_pass_needs_set(c, pass, &flags))
return 0;
struct printbuf buf = PRINTBUF;
bch2_log_msg_start(c, &buf);
mutex_lock(&c->sb_lock);
int ret = __bch2_run_explicit_recovery_pass(c, &buf, pass,
RUN_RECOVERY_PASS_nopersistent);
mutex_unlock(&c->sb_lock);
bch2_print_str(c, KERN_NOTICE, buf.buf);
printbuf_exit(&buf);
return ret;
}
static int bch2_run_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass)
{
struct bch_fs_recovery *r = &c->recovery;
struct recovery_pass_fn *p = recovery_pass_fns + pass;
if (!(p->when & PASS_SILENT))
bch2_print(c, KERN_INFO bch2_log_msg(c, "%s..."),
bch2_recovery_passes[pass]);
s64 start_time = ktime_get_real_seconds();
int ret = p->fn(c);
r->passes_to_run &= ~BIT_ULL(pass);
if (ret) {
r->passes_failing |= BIT_ULL(pass);
return ret;
}
r->passes_failing = 0;
if (!test_bit(BCH_FS_error, &c->flags))
bch2_sb_recovery_pass_complete(c, pass, start_time);
if (!(p->when & PASS_SILENT))
bch2_print(c, KERN_CONT " done\n");
return 0;
}
static int __bch2_run_recovery_passes(struct bch_fs *c, u64 orig_passes_to_run,
bool online)
{
struct bch_fs_recovery *r = &c->recovery;
int ret = 0;
spin_lock_irq(&r->lock);
if (online)
orig_passes_to_run &= bch2_recovery_passes_match(PASS_ONLINE);
if (c->sb.features & BIT_ULL(BCH_FEATURE_no_alloc_info))
orig_passes_to_run &= ~bch2_recovery_passes_match(PASS_ALLOC);
/*
* A failed recovery pass will be retried after another pass succeeds -
* but not this iteration.
*
* This is because some passes depend on repair done by other passes: we
* may want to retry, but we don't want to loop on failing passes.
*/
orig_passes_to_run &= ~r->passes_failing;
r->passes_to_run = orig_passes_to_run;
while (r->passes_to_run) {
unsigned prev_done = r->pass_done;
unsigned pass = __ffs64(r->passes_to_run);
r->curr_pass = pass;
r->next_pass = r->curr_pass + 1;
r->passes_to_run &= ~BIT_ULL(pass);
spin_unlock_irq(&r->lock);
int ret2 = bch2_run_recovery_pass(c, pass) ?:
bch2_journal_flush(&c->journal);
spin_lock_irq(&r->lock);
if (r->next_pass < r->curr_pass) {
/* Rewind: */
r->passes_to_run |= orig_passes_to_run & (~0ULL << r->next_pass);
} else if (!ret2) {
r->pass_done = max(r->pass_done, pass);
r->passes_complete |= BIT_ULL(pass);
} else {
ret = ret2;
}
if (ret && !online)
break;
if (prev_done <= BCH_RECOVERY_PASS_check_snapshots &&
r->pass_done > BCH_RECOVERY_PASS_check_snapshots) {
bch2_copygc_wakeup(c);
bch2_rebalance_wakeup(c);
}
}
clear_bit(BCH_FS_in_recovery, &c->flags);
spin_unlock_irq(&r->lock);
return ret;
}
static void bch2_async_recovery_passes_work(struct work_struct *work)
{
struct bch_fs *c = container_of(work, struct bch_fs, recovery.work);
struct bch_fs_recovery *r = &c->recovery;
__bch2_run_recovery_passes(c,
c->sb.recovery_passes_required & ~r->passes_ratelimiting,
true);
up(&r->run_lock);
enumerated_ref_put(&c->writes, BCH_WRITE_REF_async_recovery_passes);
}
int bch2_run_online_recovery_passes(struct bch_fs *c, u64 passes)
{
return __bch2_run_recovery_passes(c, c->sb.recovery_passes_required|passes, true);
}
int bch2_run_recovery_passes(struct bch_fs *c, enum bch_recovery_pass from)
{
u64 passes =
bch2_recovery_passes_match(PASS_ALWAYS) |
(!c->sb.clean ? bch2_recovery_passes_match(PASS_UNCLEAN) : 0) |
(c->opts.fsck ? bch2_recovery_passes_match(PASS_FSCK) : 0) |
c->opts.recovery_passes |
c->sb.recovery_passes_required;
if (c->opts.recovery_pass_last)
passes &= BIT_ULL(c->opts.recovery_pass_last + 1) - 1;
/*
* We can't allow set_may_go_rw to be excluded; that would cause us to
* use the journal replay keys for updates where it's not expected.
*/
c->opts.recovery_passes_exclude &= ~BCH_RECOVERY_PASS_set_may_go_rw;
passes &= ~c->opts.recovery_passes_exclude;
passes &= ~(BIT_ULL(from) - 1);
down(&c->recovery.run_lock);
int ret = __bch2_run_recovery_passes(c, passes, false);
up(&c->recovery.run_lock);
return ret;
}
static void prt_passes(struct printbuf *out, const char *msg, u64 passes)
{
prt_printf(out, "%s:\t", msg);
prt_bitflags(out, bch2_recovery_passes, passes);
prt_newline(out);
}
void bch2_recovery_pass_status_to_text(struct printbuf *out, struct bch_fs *c)
{
struct bch_fs_recovery *r = &c->recovery;
printbuf_tabstop_push(out, 32);
prt_passes(out, "Scheduled passes", c->sb.recovery_passes_required);
prt_passes(out, "Scheduled online passes", c->sb.recovery_passes_required &
bch2_recovery_passes_match(PASS_ONLINE));
prt_passes(out, "Complete passes", r->passes_complete);
prt_passes(out, "Failing passes", r->passes_failing);
if (r->curr_pass) {
prt_printf(out, "Current pass:\t%s\n", bch2_recovery_passes[r->curr_pass]);
prt_passes(out, "Current passes", r->passes_to_run);
}
}
void bch2_fs_recovery_passes_init(struct bch_fs *c)
{
spin_lock_init(&c->recovery.lock);
sema_init(&c->recovery.run_lock, 1);
INIT_WORK(&c->recovery.work, bch2_async_recovery_passes_work);
}