linux/fs/bcachefs/recovery_passes.c

647 lines
17 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "alloc_background.h"
#include "backpointers.h"
#include "btree_gc.h"
#include "btree_node_scan.h"
#include "disk_accounting.h"
#include "ec.h"
#include "fsck.h"
#include "inode.h"
#include "journal.h"
#include "lru.h"
#include "logged_ops.h"
#include "movinggc.h"
#include "rebalance.h"
#include "recovery.h"
#include "recovery_passes.h"
#include "snapshot.h"
#include "subvolume.h"
#include "super.h"
#include "super-io.h"
const char * const bch2_recovery_passes[] = {
#define x(_fn, ...) #_fn,
BCH_RECOVERY_PASSES()
#undef x
NULL
};
static const u8 passes_to_stable_map[] = {
#define x(n, id, ...) [BCH_RECOVERY_PASS_##n] = BCH_RECOVERY_PASS_STABLE_##n,
BCH_RECOVERY_PASSES()
#undef x
};
static const u8 passes_from_stable_map[] = {
#define x(n, id, ...) [BCH_RECOVERY_PASS_STABLE_##n] = BCH_RECOVERY_PASS_##n,
BCH_RECOVERY_PASSES()
#undef x
};
static enum bch_recovery_pass_stable bch2_recovery_pass_to_stable(enum bch_recovery_pass pass)
{
return passes_to_stable_map[pass];
}
u64 bch2_recovery_passes_to_stable(u64 v)
{
u64 ret = 0;
for (unsigned i = 0; i < ARRAY_SIZE(passes_to_stable_map); i++)
if (v & BIT_ULL(i))
ret |= BIT_ULL(passes_to_stable_map[i]);
return ret;
}
static enum bch_recovery_pass bch2_recovery_pass_from_stable(enum bch_recovery_pass_stable pass)
{
return pass < ARRAY_SIZE(passes_from_stable_map)
? passes_from_stable_map[pass]
: 0;
}
u64 bch2_recovery_passes_from_stable(u64 v)
{
u64 ret = 0;
for (unsigned i = 0; i < ARRAY_SIZE(passes_from_stable_map); i++)
if (v & BIT_ULL(i))
ret |= BIT_ULL(passes_from_stable_map[i]);
return ret;
}
static int bch2_sb_recovery_passes_validate(struct bch_sb *sb, struct bch_sb_field *f,
enum bch_validate_flags flags, struct printbuf *err)
{
return 0;
}
static void bch2_sb_recovery_passes_to_text(struct printbuf *out,
struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_recovery_passes *r =
field_to_type(f, recovery_passes);
unsigned nr = recovery_passes_nr_entries(r);
if (out->nr_tabstops < 1)
printbuf_tabstop_push(out, 32);
if (out->nr_tabstops < 2)
printbuf_tabstop_push(out, 16);
prt_printf(out, "Pass\tLast run\tLast runtime\n");
for (struct recovery_pass_entry *i = r->start; i < r->start + nr; i++) {
if (!i->last_run)
continue;
unsigned idx = i - r->start;
prt_printf(out, "%s\t", bch2_recovery_passes[bch2_recovery_pass_from_stable(idx)]);
bch2_prt_datetime(out, le64_to_cpu(i->last_run));
prt_tab(out);
bch2_pr_time_units(out, le32_to_cpu(i->last_runtime) * NSEC_PER_SEC);
if (BCH_RECOVERY_PASS_NO_RATELIMIT(i))
prt_str(out, " (no ratelimit)");
prt_newline(out);
}
}
static struct recovery_pass_entry *bch2_sb_recovery_pass_entry(struct bch_fs *c,
enum bch_recovery_pass pass)
{
enum bch_recovery_pass_stable stable = bch2_recovery_pass_to_stable(pass);
lockdep_assert_held(&c->sb_lock);
struct bch_sb_field_recovery_passes *r =
bch2_sb_field_get(c->disk_sb.sb, recovery_passes);
if (stable >= recovery_passes_nr_entries(r)) {
unsigned u64s = struct_size(r, start, stable + 1) / sizeof(u64);
r = bch2_sb_field_resize(&c->disk_sb, recovery_passes, u64s);
if (!r) {
bch_err(c, "error creating recovery_passes sb section");
return NULL;
}
}
return r->start + stable;
}
static void bch2_sb_recovery_pass_complete(struct bch_fs *c,
enum bch_recovery_pass pass,
s64 start_time)
{
guard(mutex)(&c->sb_lock);
struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
__clear_bit_le64(bch2_recovery_pass_to_stable(pass),
ext->recovery_passes_required);
struct recovery_pass_entry *e = bch2_sb_recovery_pass_entry(c, pass);
if (e) {
s64 end_time = ktime_get_real_seconds();
e->last_run = cpu_to_le64(end_time);
e->last_runtime = cpu_to_le32(max(0, end_time - start_time));
SET_BCH_RECOVERY_PASS_NO_RATELIMIT(e, false);
}
bch2_write_super(c);
}
void bch2_recovery_pass_set_no_ratelimit(struct bch_fs *c,
enum bch_recovery_pass pass)
{
guard(mutex)(&c->sb_lock);
struct recovery_pass_entry *e = bch2_sb_recovery_pass_entry(c, pass);
if (e && !BCH_RECOVERY_PASS_NO_RATELIMIT(e)) {
SET_BCH_RECOVERY_PASS_NO_RATELIMIT(e, false);
bch2_write_super(c);
}
}
static bool bch2_recovery_pass_want_ratelimit(struct bch_fs *c, enum bch_recovery_pass pass)
{
enum bch_recovery_pass_stable stable = bch2_recovery_pass_to_stable(pass);
bool ret = false;
lockdep_assert_held(&c->sb_lock);
struct bch_sb_field_recovery_passes *r =
bch2_sb_field_get(c->disk_sb.sb, recovery_passes);
if (stable < recovery_passes_nr_entries(r)) {
struct recovery_pass_entry *i = r->start + stable;
/*
* Ratelimit if the last runtime was more than 1% of the time
* since we last ran
*/
ret = (u64) le32_to_cpu(i->last_runtime) * 100 >
ktime_get_real_seconds() - le64_to_cpu(i->last_run);
if (BCH_RECOVERY_PASS_NO_RATELIMIT(i))
ret = false;
}
return ret;
}
const struct bch_sb_field_ops bch_sb_field_ops_recovery_passes = {
.validate = bch2_sb_recovery_passes_validate,
.to_text = bch2_sb_recovery_passes_to_text
};
/* Fake recovery pass, so that scan_for_btree_nodes isn't 0: */
static int bch2_recovery_pass_empty(struct bch_fs *c)
{
return 0;
}
static int bch2_set_may_go_rw(struct bch_fs *c)
{
struct journal_keys *keys = &c->journal_keys;
/*
* After we go RW, the journal keys buffer can't be modified (except for
* setting journal_key->overwritten: it will be accessed by multiple
* threads
*/
move_gap(keys, keys->nr);
set_bit(BCH_FS_may_go_rw, &c->flags);
if (go_rw_in_recovery(c)) {
if (c->sb.features & BIT_ULL(BCH_FEATURE_no_alloc_info)) {
bch_info(c, "mounting a filesystem with no alloc info read-write; will recreate");
bch2_reconstruct_alloc(c);
}
return bch2_fs_read_write_early(c);
}
return 0;
}
/*
* Make sure root inode is readable while we're still in recovery and can rewind
* for repair:
*/
static int bch2_lookup_root_inode(struct bch_fs *c)
{
subvol_inum inum = BCACHEFS_ROOT_SUBVOL_INUM;
struct bch_inode_unpacked inode_u;
struct bch_subvolume subvol;
return bch2_trans_do(c,
bch2_subvolume_get(trans, inum.subvol, true, &subvol) ?:
bch2_inode_find_by_inum_trans(trans, inum, &inode_u));
}
struct recovery_pass_fn {
int (*fn)(struct bch_fs *);
unsigned when;
};
static struct recovery_pass_fn recovery_pass_fns[] = {
#define x(_fn, _id, _when) { .fn = bch2_##_fn, .when = _when },
BCH_RECOVERY_PASSES()
#undef x
};
static u64 bch2_recovery_passes_match(unsigned flags)
{
u64 ret = 0;
for (unsigned i = 0; i < ARRAY_SIZE(recovery_pass_fns); i++)
if (recovery_pass_fns[i].when & flags)
ret |= BIT_ULL(i);
return ret;
}
u64 bch2_fsck_recovery_passes(void)
{
return bch2_recovery_passes_match(PASS_FSCK);
}
static void bch2_run_async_recovery_passes(struct bch_fs *c)
{
if (!down_trylock(&c->recovery.run_lock))
return;
if (!enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_async_recovery_passes))
goto unlock;
if (queue_work(system_long_wq, &c->recovery.work))
return;
enumerated_ref_put(&c->writes, BCH_WRITE_REF_async_recovery_passes);
unlock:
up(&c->recovery.run_lock);
}
static bool recovery_pass_needs_set(struct bch_fs *c,
enum bch_recovery_pass pass,
enum bch_run_recovery_pass_flags *flags)
{
struct bch_fs_recovery *r = &c->recovery;
/*
* Never run scan_for_btree_nodes persistently: check_topology will run
* it if required
*/
if (pass == BCH_RECOVERY_PASS_scan_for_btree_nodes)
*flags |= RUN_RECOVERY_PASS_nopersistent;
if ((*flags & RUN_RECOVERY_PASS_ratelimit) &&
!bch2_recovery_pass_want_ratelimit(c, pass))
*flags &= ~RUN_RECOVERY_PASS_ratelimit;
/*
* If RUN_RECOVERY_PASS_nopersistent is set, we don't want to do
* anything if the pass has already run: these mean we need a prior pass
* to run before we continue to repair, we don't expect that pass to fix
* the damage we encountered.
*
* Otherwise, we run run_explicit_recovery_pass when we find damage, so
* it should run again even if it's already run:
*/
bool in_recovery = test_bit(BCH_FS_in_recovery, &c->flags);
bool persistent = !in_recovery || !(*flags & RUN_RECOVERY_PASS_nopersistent);
bool rewind = in_recovery &&
r->curr_pass > pass &&
!(r->passes_complete & BIT_ULL(pass));
if (persistent
? !(c->sb.recovery_passes_required & BIT_ULL(pass))
: !((r->passes_to_run|r->passes_complete) & BIT_ULL(pass)))
return true;
if (!(*flags & RUN_RECOVERY_PASS_ratelimit) &&
(r->passes_ratelimiting & BIT_ULL(pass)))
return true;
if (rewind)
return true;
return false;
}
/*
* For when we need to rewind recovery passes and run a pass we skipped:
*/
int __bch2_run_explicit_recovery_pass(struct bch_fs *c,
struct printbuf *out,
enum bch_recovery_pass pass,
enum bch_run_recovery_pass_flags flags)
{
struct bch_fs_recovery *r = &c->recovery;
int ret = 0;
lockdep_assert_held(&c->sb_lock);
bch2_printbuf_make_room(out, 1024);
out->atomic++;
unsigned long lockflags;
spin_lock_irqsave(&r->lock, lockflags);
if (!recovery_pass_needs_set(c, pass, &flags))
goto out;
bool in_recovery = test_bit(BCH_FS_in_recovery, &c->flags);
bool rewind = in_recovery &&
r->curr_pass > pass &&
!(r->passes_complete & BIT_ULL(pass));
bool ratelimit = flags & RUN_RECOVERY_PASS_ratelimit;
if (!(flags & RUN_RECOVERY_PASS_nopersistent)) {
struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
__set_bit_le64(bch2_recovery_pass_to_stable(pass), ext->recovery_passes_required);
}
if (pass < BCH_RECOVERY_PASS_set_may_go_rw &&
(!in_recovery || r->curr_pass >= BCH_RECOVERY_PASS_set_may_go_rw)) {
prt_printf(out, "need recovery pass %s (%u), but already rw\n",
bch2_recovery_passes[pass], pass);
ret = bch_err_throw(c, cannot_rewind_recovery);
goto out;
}
if (ratelimit)
r->passes_ratelimiting |= BIT_ULL(pass);
else
r->passes_ratelimiting &= ~BIT_ULL(pass);
if (in_recovery && !ratelimit) {
prt_printf(out, "running recovery pass %s (%u), currently at %s (%u)%s\n",
bch2_recovery_passes[pass], pass,
bch2_recovery_passes[r->curr_pass], r->curr_pass,
rewind ? " - rewinding" : "");
r->passes_to_run |= BIT_ULL(pass);
if (rewind) {
r->next_pass = pass;
r->passes_complete &= (1ULL << pass) >> 1;
ret = bch_err_throw(c, restart_recovery);
}
} else {
prt_printf(out, "scheduling recovery pass %s (%u)%s\n",
bch2_recovery_passes[pass], pass,
ratelimit ? " - ratelimiting" : "");
struct recovery_pass_fn *p = recovery_pass_fns + pass;
if (p->when & PASS_ONLINE)
bch2_run_async_recovery_passes(c);
}
out:
spin_unlock_irqrestore(&r->lock, lockflags);
--out->atomic;
return ret;
}
int bch2_run_explicit_recovery_pass(struct bch_fs *c,
struct printbuf *out,
enum bch_recovery_pass pass,
enum bch_run_recovery_pass_flags flags)
{
int ret = 0;
if (recovery_pass_needs_set(c, pass, &flags)) {
guard(mutex)(&c->sb_lock);
ret = __bch2_run_explicit_recovery_pass(c, out, pass, flags);
bch2_write_super(c);
}
return ret;
}
/*
* Returns 0 if @pass has run recently, otherwise one of
* -BCH_ERR_restart_recovery
* -BCH_ERR_recovery_pass_will_run
*/
int bch2_require_recovery_pass(struct bch_fs *c,
struct printbuf *out,
enum bch_recovery_pass pass)
{
if (test_bit(BCH_FS_in_recovery, &c->flags) &&
c->recovery.passes_complete & BIT_ULL(pass))
return 0;
guard(mutex)(&c->sb_lock);
if (bch2_recovery_pass_want_ratelimit(c, pass))
return 0;
enum bch_run_recovery_pass_flags flags = 0;
int ret = 0;
if (recovery_pass_needs_set(c, pass, &flags)) {
ret = __bch2_run_explicit_recovery_pass(c, out, pass, flags);
bch2_write_super(c);
}
return ret ?: bch_err_throw(c, recovery_pass_will_run);
}
int bch2_run_print_explicit_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass)
{
enum bch_run_recovery_pass_flags flags = 0;
if (!recovery_pass_needs_set(c, pass, &flags))
return 0;
struct printbuf buf = PRINTBUF;
bch2_log_msg_start(c, &buf);
mutex_lock(&c->sb_lock);
int ret = __bch2_run_explicit_recovery_pass(c, &buf, pass,
RUN_RECOVERY_PASS_nopersistent);
mutex_unlock(&c->sb_lock);
bch2_print_str(c, KERN_NOTICE, buf.buf);
printbuf_exit(&buf);
return ret;
}
static int bch2_run_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass)
{
struct bch_fs_recovery *r = &c->recovery;
struct recovery_pass_fn *p = recovery_pass_fns + pass;
if (!(p->when & PASS_SILENT))
bch2_print(c, KERN_INFO bch2_log_msg(c, "%s..."),
bch2_recovery_passes[pass]);
s64 start_time = ktime_get_real_seconds();
int ret = p->fn(c);
r->passes_to_run &= ~BIT_ULL(pass);
if (ret) {
r->passes_failing |= BIT_ULL(pass);
return ret;
}
r->passes_failing = 0;
if (!test_bit(BCH_FS_error, &c->flags))
bch2_sb_recovery_pass_complete(c, pass, start_time);
if (!(p->when & PASS_SILENT))
bch2_print(c, KERN_CONT " done\n");
return 0;
}
static int __bch2_run_recovery_passes(struct bch_fs *c, u64 orig_passes_to_run,
bool online)
{
struct bch_fs_recovery *r = &c->recovery;
int ret = 0;
spin_lock_irq(&r->lock);
if (online)
orig_passes_to_run &= bch2_recovery_passes_match(PASS_ONLINE);
if (c->sb.features & BIT_ULL(BCH_FEATURE_no_alloc_info))
orig_passes_to_run &= ~bch2_recovery_passes_match(PASS_ALLOC);
/*
* A failed recovery pass will be retried after another pass succeeds -
* but not this iteration.
*
* This is because some passes depend on repair done by other passes: we
* may want to retry, but we don't want to loop on failing passes.
*/
orig_passes_to_run &= ~r->passes_failing;
r->passes_to_run = orig_passes_to_run;
while (r->passes_to_run) {
unsigned prev_done = r->pass_done;
unsigned pass = __ffs64(r->passes_to_run);
r->curr_pass = pass;
r->next_pass = r->curr_pass + 1;
r->passes_to_run &= ~BIT_ULL(pass);
spin_unlock_irq(&r->lock);
int ret2 = bch2_run_recovery_pass(c, pass) ?:
bch2_journal_flush(&c->journal);
spin_lock_irq(&r->lock);
if (r->next_pass < r->curr_pass) {
/* Rewind: */
r->passes_to_run |= orig_passes_to_run & (~0ULL << r->next_pass);
} else if (!ret2) {
r->pass_done = max(r->pass_done, pass);
r->passes_complete |= BIT_ULL(pass);
} else {
ret = ret2;
}
if (ret && !online)
break;
if (prev_done <= BCH_RECOVERY_PASS_check_snapshots &&
r->pass_done > BCH_RECOVERY_PASS_check_snapshots) {
bch2_copygc_wakeup(c);
bch2_rebalance_wakeup(c);
}
}
clear_bit(BCH_FS_in_recovery, &c->flags);
spin_unlock_irq(&r->lock);
return ret;
}
static void bch2_async_recovery_passes_work(struct work_struct *work)
{
struct bch_fs *c = container_of(work, struct bch_fs, recovery.work);
struct bch_fs_recovery *r = &c->recovery;
__bch2_run_recovery_passes(c,
c->sb.recovery_passes_required & ~r->passes_ratelimiting,
true);
up(&r->run_lock);
enumerated_ref_put(&c->writes, BCH_WRITE_REF_async_recovery_passes);
}
int bch2_run_online_recovery_passes(struct bch_fs *c, u64 passes)
{
return __bch2_run_recovery_passes(c, c->sb.recovery_passes_required|passes, true);
}
int bch2_run_recovery_passes(struct bch_fs *c, enum bch_recovery_pass from)
{
u64 passes =
bch2_recovery_passes_match(PASS_ALWAYS) |
(!c->sb.clean ? bch2_recovery_passes_match(PASS_UNCLEAN) : 0) |
(c->opts.fsck ? bch2_recovery_passes_match(PASS_FSCK) : 0) |
c->opts.recovery_passes |
c->sb.recovery_passes_required;
if (c->opts.recovery_pass_last)
passes &= BIT_ULL(c->opts.recovery_pass_last + 1) - 1;
/*
* We can't allow set_may_go_rw to be excluded; that would cause us to
* use the journal replay keys for updates where it's not expected.
*/
c->opts.recovery_passes_exclude &= ~BCH_RECOVERY_PASS_set_may_go_rw;
passes &= ~c->opts.recovery_passes_exclude;
passes &= ~(BIT_ULL(from) - 1);
down(&c->recovery.run_lock);
int ret = __bch2_run_recovery_passes(c, passes, false);
up(&c->recovery.run_lock);
return ret;
}
static void prt_passes(struct printbuf *out, const char *msg, u64 passes)
{
prt_printf(out, "%s:\t", msg);
prt_bitflags(out, bch2_recovery_passes, passes);
prt_newline(out);
}
void bch2_recovery_pass_status_to_text(struct printbuf *out, struct bch_fs *c)
{
struct bch_fs_recovery *r = &c->recovery;
printbuf_tabstop_push(out, 32);
prt_passes(out, "Scheduled passes", c->sb.recovery_passes_required);
prt_passes(out, "Scheduled online passes", c->sb.recovery_passes_required &
bch2_recovery_passes_match(PASS_ONLINE));
prt_passes(out, "Complete passes", r->passes_complete);
prt_passes(out, "Failing passes", r->passes_failing);
if (r->curr_pass) {
prt_printf(out, "Current pass:\t%s\n", bch2_recovery_passes[r->curr_pass]);
prt_passes(out, "Current passes", r->passes_to_run);
}
}
void bch2_fs_recovery_passes_init(struct bch_fs *c)
{
spin_lock_init(&c->recovery.lock);
sema_init(&c->recovery.run_lock, 1);
INIT_WORK(&c->recovery.work, bch2_async_recovery_passes_work);
}