linux/drivers/iio/light/apds9160.c
Waqar Hameed 851b85447c iio: Remove single use of macro definition for regmap name
There is really no reason for having the `regmap` name as a macro
definition if it is only used once directly in `struct regmap_config`.
It is also more readable this way. Remove these macro definitions and
instead use the string literal directly.

Signed-off-by: Waqar Hameed <waqar.hameed@axis.com>
Link: https://patch.msgid.link/3a8572de8316c7d2746c2ccea8c478f594221319.1748356671.git.waqar.hameed@axis.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2025-06-09 07:45:36 +01:00

1592 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* APDS9160 sensor driver.
* Chip is combined proximity and ambient light sensor.
* Author: 2024 Mikael Gonella-Bolduc <m.gonella.bolduc@gmail.com>
*/
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/types.h>
#include <linux/units.h>
#include <linux/iio/iio.h>
#include <linux/iio/events.h>
#include <linux/iio/sysfs.h>
#include <linux/unaligned.h>
/* Main control register */
#define APDS9160_REG_CTRL 0x00
#define APDS9160_CTRL_SWRESET BIT(4) /* 1: Activate reset */
#define APDS9160_CTRL_MODE_RGB BIT(2) /* 0: ALS & IR, 1: RGB & IR */
#define APDS9160_CTRL_EN_ALS BIT(1) /* 1: ALS active */
#define APDS9160_CTLR_EN_PS BIT(0) /* 1: PS active */
/* Status register */
#define APDS9160_SR_LS_INT BIT(4)
#define APDS9160_SR_LS_NEW_DATA BIT(3)
#define APDS9160_SR_PS_INT BIT(1)
#define APDS9160_SR_PS_NEW_DATA BIT(0)
/* Interrupt configuration registers */
#define APDS9160_REG_INT_CFG 0x19
#define APDS9160_REG_INT_PST 0x1A
#define APDS9160_INT_CFG_EN_LS BIT(2) /* LS int enable */
#define APDS9160_INT_CFG_EN_PS BIT(0) /* PS int enable */
/* Proximity registers */
#define APDS9160_REG_PS_LED 0x01
#define APDS9160_REG_PS_PULSES 0x02
#define APDS9160_REG_PS_MEAS_RATE 0x03
#define APDS9160_REG_PS_THRES_HI_LSB 0x1B
#define APDS9160_REG_PS_THRES_HI_MSB 0x1C
#define APDS9160_REG_PS_THRES_LO_LSB 0x1D
#define APDS9160_REG_PS_THRES_LO_MSB 0x1E
#define APDS9160_REG_PS_DATA_LSB 0x08
#define APDS9160_REG_PS_DATA_MSB 0x09
#define APDS9160_REG_PS_CAN_LEVEL_DIG_LSB 0x1F
#define APDS9160_REG_PS_CAN_LEVEL_DIG_MSB 0x20
#define APDS9160_REG_PS_CAN_LEVEL_ANA_DUR 0x21
#define APDS9160_REG_PS_CAN_LEVEL_ANA_CURRENT 0x22
/* Light sensor registers */
#define APDS9160_REG_LS_MEAS_RATE 0x04
#define APDS9160_REG_LS_GAIN 0x05
#define APDS9160_REG_LS_DATA_CLEAR_LSB 0x0A
#define APDS9160_REG_LS_DATA_CLEAR 0x0B
#define APDS9160_REG_LS_DATA_CLEAR_MSB 0x0C
#define APDS9160_REG_LS_DATA_ALS_LSB 0x0D
#define APDS9160_REG_LS_DATA_ALS 0x0E
#define APDS9160_REG_LS_DATA_ALS_MSB 0x0F
#define APDS9160_REG_LS_THRES_UP_LSB 0x24
#define APDS9160_REG_LS_THRES_UP 0x25
#define APDS9160_REG_LS_THRES_UP_MSB 0x26
#define APDS9160_REG_LS_THRES_LO_LSB 0x27
#define APDS9160_REG_LS_THRES_LO 0x28
#define APDS9160_REG_LS_THRES_LO_MSB 0x29
#define APDS9160_REG_LS_THRES_VAR 0x2A
/* Part identification number register */
#define APDS9160_REG_ID 0x06
/* Status register */
#define APDS9160_REG_SR 0x07
#define APDS9160_SR_DATA_ALS BIT(3)
#define APDS9160_SR_DATA_PS BIT(0)
/* Supported ID:s */
#define APDS9160_PART_ID_0 0x03
#define APDS9160_PS_THRES_MAX 0x7FF
#define APDS9160_LS_THRES_MAX 0xFFFFF
#define APDS9160_CMD_LS_RESOLUTION_25MS 0x04
#define APDS9160_CMD_LS_RESOLUTION_50MS 0x03
#define APDS9160_CMD_LS_RESOLUTION_100MS 0x02
#define APDS9160_CMD_LS_RESOLUTION_200MS 0x01
#define APDS9160_PS_DATA_MASK 0x7FF
#define APDS9160_DEFAULT_LS_GAIN 3
#define APDS9160_DEFAULT_LS_RATE 100
#define APDS9160_DEFAULT_PS_RATE 100
#define APDS9160_DEFAULT_PS_CANCELLATION_LEVEL 0
#define APDS9160_DEFAULT_PS_ANALOG_CANCELLATION 0
#define APDS9160_DEFAULT_PS_GAIN 1
#define APDS9160_DEFAULT_PS_CURRENT 100
#define APDS9160_DEFAULT_PS_RESOLUTION_11BITS 0x03
static const struct reg_default apds9160_reg_defaults[] = {
{ APDS9160_REG_CTRL, 0x00 }, /* Sensors disabled by default */
{ APDS9160_REG_PS_LED, 0x33 }, /* 60 kHz frequency, 100 mA */
{ APDS9160_REG_PS_PULSES, 0x08 }, /* 8 pulses */
{ APDS9160_REG_PS_MEAS_RATE, 0x05 }, /* 100ms */
{ APDS9160_REG_LS_MEAS_RATE, 0x22 }, /* 100ms */
{ APDS9160_REG_LS_GAIN, 0x01 }, /* 3x */
{ APDS9160_REG_INT_CFG, 0x10 }, /* Interrupts disabled */
{ APDS9160_REG_INT_PST, 0x00 },
{ APDS9160_REG_PS_THRES_HI_LSB, 0xFF },
{ APDS9160_REG_PS_THRES_HI_MSB, 0x07 },
{ APDS9160_REG_PS_THRES_LO_LSB, 0x00 },
{ APDS9160_REG_PS_THRES_LO_MSB, 0x00 },
{ APDS9160_REG_PS_CAN_LEVEL_DIG_LSB, 0x00 },
{ APDS9160_REG_PS_CAN_LEVEL_DIG_MSB, 0x00 },
{ APDS9160_REG_PS_CAN_LEVEL_ANA_DUR, 0x00 },
{ APDS9160_REG_PS_CAN_LEVEL_ANA_CURRENT, 0x00 },
{ APDS9160_REG_LS_THRES_UP_LSB, 0xFF },
{ APDS9160_REG_LS_THRES_UP, 0xFF },
{ APDS9160_REG_LS_THRES_UP_MSB, 0x0F },
{ APDS9160_REG_LS_THRES_LO_LSB, 0x00 },
{ APDS9160_REG_LS_THRES_LO, 0x00 },
{ APDS9160_REG_LS_THRES_LO_MSB, 0x00 },
{ APDS9160_REG_LS_THRES_VAR, 0x00 },
};
static const struct regmap_range apds9160_readable_ranges[] = {
regmap_reg_range(APDS9160_REG_CTRL, APDS9160_REG_LS_THRES_VAR),
};
static const struct regmap_access_table apds9160_readable_table = {
.yes_ranges = apds9160_readable_ranges,
.n_yes_ranges = ARRAY_SIZE(apds9160_readable_ranges),
};
static const struct regmap_range apds9160_writeable_ranges[] = {
regmap_reg_range(APDS9160_REG_CTRL, APDS9160_REG_LS_GAIN),
regmap_reg_range(APDS9160_REG_INT_CFG, APDS9160_REG_LS_THRES_VAR),
};
static const struct regmap_access_table apds9160_writeable_table = {
.yes_ranges = apds9160_writeable_ranges,
.n_yes_ranges = ARRAY_SIZE(apds9160_writeable_ranges),
};
static const struct regmap_range apds9160_volatile_ranges[] = {
regmap_reg_range(APDS9160_REG_SR, APDS9160_REG_LS_DATA_ALS_MSB),
};
static const struct regmap_access_table apds9160_volatile_table = {
.yes_ranges = apds9160_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(apds9160_volatile_ranges),
};
static const struct regmap_config apds9160_regmap_config = {
.name = "apds9160_regmap",
.reg_bits = 8,
.val_bits = 8,
.use_single_read = true,
.use_single_write = true,
.rd_table = &apds9160_readable_table,
.wr_table = &apds9160_writeable_table,
.volatile_table = &apds9160_volatile_table,
.reg_defaults = apds9160_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(apds9160_reg_defaults),
.max_register = 37,
.cache_type = REGCACHE_RBTREE,
};
static const struct iio_event_spec apds9160_event_spec[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
},
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
},
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_ENABLE),
},
};
static const struct iio_chan_spec apds9160_channels[] = {
{
/* Proximity sensor channel */
.type = IIO_PROXIMITY,
.address = APDS9160_REG_PS_DATA_LSB,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_CALIBBIAS),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE),
.event_spec = apds9160_event_spec,
.num_event_specs = ARRAY_SIZE(apds9160_event_spec),
},
{
/* Proximity sensor led current */
.type = IIO_CURRENT,
.output = 1,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_RAW),
},
{
/* Illuminance */
.type = IIO_LIGHT,
.address = APDS9160_REG_LS_DATA_ALS_LSB,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_HARDWAREGAIN) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE),
.event_spec = apds9160_event_spec,
.num_event_specs = ARRAY_SIZE(apds9160_event_spec),
},
{
/* Clear channel */
.type = IIO_INTENSITY,
.address = APDS9160_REG_LS_DATA_CLEAR_LSB,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.channel2 = IIO_MOD_LIGHT_CLEAR,
.modified = 1,
},
};
static const struct iio_chan_spec apds9160_channels_without_events[] = {
{
/* Proximity sensor channel */
.type = IIO_PROXIMITY,
.address = APDS9160_REG_PS_DATA_LSB,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_CALIBBIAS),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE),
},
{
/* Proximity sensor led current */
.type = IIO_CURRENT,
.output = 1,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_RAW),
},
{
/* Illuminance */
.type = IIO_LIGHT,
.address = APDS9160_REG_LS_DATA_ALS_LSB,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_HARDWAREGAIN) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE),
},
{
/* Clear channel */
.type = IIO_INTENSITY,
.address = APDS9160_REG_LS_DATA_CLEAR_LSB,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.channel2 = IIO_MOD_LIGHT_CLEAR,
.modified = 1,
},
};
static const int apds9160_als_rate_avail[] = {
25, 50, 100, 200
};
static const int apds9160_als_rate_map[][2] = {
{ 25, 0x00 },
{ 50, 0x01 },
{ 100, 0x02 },
{ 200, 0x03 },
};
static const int apds9160_als_gain_map[][2] = {
{ 1, 0x00 },
{ 3, 0x01 },
{ 6, 0x02 },
{ 18, 0x03 },
{ 54, 0x04 },
};
static const int apds9160_ps_gain_avail[] = {
1, 2, 4, 8
};
static const int apds9160_ps_gain_map[][2] = {
{ 1, 0x00 },
{ 2, 0x01 },
{ 4, 0x02 },
{ 8, 0x03 },
};
static const int apds9160_ps_rate_avail[] = {
25, 50, 100, 200, 400
};
static const int apds9160_ps_rate_map[][2] = {
{ 25, 0x03 },
{ 50, 0x04 },
{ 100, 0x05 },
{ 200, 0x06 },
{ 400, 0x07 },
};
static const int apds9160_ps_led_current_avail[] = {
10, 25, 50, 100, 150, 175, 200
};
static const int apds9160_ps_led_current_map[][2] = {
{ 10, 0x00 },
{ 25, 0x01 },
{ 50, 0x02 },
{ 100, 0x03 },
{ 150, 0x04 },
{ 175, 0x05 },
{ 200, 0x06 },
};
/**
* struct apds9160_scale - apds9160 scale mapping definition
*
* @itime: Integration time in ms
* @gain: Gain multiplier
* @scale1: lux/count resolution
* @scale2: micro lux/count
*/
struct apds9160_scale {
int itime;
int gain;
int scale1;
int scale2;
};
/* Scale mapping extracted from datasheet */
static const struct apds9160_scale apds9160_als_scale_map[] = {
{
.itime = 25,
.gain = 1,
.scale1 = 3,
.scale2 = 272000,
},
{
.itime = 25,
.gain = 3,
.scale1 = 1,
.scale2 = 77000,
},
{
.itime = 25,
.gain = 6,
.scale1 = 0,
.scale2 = 525000,
},
{
.itime = 25,
.gain = 18,
.scale1 = 0,
.scale2 = 169000,
},
{
.itime = 25,
.gain = 54,
.scale1 = 0,
.scale2 = 49000,
},
{
.itime = 50,
.gain = 1,
.scale1 = 1,
.scale2 = 639000,
},
{
.itime = 50,
.gain = 3,
.scale1 = 0,
.scale2 = 538000,
},
{
.itime = 50,
.gain = 6,
.scale1 = 0,
.scale2 = 263000,
},
{
.itime = 50,
.gain = 18,
.scale1 = 0,
.scale2 = 84000,
},
{
.itime = 50,
.gain = 54,
.scale1 = 0,
.scale2 = 25000,
},
{
.itime = 100,
.gain = 1,
.scale1 = 0,
.scale2 = 819000,
},
{
.itime = 100,
.gain = 3,
.scale1 = 0,
.scale2 = 269000,
},
{
.itime = 100,
.gain = 6,
.scale1 = 0,
.scale2 = 131000,
},
{
.itime = 100,
.gain = 18,
.scale1 = 0,
.scale2 = 42000,
},
{
.itime = 100,
.gain = 54,
.scale1 = 0,
.scale2 = 12000,
},
{
.itime = 200,
.gain = 1,
.scale1 = 0,
.scale2 = 409000,
},
{
.itime = 200,
.gain = 3,
.scale1 = 0,
.scale2 = 135000,
},
{
.itime = 200,
.gain = 6,
.scale1 = 0,
.scale2 = 66000,
},
{
.itime = 200,
.gain = 18,
.scale1 = 0,
.scale2 = 21000,
},
{
.itime = 200,
.gain = 54,
.scale1 = 0,
.scale2 = 6000,
},
};
static const int apds9160_25ms_avail[][2] = {
{ 3, 272000 },
{ 1, 77000 },
{ 0, 525000 },
{ 0, 169000 },
{ 0, 49000 },
};
static const int apds9160_50ms_avail[][2] = {
{ 1, 639000 },
{ 0, 538000 },
{ 0, 263000 },
{ 0, 84000 },
{ 0, 25000 },
};
static const int apds9160_100ms_avail[][2] = {
{ 0, 819000 },
{ 0, 269000 },
{ 0, 131000 },
{ 0, 42000 },
{ 0, 12000 },
};
static const int apds9160_200ms_avail[][2] = {
{ 0, 409000 },
{ 0, 135000 },
{ 0, 66000 },
{ 0, 21000 },
{ 0, 6000 },
};
static const struct reg_field apds9160_reg_field_ls_en =
REG_FIELD(APDS9160_REG_CTRL, 1, 1);
static const struct reg_field apds9160_reg_field_ps_en =
REG_FIELD(APDS9160_REG_CTRL, 0, 0);
static const struct reg_field apds9160_reg_field_int_ps =
REG_FIELD(APDS9160_REG_INT_CFG, 0, 0);
static const struct reg_field apds9160_reg_field_int_als =
REG_FIELD(APDS9160_REG_INT_CFG, 2, 2);
static const struct reg_field apds9160_reg_field_ps_overflow =
REG_FIELD(APDS9160_REG_PS_DATA_MSB, 3, 3);
static const struct reg_field apds9160_reg_field_als_rate =
REG_FIELD(APDS9160_REG_LS_MEAS_RATE, 0, 2);
static const struct reg_field apds9160_reg_field_als_gain =
REG_FIELD(APDS9160_REG_LS_GAIN, 0, 2);
static const struct reg_field apds9160_reg_field_ps_rate =
REG_FIELD(APDS9160_REG_PS_MEAS_RATE, 0, 2);
static const struct reg_field apds9160_reg_field_als_res =
REG_FIELD(APDS9160_REG_LS_MEAS_RATE, 4, 6);
static const struct reg_field apds9160_reg_field_ps_current =
REG_FIELD(APDS9160_REG_PS_LED, 0, 2);
static const struct reg_field apds9160_reg_field_ps_gain =
REG_FIELD(APDS9160_REG_PS_MEAS_RATE, 6, 7);
static const struct reg_field apds9160_reg_field_ps_resolution =
REG_FIELD(APDS9160_REG_PS_MEAS_RATE, 3, 4);
struct apds9160_chip {
struct i2c_client *client;
struct regmap *regmap;
struct regmap_field *reg_enable_ps;
struct regmap_field *reg_enable_als;
struct regmap_field *reg_int_ps;
struct regmap_field *reg_int_als;
struct regmap_field *reg_ps_overflow;
struct regmap_field *reg_als_rate;
struct regmap_field *reg_als_resolution;
struct regmap_field *reg_ps_rate;
struct regmap_field *reg_als_gain;
struct regmap_field *reg_ps_current;
struct regmap_field *reg_ps_gain;
struct regmap_field *reg_ps_resolution;
struct mutex lock; /* protects state and config data */
/* State data */
int als_int;
int ps_int;
/* Configuration values */
int als_itime;
int als_hwgain;
int als_scale1;
int als_scale2;
int ps_rate;
int ps_cancellation_level;
int ps_current;
int ps_gain;
};
static int apds9160_set_ps_rate(struct apds9160_chip *data, int val)
{
int idx;
for (idx = 0; idx < ARRAY_SIZE(apds9160_ps_rate_map); idx++) {
int ret;
if (apds9160_ps_rate_map[idx][0] != val)
continue;
ret = regmap_field_write(data->reg_ps_rate,
apds9160_ps_rate_map[idx][1]);
if (ret)
return ret;
data->ps_rate = val;
return ret;
}
return -EINVAL;
}
static int apds9160_set_ps_gain(struct apds9160_chip *data, int val)
{
int idx;
for (idx = 0; idx < ARRAY_SIZE(apds9160_ps_gain_map); idx++) {
int ret;
if (apds9160_ps_gain_map[idx][0] != val)
continue;
ret = regmap_field_write(data->reg_ps_gain,
apds9160_ps_gain_map[idx][1]);
if (ret)
return ret;
data->ps_gain = val;
return ret;
}
return -EINVAL;
}
/*
* The PS intelligent cancellation level register allows
* for an on-chip substraction of the ADC count caused by
* unwanted reflected light from PS ADC output.
*/
static int apds9160_set_ps_cancellation_level(struct apds9160_chip *data,
int val)
{
int ret;
__le16 buf;
if (val < 0 || val > 0xFFFF)
return -EINVAL;
buf = cpu_to_le16(val);
ret = regmap_bulk_write(data->regmap, APDS9160_REG_PS_CAN_LEVEL_DIG_LSB,
&buf, 2);
if (ret)
return ret;
data->ps_cancellation_level = val;
return ret;
}
/*
* This parameter determines the cancellation pulse duration
* in each of the PWM pulse. The cancellation is applied during the
* integration phase of the PS measurement.
* Duration is programmed in half clock cycles
* A duration value of 0 or 1 will not generate any cancellation pulse
*/
static int apds9160_set_ps_analog_cancellation(struct apds9160_chip *data,
int val)
{
if (val < 0 || val > 63)
return -EINVAL;
return regmap_write(data->regmap, APDS9160_REG_PS_CAN_LEVEL_ANA_DUR,
val);
}
/*
* This parameter works in conjunction with the cancellation pulse duration
* The value determines the current used for crosstalk cancellation
* Coarse value is in steps of 60 nA
* Fine value is in steps of 2.4 nA
*/
static int apds9160_set_ps_cancellation_current(struct apds9160_chip *data,
int coarse_val,
int fine_val)
{
int val;
if (coarse_val < 0 || coarse_val > 4)
return -EINVAL;
if (fine_val < 0 || fine_val > 15)
return -EINVAL;
/* Coarse value at B4:B5 and fine value at B0:B3 */
val = (coarse_val << 4) | fine_val;
return regmap_write(data->regmap, APDS9160_REG_PS_CAN_LEVEL_ANA_CURRENT,
val);
}
static int apds9160_ps_init_analog_cancellation(struct device *dev,
struct apds9160_chip *data)
{
int ret, duration, picoamp, idx, coarse, fine;
ret = device_property_read_u32(dev,
"ps-cancellation-duration", &duration);
if (ret || duration == 0) {
/* Don't fail since this is not required */
return 0;
}
ret = device_property_read_u32(dev,
"ps-cancellation-current-picoamp", &picoamp);
if (ret)
return ret;
if (picoamp < 60000 || picoamp > 276000 || picoamp % 2400 != 0)
return dev_err_probe(dev, -EINVAL,
"Invalid cancellation current\n");
/* Compute required coarse and fine value from requested current */
fine = 0;
coarse = 0;
for (idx = 60000; idx < picoamp; idx += 2400) {
if (fine == 15) {
fine = 0;
coarse++;
idx += 21600;
} else {
fine++;
}
}
if (picoamp != idx)
dev_warn(dev,
"Invalid cancellation current %i, rounding to %i\n",
picoamp, idx);
ret = apds9160_set_ps_analog_cancellation(data, duration);
if (ret)
return ret;
return apds9160_set_ps_cancellation_current(data, coarse, fine);
}
static int apds9160_set_ps_current(struct apds9160_chip *data, int val)
{
int idx;
for (idx = 0; idx < ARRAY_SIZE(apds9160_ps_led_current_map); idx++) {
int ret;
if (apds9160_ps_led_current_map[idx][0] != val)
continue;
ret = regmap_field_write(
data->reg_ps_current,
apds9160_ps_led_current_map[idx][1]);
if (ret)
return ret;
data->ps_current = val;
return ret;
}
return -EINVAL;
}
static int apds9160_set_als_gain(struct apds9160_chip *data, int gain)
{
int idx;
for (idx = 0; idx < ARRAY_SIZE(apds9160_als_gain_map); idx++) {
int ret;
if (gain != apds9160_als_gain_map[idx][0])
continue;
ret = regmap_field_write(data->reg_als_gain,
apds9160_als_gain_map[idx][1]);
if (ret)
return ret;
data->als_hwgain = gain;
return ret;
}
return -EINVAL;
}
static int apds9160_set_als_scale(struct apds9160_chip *data, int val, int val2)
{
int idx;
for (idx = 0; idx < ARRAY_SIZE(apds9160_als_scale_map); idx++) {
if (apds9160_als_scale_map[idx].itime == data->als_itime &&
apds9160_als_scale_map[idx].scale1 == val &&
apds9160_als_scale_map[idx].scale2 == val2) {
int ret = apds9160_set_als_gain(data,
apds9160_als_scale_map[idx].gain);
if (ret)
return ret;
data->als_scale1 = val;
data->als_scale2 = val2;
return ret;
}
}
return -EINVAL;
}
static int apds9160_set_als_resolution(struct apds9160_chip *data, int val)
{
switch (val) {
case 25:
return regmap_field_write(data->reg_als_resolution,
APDS9160_CMD_LS_RESOLUTION_25MS);
case 50:
return regmap_field_write(data->reg_als_resolution,
APDS9160_CMD_LS_RESOLUTION_50MS);
case 200:
return regmap_field_write(data->reg_als_resolution,
APDS9160_CMD_LS_RESOLUTION_200MS);
default:
return regmap_field_write(data->reg_als_resolution,
APDS9160_CMD_LS_RESOLUTION_100MS);
}
}
static int apds9160_set_als_rate(struct apds9160_chip *data, int val)
{
int idx;
for (idx = 0; idx < ARRAY_SIZE(apds9160_als_rate_map); idx++) {
if (apds9160_als_rate_map[idx][0] != val)
continue;
return regmap_field_write(data->reg_als_rate,
apds9160_als_rate_map[idx][1]);
}
return -EINVAL;
}
/*
* Setting the integration time ajusts resolution, rate, scale and gain
*/
static int apds9160_set_als_int_time(struct apds9160_chip *data, int val)
{
int ret;
int idx;
ret = apds9160_set_als_rate(data, val);
if (ret)
return ret;
/* Match resolution register with rate */
ret = apds9160_set_als_resolution(data, val);
if (ret)
return ret;
data->als_itime = val;
/* Set the scale minimum gain */
for (idx = 0; idx < ARRAY_SIZE(apds9160_als_scale_map); idx++) {
if (data->als_itime != apds9160_als_scale_map[idx].itime)
continue;
return apds9160_set_als_scale(data,
apds9160_als_scale_map[idx].scale1,
apds9160_als_scale_map[idx].scale2);
}
return -EINVAL;
}
static int apds9160_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
struct apds9160_chip *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
switch (chan->type) {
case IIO_LIGHT:
*length = ARRAY_SIZE(apds9160_als_rate_avail);
*vals = (const int *)apds9160_als_rate_avail;
*type = IIO_VAL_INT;
return IIO_AVAIL_LIST;
case IIO_PROXIMITY:
*length = ARRAY_SIZE(apds9160_ps_rate_avail);
*vals = (const int *)apds9160_ps_rate_avail;
*type = IIO_VAL_INT;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_PROXIMITY:
*length = ARRAY_SIZE(apds9160_ps_gain_avail);
*vals = (const int *)apds9160_ps_gain_avail;
*type = IIO_VAL_INT;
return IIO_AVAIL_LIST;
case IIO_LIGHT:
/* The available scales changes depending on itime */
switch (data->als_itime) {
case 25:
*length = ARRAY_SIZE(apds9160_25ms_avail) * 2;
*vals = (const int *)apds9160_25ms_avail;
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
case 50:
*length = ARRAY_SIZE(apds9160_50ms_avail) * 2;
*vals = (const int *)apds9160_50ms_avail;
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
case 100:
*length = ARRAY_SIZE(apds9160_100ms_avail) * 2;
*vals = (const int *)apds9160_100ms_avail;
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
case 200:
*length = ARRAY_SIZE(apds9160_200ms_avail) * 2;
*vals = (const int *)apds9160_200ms_avail;
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_CURRENT:
*length = ARRAY_SIZE(apds9160_ps_led_current_avail);
*vals = (const int *)apds9160_ps_led_current_avail;
*type = IIO_VAL_INT;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int apds9160_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
return IIO_VAL_INT;
case IIO_CHAN_INFO_CALIBBIAS:
return IIO_VAL_INT;
case IIO_CHAN_INFO_HARDWAREGAIN:
return IIO_VAL_INT;
case IIO_CHAN_INFO_RAW:
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
static int apds9160_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct apds9160_chip *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_PROXIMITY: {
__le16 buf;
ret = regmap_bulk_read(data->regmap, chan->address,
&buf, 2);
if (ret)
return ret;
*val = le16_to_cpu(buf);
/* Remove overflow bits from result */
*val = FIELD_GET(APDS9160_PS_DATA_MASK, *val);
return IIO_VAL_INT;
}
case IIO_LIGHT:
case IIO_INTENSITY: {
u8 buf[3];
ret = regmap_bulk_read(data->regmap, chan->address,
&buf, 3);
if (ret)
return ret;
*val = get_unaligned_le24(buf);
return IIO_VAL_INT;
}
case IIO_CURRENT:
*val = data->ps_current;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_HARDWAREGAIN:
switch (chan->type) {
case IIO_LIGHT:
*val = data->als_hwgain;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_INT_TIME:
switch (chan->type) {
case IIO_PROXIMITY:
*val = data->ps_rate;
return IIO_VAL_INT;
case IIO_LIGHT:
*val = data->als_itime;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_CALIBBIAS:
switch (chan->type) {
case IIO_PROXIMITY:
*val = data->ps_cancellation_level;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_PROXIMITY:
*val = data->ps_gain;
return IIO_VAL_INT;
case IIO_LIGHT:
*val = data->als_scale1;
*val2 = data->als_scale2;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
};
static int apds9160_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
struct apds9160_chip *data = iio_priv(indio_dev);
guard(mutex)(&data->lock);
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
if (val2 != 0)
return -EINVAL;
switch (chan->type) {
case IIO_PROXIMITY:
return apds9160_set_ps_rate(data, val);
case IIO_LIGHT:
return apds9160_set_als_int_time(data, val);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_PROXIMITY:
return apds9160_set_ps_gain(data, val);
case IIO_LIGHT:
return apds9160_set_als_scale(data, val, val2);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_CALIBBIAS:
if (val2 != 0)
return -EINVAL;
switch (chan->type) {
case IIO_PROXIMITY:
return apds9160_set_ps_cancellation_level(data, val);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_RAW:
if (val2 != 0)
return -EINVAL;
switch (chan->type) {
case IIO_CURRENT:
return apds9160_set_ps_current(data, val);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static inline int apds9160_get_thres_reg(const struct iio_chan_spec *chan,
enum iio_event_direction dir, u8 *reg)
{
switch (dir) {
case IIO_EV_DIR_RISING:
switch (chan->type) {
case IIO_PROXIMITY:
*reg = APDS9160_REG_PS_THRES_HI_LSB;
break;
case IIO_LIGHT:
*reg = APDS9160_REG_LS_THRES_UP_LSB;
break;
default:
return -EINVAL;
} break;
case IIO_EV_DIR_FALLING:
switch (chan->type) {
case IIO_PROXIMITY:
*reg = APDS9160_REG_PS_THRES_LO_LSB;
break;
case IIO_LIGHT:
*reg = APDS9160_REG_LS_THRES_LO_LSB;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
return 0;
}
static int apds9160_read_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int *val, int *val2)
{
u8 reg;
int ret;
struct apds9160_chip *data = iio_priv(indio_dev);
if (info != IIO_EV_INFO_VALUE)
return -EINVAL;
ret = apds9160_get_thres_reg(chan, dir, &reg);
if (ret < 0)
return ret;
switch (chan->type) {
case IIO_PROXIMITY: {
__le16 buf;
ret = regmap_bulk_read(data->regmap, reg, &buf, 2);
if (ret < 0)
return ret;
*val = le16_to_cpu(buf);
return IIO_VAL_INT;
}
case IIO_LIGHT: {
u8 buf[3];
ret = regmap_bulk_read(data->regmap, reg, &buf, 3);
if (ret < 0)
return ret;
*val = get_unaligned_le24(buf);
return IIO_VAL_INT;
}
default:
return -EINVAL;
}
}
static int apds9160_write_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int val, int val2)
{
u8 reg;
int ret = 0;
struct apds9160_chip *data = iio_priv(indio_dev);
if (info != IIO_EV_INFO_VALUE)
return -EINVAL;
ret = apds9160_get_thres_reg(chan, dir, &reg);
if (ret < 0)
return ret;
switch (chan->type) {
case IIO_PROXIMITY: {
__le16 buf;
if (val < 0 || val > APDS9160_PS_THRES_MAX)
return -EINVAL;
buf = cpu_to_le16(val);
return regmap_bulk_write(data->regmap, reg, &buf, 2);
}
case IIO_LIGHT: {
u8 buf[3];
if (val < 0 || val > APDS9160_LS_THRES_MAX)
return -EINVAL;
put_unaligned_le24(val, buf);
return regmap_bulk_write(data->regmap, reg, &buf, 3);
}
default:
return -EINVAL;
}
}
static int apds9160_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct apds9160_chip *data = iio_priv(indio_dev);
switch (chan->type) {
case IIO_PROXIMITY:
return data->ps_int;
case IIO_LIGHT:
return data->als_int;
default:
return -EINVAL;
}
}
static int apds9160_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir, bool state)
{
struct apds9160_chip *data = iio_priv(indio_dev);
int ret;
switch (chan->type) {
case IIO_PROXIMITY:
ret = regmap_field_write(data->reg_int_ps, state);
if (ret)
return ret;
data->ps_int = state;
return 0;
case IIO_LIGHT:
ret = regmap_field_write(data->reg_int_als, state);
if (ret)
return ret;
data->als_int = state;
return 0;
default:
return -EINVAL;
}
}
static irqreturn_t apds9160_irq_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct apds9160_chip *data = iio_priv(indio_dev);
int ret, status;
/* Reading status register clears the interrupt flag */
ret = regmap_read(data->regmap, APDS9160_REG_SR, &status);
if (ret < 0) {
dev_err_ratelimited(&data->client->dev,
"irq status reg read failed\n");
return IRQ_HANDLED;
}
if ((status & APDS9160_SR_LS_INT) &&
(status & APDS9160_SR_LS_NEW_DATA) && data->als_int) {
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_LIGHT, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_EITHER),
iio_get_time_ns(indio_dev));
}
if ((status & APDS9160_SR_PS_INT) &&
(status & APDS9160_SR_PS_NEW_DATA) && data->ps_int) {
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_EITHER),
iio_get_time_ns(indio_dev));
}
return IRQ_HANDLED;
}
static int apds9160_detect(struct apds9160_chip *chip)
{
struct i2c_client *client = chip->client;
int ret;
u32 val;
ret = regmap_read(chip->regmap, APDS9160_REG_ID, &val);
if (ret < 0) {
dev_err(&client->dev, "ID read failed\n");
return ret;
}
if (val != APDS9160_PART_ID_0)
dev_info(&client->dev, "Unknown part id %u\n", val);
return 0;
}
static void apds9160_disable(void *chip)
{
struct apds9160_chip *data = chip;
int ret;
ret = regmap_field_write(data->reg_enable_als, 0);
if (ret)
return;
regmap_field_write(data->reg_enable_ps, 0);
}
static int apds9160_chip_init(struct apds9160_chip *chip)
{
int ret;
/* Write default values to interrupt register */
ret = regmap_field_write(chip->reg_int_ps, 0);
chip->ps_int = 0;
if (ret)
return ret;
ret = regmap_field_write(chip->reg_int_als, 0);
chip->als_int = 0;
if (ret)
return ret;
/* Write default values to control register */
ret = regmap_field_write(chip->reg_enable_als, 1);
if (ret)
return ret;
ret = regmap_field_write(chip->reg_enable_ps, 1);
if (ret)
return ret;
/* Write other default values */
ret = regmap_field_write(chip->reg_ps_resolution,
APDS9160_DEFAULT_PS_RESOLUTION_11BITS);
if (ret)
return ret;
/* Write default values to configuration registers */
ret = apds9160_set_ps_current(chip, APDS9160_DEFAULT_PS_CURRENT);
if (ret)
return ret;
ret = apds9160_set_ps_rate(chip, APDS9160_DEFAULT_PS_RATE);
if (ret)
return ret;
ret = apds9160_set_als_int_time(chip, APDS9160_DEFAULT_LS_RATE);
if (ret)
return ret;
ret = apds9160_set_als_scale(chip,
apds9160_100ms_avail[0][0],
apds9160_100ms_avail[0][1]);
if (ret)
return ret;
ret = apds9160_set_ps_gain(chip, APDS9160_DEFAULT_PS_GAIN);
if (ret)
return ret;
ret = apds9160_set_ps_analog_cancellation(
chip, APDS9160_DEFAULT_PS_ANALOG_CANCELLATION);
if (ret)
return ret;
ret = apds9160_set_ps_cancellation_level(
chip, APDS9160_DEFAULT_PS_CANCELLATION_LEVEL);
if (ret)
return ret;
return devm_add_action_or_reset(&chip->client->dev, apds9160_disable,
chip);
}
static int apds9160_regfield_init(struct apds9160_chip *data)
{
struct device *dev = &data->client->dev;
struct regmap *regmap = data->regmap;
struct regmap_field *tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9160_reg_field_int_als);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
data->reg_int_als = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9160_reg_field_int_ps);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
data->reg_int_ps = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9160_reg_field_ls_en);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
data->reg_enable_als = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9160_reg_field_ps_en);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
data->reg_enable_ps = tmp;
tmp = devm_regmap_field_alloc(dev, regmap,
apds9160_reg_field_ps_overflow);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
data->reg_ps_overflow = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9160_reg_field_als_rate);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
data->reg_als_rate = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9160_reg_field_als_res);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
data->reg_als_resolution = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9160_reg_field_ps_rate);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
data->reg_ps_rate = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9160_reg_field_als_gain);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
data->reg_als_gain = tmp;
tmp = devm_regmap_field_alloc(dev, regmap,
apds9160_reg_field_ps_current);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
data->reg_ps_current = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9160_reg_field_ps_gain);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
data->reg_ps_gain = tmp;
tmp = devm_regmap_field_alloc(dev, regmap,
apds9160_reg_field_ps_resolution);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
data->reg_ps_resolution = tmp;
return 0;
}
static const struct iio_info apds9160_info = {
.read_avail = apds9160_read_avail,
.read_raw = apds9160_read_raw,
.write_raw = apds9160_write_raw,
.write_raw_get_fmt = apds9160_write_raw_get_fmt,
.read_event_value = apds9160_read_event,
.write_event_value = apds9160_write_event,
.read_event_config = apds9160_read_event_config,
.write_event_config = apds9160_write_event_config,
};
static const struct iio_info apds9160_info_no_events = {
.read_avail = apds9160_read_avail,
.read_raw = apds9160_read_raw,
.write_raw = apds9160_write_raw,
.write_raw_get_fmt = apds9160_write_raw_get_fmt,
};
static int apds9160_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct apds9160_chip *chip;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*chip));
if (!indio_dev)
return -ENOMEM;
ret = devm_regulator_get_enable(dev, "vdd");
if (ret)
return dev_err_probe(dev, ret, "Failed to enable vdd supply\n");
indio_dev->name = "apds9160";
indio_dev->modes = INDIO_DIRECT_MODE;
chip = iio_priv(indio_dev);
chip->client = client;
chip->regmap = devm_regmap_init_i2c(client, &apds9160_regmap_config);
if (IS_ERR(chip->regmap))
return dev_err_probe(dev, PTR_ERR(chip->regmap),
"regmap initialization failed.\n");
chip->client = client;
mutex_init(&chip->lock);
ret = apds9160_detect(chip);
if (ret < 0)
return dev_err_probe(dev, ret, "apds9160 not found\n");
ret = apds9160_regfield_init(chip);
if (ret)
return ret;
ret = apds9160_chip_init(chip);
if (ret)
return ret;
ret = apds9160_ps_init_analog_cancellation(dev, chip);
if (ret)
return ret;
if (client->irq > 0) {
indio_dev->info = &apds9160_info;
indio_dev->channels = apds9160_channels;
indio_dev->num_channels = ARRAY_SIZE(apds9160_channels);
ret = devm_request_threaded_irq(dev, client->irq, NULL,
apds9160_irq_handler,
IRQF_ONESHOT, "apds9160_event",
indio_dev);
if (ret) {
return dev_err_probe(dev, ret,
"request irq (%d) failed\n",
client->irq);
}
} else {
indio_dev->info = &apds9160_info_no_events;
indio_dev->channels = apds9160_channels_without_events;
indio_dev->num_channels =
ARRAY_SIZE(apds9160_channels_without_events);
}
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
return dev_err_probe(dev, ret,
"failed iio device registration\n");
return ret;
}
static const struct of_device_id apds9160_of_match[] = {
{ .compatible = "brcm,apds9160" },
{ }
};
MODULE_DEVICE_TABLE(of, apds9160_of_match);
static const struct i2c_device_id apds9160_id[] = {
{ "apds9160", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, apds9160_id);
static struct i2c_driver apds9160_driver = {
.driver = {
.name = "apds9160",
.of_match_table = apds9160_of_match,
},
.probe = apds9160_probe,
.id_table = apds9160_id,
};
module_i2c_driver(apds9160_driver);
MODULE_DESCRIPTION("APDS9160 combined ALS and proximity sensor");
MODULE_AUTHOR("Mikael Gonella-Bolduc <m.gonella.bolduc@gmail.com>");
MODULE_LICENSE("GPL");