linux/drivers/gpu/drm/i915/display/skl_scaler.c
Jani Nikula 9d4e26042c drm/i915/display: drop i915_reg.h include where possible
A number of files have unnecessary i915_reg.h includes. Drop them.

Reviewed-by: Michał Grzelak <michal.grzelak@intel.com>
Link: https://lore.kernel.org/r/7c4002322f4d8132fd2eaa1a4d688539cdd043c3.1749469962.git.jani.nikula@intel.com
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
2025-06-11 14:03:06 +03:00

925 lines
28 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <drm/drm_print.h>
#include "i915_utils.h"
#include "intel_de.h"
#include "intel_display_regs.h"
#include "intel_display_trace.h"
#include "intel_display_types.h"
#include "intel_fb.h"
#include "skl_scaler.h"
#include "skl_universal_plane.h"
/*
* The hardware phase 0.0 refers to the center of the pixel.
* We want to start from the top/left edge which is phase
* -0.5. That matches how the hardware calculates the scaling
* factors (from top-left of the first pixel to bottom-right
* of the last pixel, as opposed to the pixel centers).
*
* For 4:2:0 subsampled chroma planes we obviously have to
* adjust that so that the chroma sample position lands in
* the right spot.
*
* Note that for packed YCbCr 4:2:2 formats there is no way to
* control chroma siting. The hardware simply replicates the
* chroma samples for both of the luma samples, and thus we don't
* actually get the expected MPEG2 chroma siting convention :(
* The same behaviour is observed on pre-SKL platforms as well.
*
* Theory behind the formula (note that we ignore sub-pixel
* source coordinates):
* s = source sample position
* d = destination sample position
*
* Downscaling 4:1:
* -0.5
* | 0.0
* | | 1.5 (initial phase)
* | | |
* v v v
* | s | s | s | s |
* | d |
*
* Upscaling 1:4:
* -0.5
* | -0.375 (initial phase)
* | | 0.0
* | | |
* v v v
* | s |
* | d | d | d | d |
*/
static u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
{
int phase = -0x8000;
u16 trip = 0;
if (chroma_cosited)
phase += (sub - 1) * 0x8000 / sub;
phase += scale / (2 * sub);
/*
* Hardware initial phase limited to [-0.5:1.5].
* Since the max hardware scale factor is 3.0, we
* should never actually exceed 1.0 here.
*/
WARN_ON(phase < -0x8000 || phase > 0x18000);
if (phase < 0)
phase = 0x10000 + phase;
else
trip = PS_PHASE_TRIP;
return ((phase >> 2) & PS_PHASE_MASK) | trip;
}
static void skl_scaler_min_src_size(const struct drm_format_info *format,
u64 modifier, int *min_w, int *min_h)
{
if (format && intel_format_info_is_yuv_semiplanar(format, modifier)) {
*min_w = 16;
*min_h = 16;
} else {
*min_w = 8;
*min_h = 8;
}
}
static void skl_scaler_max_src_size(struct intel_crtc *crtc,
int *max_w, int *max_h)
{
struct intel_display *display = to_intel_display(crtc);
if (DISPLAY_VER(display) >= 14) {
*max_w = 4096;
*max_h = 8192;
} else if (DISPLAY_VER(display) >= 12) {
*max_w = 5120;
*max_h = 8192;
} else if (DISPLAY_VER(display) == 11) {
*max_w = 5120;
*max_h = 4096;
} else {
*max_w = 4096;
*max_h = 4096;
}
}
static void skl_scaler_min_dst_size(int *min_w, int *min_h)
{
*min_w = 8;
*min_h = 8;
}
static void skl_scaler_max_dst_size(struct intel_crtc *crtc,
int *max_w, int *max_h)
{
struct intel_display *display = to_intel_display(crtc);
if (DISPLAY_VER(display) >= 12) {
*max_w = 8192;
*max_h = 8192;
} else if (DISPLAY_VER(display) == 11) {
*max_w = 5120;
*max_h = 4096;
} else {
*max_w = 4096;
*max_h = 4096;
}
}
static int
skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
unsigned int scaler_user, int *scaler_id,
int src_w, int src_h, int dst_w, int dst_h,
const struct drm_format_info *format,
u64 modifier, bool need_scaler)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
const struct drm_display_mode *adjusted_mode =
&crtc_state->hw.adjusted_mode;
int pipe_src_w = drm_rect_width(&crtc_state->pipe_src);
int pipe_src_h = drm_rect_height(&crtc_state->pipe_src);
int min_src_w, min_src_h, min_dst_w, min_dst_h;
int max_src_w, max_src_h, max_dst_w, max_dst_h;
/*
* Src coordinates are already rotated by 270 degrees for
* the 90/270 degree plane rotation cases (to match the
* GTT mapping), hence no need to account for rotation here.
*/
if (src_w != dst_w || src_h != dst_h)
need_scaler = true;
/*
* Scaling/fitting not supported in IF-ID mode in GEN9+
* TODO: Interlace fetch mode doesn't support YUV420 planar formats.
* Once NV12 is enabled, handle it here while allocating scaler
* for NV12.
*/
if (DISPLAY_VER(display) >= 9 && crtc_state->hw.enable &&
need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] scaling not supported with IF-ID mode\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
/*
* if plane is being disabled or scaler is no more required or force detach
* - free scaler binded to this plane/crtc
* - in order to do this, update crtc->scaler_usage
*
* Here scaler state in crtc_state is set free so that
* scaler can be assigned to other user. Actual register
* update to free the scaler is done in plane/panel-fit programming.
* For this purpose crtc/plane_state->scaler_id isn't reset here.
*/
if (force_detach || !need_scaler) {
if (*scaler_id >= 0) {
scaler_state->scaler_users &= ~(1 << scaler_user);
scaler_state->scalers[*scaler_id].in_use = false;
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] scaler_user index %u.%u: "
"Staged freeing scaler id %d scaler_users = 0x%x\n",
crtc->base.base.id, crtc->base.name,
crtc->pipe, scaler_user, *scaler_id,
scaler_state->scaler_users);
*scaler_id = -1;
}
return 0;
}
skl_scaler_min_src_size(format, modifier, &min_src_w, &min_src_h);
skl_scaler_max_src_size(crtc, &max_src_w, &max_src_h);
skl_scaler_min_dst_size(&min_dst_w, &min_dst_h);
skl_scaler_max_dst_size(crtc, &max_dst_w, &max_dst_h);
/* range checks */
if (src_w < min_src_w || src_h < min_src_h ||
dst_w < min_dst_w || dst_h < min_dst_h ||
src_w > max_src_w || src_h > max_src_h ||
dst_w > max_dst_w || dst_h > max_dst_h) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] scaler_user index %u.%u: src %ux%u dst %ux%u "
"size is out of scaler range\n",
crtc->base.base.id, crtc->base.name,
crtc->pipe, scaler_user, src_w, src_h,
dst_w, dst_h);
return -EINVAL;
}
/*
* The pipe scaler does not use all the bits of PIPESRC, at least
* on the earlier platforms. So even when we're scaling a plane
* the *pipe* source size must not be too large. For simplicity
* we assume the limits match the scaler destination size limits.
* Might not be 100% accurate on all platforms, but good enough for
* now.
*/
if (pipe_src_w > max_dst_w || pipe_src_h > max_dst_h) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] scaler_user index %u.%u: pipe src size %ux%u "
"is out of scaler range\n",
crtc->base.base.id, crtc->base.name,
crtc->pipe, scaler_user, pipe_src_w, pipe_src_h);
return -EINVAL;
}
/* mark this plane as a scaler user in crtc_state */
scaler_state->scaler_users |= (1 << scaler_user);
drm_dbg_kms(display->drm, "[CRTC:%d:%s] scaler_user index %u.%u: "
"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
crtc->base.base.id, crtc->base.name,
crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
scaler_state->scaler_users);
return 0;
}
int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state)
{
const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
int width, height;
if (crtc_state->pch_pfit.enabled) {
width = drm_rect_width(&crtc_state->pch_pfit.dst);
height = drm_rect_height(&crtc_state->pch_pfit.dst);
} else {
width = pipe_mode->crtc_hdisplay;
height = pipe_mode->crtc_vdisplay;
}
return skl_update_scaler(crtc_state, !crtc_state->hw.active,
SKL_CRTC_INDEX,
&crtc_state->scaler_state.scaler_id,
drm_rect_width(&crtc_state->pipe_src),
drm_rect_height(&crtc_state->pipe_src),
width, height, NULL, 0,
crtc_state->pch_pfit.enabled);
}
/**
* skl_update_scaler_plane - Stages update to scaler state for a given plane.
* @crtc_state: crtc's scaler state
* @plane_state: atomic plane state to update
*
* Return
* 0 - scaler_usage updated successfully
* error - requested scaling cannot be supported or other error condition
*/
int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state)
{
struct intel_display *display = to_intel_display(plane_state);
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_framebuffer *fb = plane_state->hw.fb;
bool force_detach = !fb || !plane_state->uapi.visible;
bool need_scaler = false;
/* Pre-gen11 and SDR planes always need a scaler for planar formats. */
if (!icl_is_hdr_plane(display, plane->id) &&
fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
need_scaler = true;
return skl_update_scaler(crtc_state, force_detach,
drm_plane_index(&plane->base),
&plane_state->scaler_id,
drm_rect_width(&plane_state->uapi.src) >> 16,
drm_rect_height(&plane_state->uapi.src) >> 16,
drm_rect_width(&plane_state->uapi.dst),
drm_rect_height(&plane_state->uapi.dst),
fb ? fb->format : NULL,
fb ? fb->modifier : 0,
need_scaler);
}
static int intel_allocate_scaler(struct intel_crtc_scaler_state *scaler_state,
struct intel_crtc *crtc)
{
int i;
for (i = 0; i < crtc->num_scalers; i++) {
if (scaler_state->scalers[i].in_use)
continue;
scaler_state->scalers[i].in_use = true;
return i;
}
return -1;
}
static void
calculate_max_scale(struct intel_crtc *crtc,
bool is_yuv_semiplanar,
int scaler_id,
int *max_hscale, int *max_vscale)
{
struct intel_display *display = to_intel_display(crtc);
/*
* FIXME: When two scalers are needed, but only one of
* them needs to downscale, we should make sure that
* the one that needs downscaling support is assigned
* as the first scaler, so we don't reject downscaling
* unnecessarily.
*/
if (DISPLAY_VER(display) >= 14) {
/*
* On versions 14 and up, only the first
* scaler supports a vertical scaling factor
* of more than 1.0, while a horizontal
* scaling factor of 3.0 is supported.
*/
*max_hscale = 0x30000 - 1;
if (scaler_id == 0)
*max_vscale = 0x30000 - 1;
else
*max_vscale = 0x10000;
} else if (DISPLAY_VER(display) >= 10 || !is_yuv_semiplanar) {
*max_hscale = 0x30000 - 1;
*max_vscale = 0x30000 - 1;
} else {
*max_hscale = 0x20000 - 1;
*max_vscale = 0x20000 - 1;
}
}
static int intel_atomic_setup_scaler(struct intel_crtc_state *crtc_state,
int num_scalers_need, struct intel_crtc *crtc,
const char *name, int idx,
struct intel_plane_state *plane_state,
int *scaler_id)
{
struct intel_display *display = to_intel_display(crtc);
struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
u32 mode;
int hscale = 0;
int vscale = 0;
if (*scaler_id < 0)
*scaler_id = intel_allocate_scaler(scaler_state, crtc);
if (drm_WARN(display->drm, *scaler_id < 0,
"Cannot find scaler for %s:%d\n", name, idx))
return -EINVAL;
/* set scaler mode */
if (plane_state && plane_state->hw.fb &&
plane_state->hw.fb->format->is_yuv &&
plane_state->hw.fb->format->num_planes > 1) {
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
if (DISPLAY_VER(display) == 9) {
mode = SKL_PS_SCALER_MODE_NV12;
} else if (icl_is_hdr_plane(display, plane->id)) {
/*
* On gen11+'s HDR planes we only use the scaler for
* scaling. They have a dedicated chroma upsampler, so
* we don't need the scaler to upsample the UV plane.
*/
mode = PS_SCALER_MODE_NORMAL;
} else {
struct intel_plane *linked =
plane_state->planar_linked_plane;
mode = PS_SCALER_MODE_PLANAR;
if (linked)
mode |= PS_BINDING_Y_PLANE(linked->id);
}
} else if (DISPLAY_VER(display) >= 10) {
mode = PS_SCALER_MODE_NORMAL;
} else if (num_scalers_need == 1 && crtc->num_scalers > 1) {
/*
* when only 1 scaler is in use on a pipe with 2 scalers
* scaler 0 operates in high quality (HQ) mode.
* In this case use scaler 0 to take advantage of HQ mode
*/
scaler_state->scalers[*scaler_id].in_use = false;
*scaler_id = 0;
scaler_state->scalers[0].in_use = true;
mode = SKL_PS_SCALER_MODE_HQ;
} else {
mode = SKL_PS_SCALER_MODE_DYN;
}
if (plane_state && plane_state->hw.fb) {
const struct drm_framebuffer *fb = plane_state->hw.fb;
const struct drm_rect *src = &plane_state->uapi.src;
const struct drm_rect *dst = &plane_state->uapi.dst;
int max_hscale, max_vscale;
calculate_max_scale(crtc,
intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier),
*scaler_id, &max_hscale, &max_vscale);
/*
* FIXME: We should change the if-else block above to
* support HQ vs dynamic scaler properly.
*/
/* Check if required scaling is within limits */
hscale = drm_rect_calc_hscale(src, dst, 1, max_hscale);
vscale = drm_rect_calc_vscale(src, dst, 1, max_vscale);
if (hscale < 0 || vscale < 0) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] scaler %d doesn't support required plane scaling\n",
crtc->base.base.id, crtc->base.name, *scaler_id);
drm_rect_debug_print("src: ", src, true);
drm_rect_debug_print("dst: ", dst, false);
return -EINVAL;
}
}
if (crtc_state->pch_pfit.enabled) {
struct drm_rect src;
int max_hscale, max_vscale;
drm_rect_init(&src, 0, 0,
drm_rect_width(&crtc_state->pipe_src) << 16,
drm_rect_height(&crtc_state->pipe_src) << 16);
calculate_max_scale(crtc, 0, *scaler_id,
&max_hscale, &max_vscale);
/*
* When configured for Pipe YUV 420 encoding for port output,
* limit downscaling to less than 1.5 (source/destination) in
* the horizontal direction and 1.0 in the vertical direction.
*/
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
max_hscale = 0x18000 - 1;
max_vscale = 0x10000;
}
hscale = drm_rect_calc_hscale(&src, &crtc_state->pch_pfit.dst,
0, max_hscale);
vscale = drm_rect_calc_vscale(&src, &crtc_state->pch_pfit.dst,
0, max_vscale);
if (hscale < 0 || vscale < 0) {
drm_dbg_kms(display->drm,
"Scaler %d doesn't support required pipe scaling\n",
*scaler_id);
drm_rect_debug_print("src: ", &src, true);
drm_rect_debug_print("dst: ", &crtc_state->pch_pfit.dst, false);
return -EINVAL;
}
}
scaler_state->scalers[*scaler_id].hscale = hscale;
scaler_state->scalers[*scaler_id].vscale = vscale;
drm_dbg_kms(display->drm, "[CRTC:%d:%s] attached scaler id %u.%u to %s:%d\n",
crtc->base.base.id, crtc->base.name,
crtc->pipe, *scaler_id, name, idx);
scaler_state->scalers[*scaler_id].mode = mode;
return 0;
}
static int setup_crtc_scaler(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
return intel_atomic_setup_scaler(crtc_state,
hweight32(scaler_state->scaler_users),
crtc, "CRTC", crtc->base.base.id,
NULL, &scaler_state->scaler_id);
}
static int setup_plane_scaler(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_plane *plane)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
struct intel_plane_state *plane_state;
/* plane on different crtc cannot be a scaler user of this crtc */
if (drm_WARN_ON(display->drm, plane->pipe != crtc->pipe))
return 0;
plane_state = intel_atomic_get_new_plane_state(state, plane);
/*
* GLK+ scalers don't have a HQ mode so it
* isn't necessary to change between HQ and dyn mode
* on those platforms.
*/
if (!plane_state && DISPLAY_VER(display) >= 10)
return 0;
plane_state = intel_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
return intel_atomic_setup_scaler(crtc_state,
hweight32(scaler_state->scaler_users),
crtc, "PLANE", plane->base.base.id,
plane_state, &plane_state->scaler_id);
}
/**
* intel_atomic_setup_scalers() - setup scalers for crtc per staged requests
* @state: atomic state
* @crtc: crtc
*
* This function sets up scalers based on staged scaling requests for
* a @crtc and its planes. It is called from crtc level check path. If request
* is a supportable request, it attaches scalers to requested planes and crtc.
*
* This function takes into account the current scaler(s) in use by any planes
* not being part of this atomic state
*
* Returns:
* 0 - scalers were setup successfully
* error code - otherwise
*/
int intel_atomic_setup_scalers(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(crtc);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
int num_scalers_need;
int i;
num_scalers_need = hweight32(scaler_state->scaler_users);
/*
* High level flow:
* - staged scaler requests are already in scaler_state->scaler_users
* - check whether staged scaling requests can be supported
* - add planes using scalers that aren't in current transaction
* - assign scalers to requested users
* - as part of plane commit, scalers will be committed
* (i.e., either attached or detached) to respective planes in hw
* - as part of crtc_commit, scaler will be either attached or detached
* to crtc in hw
*/
/* fail if required scalers > available scalers */
if (num_scalers_need > crtc->num_scalers) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] too many scaling requests %d > %d\n",
crtc->base.base.id, crtc->base.name,
num_scalers_need, crtc->num_scalers);
return -EINVAL;
}
/* walkthrough scaler_users bits and start assigning scalers */
for (i = 0; i < sizeof(scaler_state->scaler_users) * 8; i++) {
int ret;
/* skip if scaler not required */
if (!(scaler_state->scaler_users & (1 << i)))
continue;
if (i == SKL_CRTC_INDEX) {
ret = setup_crtc_scaler(state, crtc);
if (ret)
return ret;
} else {
struct intel_plane *plane =
to_intel_plane(drm_plane_from_index(display->drm, i));
ret = setup_plane_scaler(state, crtc, plane);
if (ret)
return ret;
}
}
return 0;
}
static int glk_coef_tap(int i)
{
return i % 7;
}
static u16 glk_nearest_filter_coef(int t)
{
return t == 3 ? 0x0800 : 0x3000;
}
/*
* Theory behind setting nearest-neighbor integer scaling:
*
* 17 phase of 7 taps requires 119 coefficients in 60 dwords per set.
* The letter represents the filter tap (D is the center tap) and the number
* represents the coefficient set for a phase (0-16).
*
* +------------+--------------------------+--------------------------+
* |Index value | Data value coefficient 1 | Data value coefficient 2 |
* +------------+--------------------------+--------------------------+
* | 00h | B0 | A0 |
* +------------+--------------------------+--------------------------+
* | 01h | D0 | C0 |
* +------------+--------------------------+--------------------------+
* | 02h | F0 | E0 |
* +------------+--------------------------+--------------------------+
* | 03h | A1 | G0 |
* +------------+--------------------------+--------------------------+
* | 04h | C1 | B1 |
* +------------+--------------------------+--------------------------+
* | ... | ... | ... |
* +------------+--------------------------+--------------------------+
* | 38h | B16 | A16 |
* +------------+--------------------------+--------------------------+
* | 39h | D16 | C16 |
* +------------+--------------------------+--------------------------+
* | 3Ah | F16 | C16 |
* +------------+--------------------------+--------------------------+
* | 3Bh | Reserved | G16 |
* +------------+--------------------------+--------------------------+
*
* To enable nearest-neighbor scaling: program scaler coefficients with
* the center tap (Dxx) values set to 1 and all other values set to 0 as per
* SCALER_COEFFICIENT_FORMAT
*
*/
static void glk_program_nearest_filter_coefs(struct intel_display *display,
struct intel_dsb *dsb,
enum pipe pipe, int id, int set)
{
int i;
intel_de_write_dsb(display, dsb,
GLK_PS_COEF_INDEX_SET(pipe, id, set),
PS_COEF_INDEX_AUTO_INC);
for (i = 0; i < 17 * 7; i += 2) {
u32 tmp;
int t;
t = glk_coef_tap(i);
tmp = glk_nearest_filter_coef(t);
t = glk_coef_tap(i + 1);
tmp |= glk_nearest_filter_coef(t) << 16;
intel_de_write_dsb(display, dsb,
GLK_PS_COEF_DATA_SET(pipe, id, set), tmp);
}
intel_de_write_dsb(display, dsb,
GLK_PS_COEF_INDEX_SET(pipe, id, set), 0);
}
static u32 skl_scaler_get_filter_select(enum drm_scaling_filter filter)
{
if (filter == DRM_SCALING_FILTER_NEAREST_NEIGHBOR)
return (PS_FILTER_PROGRAMMED |
PS_Y_VERT_FILTER_SELECT(0) |
PS_Y_HORZ_FILTER_SELECT(0) |
PS_UV_VERT_FILTER_SELECT(0) |
PS_UV_HORZ_FILTER_SELECT(0));
return PS_FILTER_MEDIUM;
}
static void skl_scaler_setup_filter(struct intel_display *display,
struct intel_dsb *dsb, enum pipe pipe,
int id, int set, enum drm_scaling_filter filter)
{
switch (filter) {
case DRM_SCALING_FILTER_DEFAULT:
break;
case DRM_SCALING_FILTER_NEAREST_NEIGHBOR:
glk_program_nearest_filter_coefs(display, dsb, pipe, id, set);
break;
default:
MISSING_CASE(filter);
}
}
void skl_pfit_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
const struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
u16 uv_rgb_hphase, uv_rgb_vphase;
enum pipe pipe = crtc->pipe;
int width = drm_rect_width(dst);
int height = drm_rect_height(dst);
int x = dst->x1;
int y = dst->y1;
int hscale, vscale;
struct drm_rect src;
int id;
u32 ps_ctrl;
if (!crtc_state->pch_pfit.enabled)
return;
if (drm_WARN_ON(display->drm,
crtc_state->scaler_state.scaler_id < 0))
return;
drm_rect_init(&src, 0, 0,
drm_rect_width(&crtc_state->pipe_src) << 16,
drm_rect_height(&crtc_state->pipe_src) << 16);
hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX);
vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX);
uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
id = scaler_state->scaler_id;
ps_ctrl = PS_SCALER_EN | PS_BINDING_PIPE | scaler_state->scalers[id].mode |
skl_scaler_get_filter_select(crtc_state->hw.scaling_filter);
trace_intel_pipe_scaler_update_arm(crtc, id, x, y, width, height);
skl_scaler_setup_filter(display, NULL, pipe, id, 0,
crtc_state->hw.scaling_filter);
intel_de_write_fw(display, SKL_PS_CTRL(pipe, id), ps_ctrl);
intel_de_write_fw(display, SKL_PS_VPHASE(pipe, id),
PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
intel_de_write_fw(display, SKL_PS_HPHASE(pipe, id),
PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
intel_de_write_fw(display, SKL_PS_WIN_POS(pipe, id),
PS_WIN_XPOS(x) | PS_WIN_YPOS(y));
intel_de_write_fw(display, SKL_PS_WIN_SZ(pipe, id),
PS_WIN_XSIZE(width) | PS_WIN_YSIZE(height));
}
void
skl_program_plane_scaler(struct intel_dsb *dsb,
struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_display *display = to_intel_display(plane);
const struct drm_framebuffer *fb = plane_state->hw.fb;
enum pipe pipe = plane->pipe;
int scaler_id = plane_state->scaler_id;
const struct intel_scaler *scaler =
&crtc_state->scaler_state.scalers[scaler_id];
int crtc_x = plane_state->uapi.dst.x1;
int crtc_y = plane_state->uapi.dst.y1;
u32 crtc_w = drm_rect_width(&plane_state->uapi.dst);
u32 crtc_h = drm_rect_height(&plane_state->uapi.dst);
u16 y_hphase, uv_rgb_hphase;
u16 y_vphase, uv_rgb_vphase;
int hscale, vscale;
u32 ps_ctrl;
hscale = drm_rect_calc_hscale(&plane_state->uapi.src,
&plane_state->uapi.dst,
0, INT_MAX);
vscale = drm_rect_calc_vscale(&plane_state->uapi.src,
&plane_state->uapi.dst,
0, INT_MAX);
/* TODO: handle sub-pixel coordinates */
if (intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) &&
!icl_is_hdr_plane(display, plane->id)) {
y_hphase = skl_scaler_calc_phase(1, hscale, false);
y_vphase = skl_scaler_calc_phase(1, vscale, false);
/* MPEG2 chroma siting convention */
uv_rgb_hphase = skl_scaler_calc_phase(2, hscale, true);
uv_rgb_vphase = skl_scaler_calc_phase(2, vscale, false);
} else {
/* not used */
y_hphase = 0;
y_vphase = 0;
uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
}
ps_ctrl = PS_SCALER_EN | PS_BINDING_PLANE(plane->id) | scaler->mode |
skl_scaler_get_filter_select(plane_state->hw.scaling_filter);
trace_intel_plane_scaler_update_arm(plane, scaler_id,
crtc_x, crtc_y, crtc_w, crtc_h);
skl_scaler_setup_filter(display, dsb, pipe, scaler_id, 0,
plane_state->hw.scaling_filter);
intel_de_write_dsb(display, dsb, SKL_PS_CTRL(pipe, scaler_id),
ps_ctrl);
intel_de_write_dsb(display, dsb, SKL_PS_VPHASE(pipe, scaler_id),
PS_Y_PHASE(y_vphase) | PS_UV_RGB_PHASE(uv_rgb_vphase));
intel_de_write_dsb(display, dsb, SKL_PS_HPHASE(pipe, scaler_id),
PS_Y_PHASE(y_hphase) | PS_UV_RGB_PHASE(uv_rgb_hphase));
intel_de_write_dsb(display, dsb, SKL_PS_WIN_POS(pipe, scaler_id),
PS_WIN_XPOS(crtc_x) | PS_WIN_YPOS(crtc_y));
intel_de_write_dsb(display, dsb, SKL_PS_WIN_SZ(pipe, scaler_id),
PS_WIN_XSIZE(crtc_w) | PS_WIN_YSIZE(crtc_h));
}
static void skl_detach_scaler(struct intel_dsb *dsb,
struct intel_crtc *crtc, int id)
{
struct intel_display *display = to_intel_display(crtc);
trace_intel_scaler_disable_arm(crtc, id);
intel_de_write_dsb(display, dsb, SKL_PS_CTRL(crtc->pipe, id), 0);
intel_de_write_dsb(display, dsb, SKL_PS_WIN_POS(crtc->pipe, id), 0);
intel_de_write_dsb(display, dsb, SKL_PS_WIN_SZ(crtc->pipe, id), 0);
}
/*
* This function detaches (aka. unbinds) unused scalers in hardware
*/
void skl_detach_scalers(struct intel_dsb *dsb,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
const struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
int i;
/* loop through and disable scalers that aren't in use */
for (i = 0; i < crtc->num_scalers; i++) {
if (!scaler_state->scalers[i].in_use)
skl_detach_scaler(dsb, crtc, i);
}
}
void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
int i;
for (i = 0; i < crtc->num_scalers; i++)
skl_detach_scaler(NULL, crtc, i);
}
void skl_scaler_get_config(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
int id = -1;
int i;
/* find scaler attached to this pipe */
for (i = 0; i < crtc->num_scalers; i++) {
u32 ctl, pos, size;
ctl = intel_de_read(display, SKL_PS_CTRL(crtc->pipe, i));
if ((ctl & (PS_SCALER_EN | PS_BINDING_MASK)) != (PS_SCALER_EN | PS_BINDING_PIPE))
continue;
id = i;
crtc_state->pch_pfit.enabled = true;
pos = intel_de_read(display, SKL_PS_WIN_POS(crtc->pipe, i));
size = intel_de_read(display, SKL_PS_WIN_SZ(crtc->pipe, i));
drm_rect_init(&crtc_state->pch_pfit.dst,
REG_FIELD_GET(PS_WIN_XPOS_MASK, pos),
REG_FIELD_GET(PS_WIN_YPOS_MASK, pos),
REG_FIELD_GET(PS_WIN_XSIZE_MASK, size),
REG_FIELD_GET(PS_WIN_YSIZE_MASK, size));
scaler_state->scalers[i].in_use = true;
break;
}
scaler_state->scaler_id = id;
if (id >= 0)
scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
else
scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
}