linux/drivers/gpu/drm/i915/display/skl_scaler.c

926 lines
28 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <drm/drm_print.h>
#include "i915_utils.h"
#include "intel_de.h"
#include "intel_display_regs.h"
#include "intel_display_trace.h"
#include "intel_display_types.h"
drm/i915: Add a table with a descriptor for all i915 modifiers Add a table describing all the framebuffer modifiers used by i915 at one place. This has the benefit of deduplicating the listing of supported modifiers for each platform and checking the support of these modifiers on a given plane. This also simplifies in a similar way getting some attribute for a modifier, for instance checking if the modifier is a CCS modifier type. While at it drop the cursor plane filtering from skl_plane_has_rc_ccs(), as the cursor plane is registered with DRM core elsewhere. v1: Unchanged. v2: - Keep the plane caps calculation in the plane code and pass an enum with these caps to intel_fb_get_modifiers(). (Ville) - Get the modifiers calling intel_fb_get_modifiers() in i9xx_plane.c as well. v3: - s/.id/.modifier/ (Ville) - Keep modifier_desc vs. plane_cap filter conditions consistent. (Ville) - Drop redundant cursor plane check from skl_plane_has_rc_ccs(). (Ville) - Use from, until display version fields in modifier_desc instead of a mask. (Jani) - Unexport struct intel_modifier_desc, separate its decl and init. (Jani) - Remove enum pipe, plane_id forward decls from intel_fb.h, which are not needed after v2. v4: - Reuse IS_DISPLAY_VER() instead of open-coding it. (Jani) - Preserve the current modifier order exposed to user space. (Ville) v5: Use }, { on one line to seperate the descriptor array elements. (Jani) Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Juha-Pekka Heikkila <juhapekka.heikkila@gmail.com> Cc: Jani Nikula <jani.nikula@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Juha-Pekka Heikkila <juhapekka.heikkila@gmail.com> (v3) Link: https://patchwork.freedesktop.org/patch/msgid/20211020195138.1841242-2-imre.deak@intel.com
2021-10-20 22:51:28 +03:00
#include "intel_fb.h"
#include "skl_scaler.h"
#include "skl_universal_plane.h"
/*
* The hardware phase 0.0 refers to the center of the pixel.
* We want to start from the top/left edge which is phase
* -0.5. That matches how the hardware calculates the scaling
* factors (from top-left of the first pixel to bottom-right
* of the last pixel, as opposed to the pixel centers).
*
* For 4:2:0 subsampled chroma planes we obviously have to
* adjust that so that the chroma sample position lands in
* the right spot.
*
* Note that for packed YCbCr 4:2:2 formats there is no way to
* control chroma siting. The hardware simply replicates the
* chroma samples for both of the luma samples, and thus we don't
* actually get the expected MPEG2 chroma siting convention :(
* The same behaviour is observed on pre-SKL platforms as well.
*
* Theory behind the formula (note that we ignore sub-pixel
* source coordinates):
* s = source sample position
* d = destination sample position
*
* Downscaling 4:1:
* -0.5
* | 0.0
* | | 1.5 (initial phase)
* | | |
* v v v
* | s | s | s | s |
* | d |
*
* Upscaling 1:4:
* -0.5
* | -0.375 (initial phase)
* | | 0.0
* | | |
* v v v
* | s |
* | d | d | d | d |
*/
static u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
{
int phase = -0x8000;
u16 trip = 0;
if (chroma_cosited)
phase += (sub - 1) * 0x8000 / sub;
phase += scale / (2 * sub);
/*
* Hardware initial phase limited to [-0.5:1.5].
* Since the max hardware scale factor is 3.0, we
* should never actually exceed 1.0 here.
*/
WARN_ON(phase < -0x8000 || phase > 0x18000);
if (phase < 0)
phase = 0x10000 + phase;
else
trip = PS_PHASE_TRIP;
return ((phase >> 2) & PS_PHASE_MASK) | trip;
}
static void skl_scaler_min_src_size(const struct drm_format_info *format,
u64 modifier, int *min_w, int *min_h)
{
if (format && intel_format_info_is_yuv_semiplanar(format, modifier)) {
*min_w = 16;
*min_h = 16;
} else {
*min_w = 8;
*min_h = 8;
}
}
static void skl_scaler_max_src_size(struct intel_crtc *crtc,
int *max_w, int *max_h)
{
struct intel_display *display = to_intel_display(crtc);
if (DISPLAY_VER(display) >= 14) {
*max_w = 4096;
*max_h = 8192;
} else if (DISPLAY_VER(display) >= 12) {
*max_w = 5120;
*max_h = 8192;
} else if (DISPLAY_VER(display) == 11) {
*max_w = 5120;
*max_h = 4096;
} else {
*max_w = 4096;
*max_h = 4096;
}
}
static void skl_scaler_min_dst_size(int *min_w, int *min_h)
{
*min_w = 8;
*min_h = 8;
}
static void skl_scaler_max_dst_size(struct intel_crtc *crtc,
int *max_w, int *max_h)
{
struct intel_display *display = to_intel_display(crtc);
if (DISPLAY_VER(display) >= 12) {
*max_w = 8192;
*max_h = 8192;
} else if (DISPLAY_VER(display) == 11) {
*max_w = 5120;
*max_h = 4096;
} else {
*max_w = 4096;
*max_h = 4096;
}
}
static int
skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
unsigned int scaler_user, int *scaler_id,
int src_w, int src_h, int dst_w, int dst_h,
const struct drm_format_info *format,
u64 modifier, bool need_scaler)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
const struct drm_display_mode *adjusted_mode =
&crtc_state->hw.adjusted_mode;
int pipe_src_w = drm_rect_width(&crtc_state->pipe_src);
int pipe_src_h = drm_rect_height(&crtc_state->pipe_src);
int min_src_w, min_src_h, min_dst_w, min_dst_h;
int max_src_w, max_src_h, max_dst_w, max_dst_h;
/*
* Src coordinates are already rotated by 270 degrees for
* the 90/270 degree plane rotation cases (to match the
* GTT mapping), hence no need to account for rotation here.
*/
if (src_w != dst_w || src_h != dst_h)
need_scaler = true;
/*
* Scaling/fitting not supported in IF-ID mode in GEN9+
* TODO: Interlace fetch mode doesn't support YUV420 planar formats.
* Once NV12 is enabled, handle it here while allocating scaler
* for NV12.
*/
if (DISPLAY_VER(display) >= 9 && crtc_state->hw.enable &&
need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] scaling not supported with IF-ID mode\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
/*
* if plane is being disabled or scaler is no more required or force detach
* - free scaler binded to this plane/crtc
* - in order to do this, update crtc->scaler_usage
*
* Here scaler state in crtc_state is set free so that
* scaler can be assigned to other user. Actual register
* update to free the scaler is done in plane/panel-fit programming.
* For this purpose crtc/plane_state->scaler_id isn't reset here.
*/
if (force_detach || !need_scaler) {
if (*scaler_id >= 0) {
scaler_state->scaler_users &= ~(1 << scaler_user);
scaler_state->scalers[*scaler_id].in_use = false;
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] scaler_user index %u.%u: "
"Staged freeing scaler id %d scaler_users = 0x%x\n",
crtc->base.base.id, crtc->base.name,
crtc->pipe, scaler_user, *scaler_id,
scaler_state->scaler_users);
*scaler_id = -1;
}
return 0;
}
skl_scaler_min_src_size(format, modifier, &min_src_w, &min_src_h);
skl_scaler_max_src_size(crtc, &max_src_w, &max_src_h);
skl_scaler_min_dst_size(&min_dst_w, &min_dst_h);
skl_scaler_max_dst_size(crtc, &max_dst_w, &max_dst_h);
/* range checks */
if (src_w < min_src_w || src_h < min_src_h ||
dst_w < min_dst_w || dst_h < min_dst_h ||
src_w > max_src_w || src_h > max_src_h ||
dst_w > max_dst_w || dst_h > max_dst_h) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] scaler_user index %u.%u: src %ux%u dst %ux%u "
"size is out of scaler range\n",
crtc->base.base.id, crtc->base.name,
crtc->pipe, scaler_user, src_w, src_h,
dst_w, dst_h);
return -EINVAL;
}
/*
* The pipe scaler does not use all the bits of PIPESRC, at least
* on the earlier platforms. So even when we're scaling a plane
* the *pipe* source size must not be too large. For simplicity
* we assume the limits match the scaler destination size limits.
* Might not be 100% accurate on all platforms, but good enough for
* now.
*/
if (pipe_src_w > max_dst_w || pipe_src_h > max_dst_h) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] scaler_user index %u.%u: pipe src size %ux%u "
"is out of scaler range\n",
crtc->base.base.id, crtc->base.name,
crtc->pipe, scaler_user, pipe_src_w, pipe_src_h);
return -EINVAL;
}
/* mark this plane as a scaler user in crtc_state */
scaler_state->scaler_users |= (1 << scaler_user);
drm_dbg_kms(display->drm, "[CRTC:%d:%s] scaler_user index %u.%u: "
"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
crtc->base.base.id, crtc->base.name,
crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
scaler_state->scaler_users);
return 0;
}
int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state)
{
const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
int width, height;
if (crtc_state->pch_pfit.enabled) {
width = drm_rect_width(&crtc_state->pch_pfit.dst);
height = drm_rect_height(&crtc_state->pch_pfit.dst);
} else {
width = pipe_mode->crtc_hdisplay;
height = pipe_mode->crtc_vdisplay;
}
return skl_update_scaler(crtc_state, !crtc_state->hw.active,
SKL_CRTC_INDEX,
&crtc_state->scaler_state.scaler_id,
drm_rect_width(&crtc_state->pipe_src),
drm_rect_height(&crtc_state->pipe_src),
width, height, NULL, 0,
crtc_state->pch_pfit.enabled);
}
/**
* skl_update_scaler_plane - Stages update to scaler state for a given plane.
* @crtc_state: crtc's scaler state
* @plane_state: atomic plane state to update
*
* Return
* 0 - scaler_usage updated successfully
* error - requested scaling cannot be supported or other error condition
*/
int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state)
{
struct intel_display *display = to_intel_display(plane_state);
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_framebuffer *fb = plane_state->hw.fb;
bool force_detach = !fb || !plane_state->uapi.visible;
bool need_scaler = false;
/* Pre-gen11 and SDR planes always need a scaler for planar formats. */
if (!icl_is_hdr_plane(display, plane->id) &&
fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
need_scaler = true;
return skl_update_scaler(crtc_state, force_detach,
drm_plane_index(&plane->base),
&plane_state->scaler_id,
drm_rect_width(&plane_state->uapi.src) >> 16,
drm_rect_height(&plane_state->uapi.src) >> 16,
drm_rect_width(&plane_state->uapi.dst),
drm_rect_height(&plane_state->uapi.dst),
fb ? fb->format : NULL,
fb ? fb->modifier : 0,
need_scaler);
}
static int intel_allocate_scaler(struct intel_crtc_scaler_state *scaler_state,
struct intel_crtc *crtc)
{
int i;
for (i = 0; i < crtc->num_scalers; i++) {
if (scaler_state->scalers[i].in_use)
continue;
scaler_state->scalers[i].in_use = true;
return i;
}
return -1;
}
static void
calculate_max_scale(struct intel_crtc *crtc,
bool is_yuv_semiplanar,
int scaler_id,
int *max_hscale, int *max_vscale)
{
struct intel_display *display = to_intel_display(crtc);
/*
* FIXME: When two scalers are needed, but only one of
* them needs to downscale, we should make sure that
* the one that needs downscaling support is assigned
* as the first scaler, so we don't reject downscaling
* unnecessarily.
*/
if (DISPLAY_VER(display) >= 14) {
/*
* On versions 14 and up, only the first
* scaler supports a vertical scaling factor
* of more than 1.0, while a horizontal
* scaling factor of 3.0 is supported.
*/
*max_hscale = 0x30000 - 1;
if (scaler_id == 0)
*max_vscale = 0x30000 - 1;
else
*max_vscale = 0x10000;
} else if (DISPLAY_VER(display) >= 10 || !is_yuv_semiplanar) {
*max_hscale = 0x30000 - 1;
*max_vscale = 0x30000 - 1;
} else {
*max_hscale = 0x20000 - 1;
*max_vscale = 0x20000 - 1;
}
}
static int intel_atomic_setup_scaler(struct intel_crtc_state *crtc_state,
int num_scalers_need, struct intel_crtc *crtc,
const char *name, int idx,
struct intel_plane_state *plane_state,
int *scaler_id)
{
struct intel_display *display = to_intel_display(crtc);
struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
u32 mode;
int hscale = 0;
int vscale = 0;
if (*scaler_id < 0)
*scaler_id = intel_allocate_scaler(scaler_state, crtc);
if (drm_WARN(display->drm, *scaler_id < 0,
"Cannot find scaler for %s:%d\n", name, idx))
return -EINVAL;
/* set scaler mode */
if (plane_state && plane_state->hw.fb &&
plane_state->hw.fb->format->is_yuv &&
plane_state->hw.fb->format->num_planes > 1) {
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
if (DISPLAY_VER(display) == 9) {
mode = SKL_PS_SCALER_MODE_NV12;
} else if (icl_is_hdr_plane(display, plane->id)) {
/*
* On gen11+'s HDR planes we only use the scaler for
* scaling. They have a dedicated chroma upsampler, so
* we don't need the scaler to upsample the UV plane.
*/
mode = PS_SCALER_MODE_NORMAL;
} else {
struct intel_plane *linked =
plane_state->planar_linked_plane;
mode = PS_SCALER_MODE_PLANAR;
if (linked)
mode |= PS_BINDING_Y_PLANE(linked->id);
}
} else if (DISPLAY_VER(display) >= 10) {
mode = PS_SCALER_MODE_NORMAL;
} else if (num_scalers_need == 1 && crtc->num_scalers > 1) {
/*
* when only 1 scaler is in use on a pipe with 2 scalers
* scaler 0 operates in high quality (HQ) mode.
* In this case use scaler 0 to take advantage of HQ mode
*/
scaler_state->scalers[*scaler_id].in_use = false;
*scaler_id = 0;
scaler_state->scalers[0].in_use = true;
mode = SKL_PS_SCALER_MODE_HQ;
} else {
mode = SKL_PS_SCALER_MODE_DYN;
}
if (plane_state && plane_state->hw.fb) {
const struct drm_framebuffer *fb = plane_state->hw.fb;
const struct drm_rect *src = &plane_state->uapi.src;
const struct drm_rect *dst = &plane_state->uapi.dst;
int max_hscale, max_vscale;
calculate_max_scale(crtc,
intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier),
*scaler_id, &max_hscale, &max_vscale);
/*
* FIXME: We should change the if-else block above to
* support HQ vs dynamic scaler properly.
*/
/* Check if required scaling is within limits */
hscale = drm_rect_calc_hscale(src, dst, 1, max_hscale);
vscale = drm_rect_calc_vscale(src, dst, 1, max_vscale);
if (hscale < 0 || vscale < 0) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] scaler %d doesn't support required plane scaling\n",
crtc->base.base.id, crtc->base.name, *scaler_id);
drm_rect_debug_print("src: ", src, true);
drm_rect_debug_print("dst: ", dst, false);
return -EINVAL;
}
}
if (crtc_state->pch_pfit.enabled) {
struct drm_rect src;
int max_hscale, max_vscale;
drm_rect_init(&src, 0, 0,
drm_rect_width(&crtc_state->pipe_src) << 16,
drm_rect_height(&crtc_state->pipe_src) << 16);
calculate_max_scale(crtc, 0, *scaler_id,
&max_hscale, &max_vscale);
/*
* When configured for Pipe YUV 420 encoding for port output,
* limit downscaling to less than 1.5 (source/destination) in
* the horizontal direction and 1.0 in the vertical direction.
*/
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
max_hscale = 0x18000 - 1;
max_vscale = 0x10000;
}
hscale = drm_rect_calc_hscale(&src, &crtc_state->pch_pfit.dst,
0, max_hscale);
vscale = drm_rect_calc_vscale(&src, &crtc_state->pch_pfit.dst,
0, max_vscale);
if (hscale < 0 || vscale < 0) {
drm_dbg_kms(display->drm,
"Scaler %d doesn't support required pipe scaling\n",
*scaler_id);
drm_rect_debug_print("src: ", &src, true);
drm_rect_debug_print("dst: ", &crtc_state->pch_pfit.dst, false);
return -EINVAL;
}
}
scaler_state->scalers[*scaler_id].hscale = hscale;
scaler_state->scalers[*scaler_id].vscale = vscale;
drm_dbg_kms(display->drm, "[CRTC:%d:%s] attached scaler id %u.%u to %s:%d\n",
crtc->base.base.id, crtc->base.name,
crtc->pipe, *scaler_id, name, idx);
scaler_state->scalers[*scaler_id].mode = mode;
return 0;
}
static int setup_crtc_scaler(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
return intel_atomic_setup_scaler(crtc_state,
hweight32(scaler_state->scaler_users),
crtc, "CRTC", crtc->base.base.id,
NULL, &scaler_state->scaler_id);
}
static int setup_plane_scaler(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_plane *plane)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
struct intel_plane_state *plane_state;
/* plane on different crtc cannot be a scaler user of this crtc */
if (drm_WARN_ON(display->drm, plane->pipe != crtc->pipe))
return 0;
plane_state = intel_atomic_get_new_plane_state(state, plane);
/*
* GLK+ scalers don't have a HQ mode so it
* isn't necessary to change between HQ and dyn mode
* on those platforms.
*/
if (!plane_state && DISPLAY_VER(display) >= 10)
return 0;
plane_state = intel_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
return intel_atomic_setup_scaler(crtc_state,
hweight32(scaler_state->scaler_users),
crtc, "PLANE", plane->base.base.id,
plane_state, &plane_state->scaler_id);
}
/**
* intel_atomic_setup_scalers() - setup scalers for crtc per staged requests
* @state: atomic state
* @crtc: crtc
*
* This function sets up scalers based on staged scaling requests for
* a @crtc and its planes. It is called from crtc level check path. If request
* is a supportable request, it attaches scalers to requested planes and crtc.
*
* This function takes into account the current scaler(s) in use by any planes
* not being part of this atomic state
*
* Returns:
* 0 - scalers were setup successfully
* error code - otherwise
*/
int intel_atomic_setup_scalers(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(crtc);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
int num_scalers_need;
int i;
num_scalers_need = hweight32(scaler_state->scaler_users);
/*
* High level flow:
* - staged scaler requests are already in scaler_state->scaler_users
* - check whether staged scaling requests can be supported
* - add planes using scalers that aren't in current transaction
* - assign scalers to requested users
* - as part of plane commit, scalers will be committed
* (i.e., either attached or detached) to respective planes in hw
* - as part of crtc_commit, scaler will be either attached or detached
* to crtc in hw
*/
/* fail if required scalers > available scalers */
if (num_scalers_need > crtc->num_scalers) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] too many scaling requests %d > %d\n",
crtc->base.base.id, crtc->base.name,
num_scalers_need, crtc->num_scalers);
return -EINVAL;
}
/* walkthrough scaler_users bits and start assigning scalers */
for (i = 0; i < sizeof(scaler_state->scaler_users) * 8; i++) {
int ret;
/* skip if scaler not required */
if (!(scaler_state->scaler_users & (1 << i)))
continue;
if (i == SKL_CRTC_INDEX) {
ret = setup_crtc_scaler(state, crtc);
if (ret)
return ret;
} else {
struct intel_plane *plane =
to_intel_plane(drm_plane_from_index(display->drm, i));
ret = setup_plane_scaler(state, crtc, plane);
if (ret)
return ret;
}
}
return 0;
}
static int glk_coef_tap(int i)
{
return i % 7;
}
static u16 glk_nearest_filter_coef(int t)
{
return t == 3 ? 0x0800 : 0x3000;
}
/*
* Theory behind setting nearest-neighbor integer scaling:
*
* 17 phase of 7 taps requires 119 coefficients in 60 dwords per set.
* The letter represents the filter tap (D is the center tap) and the number
* represents the coefficient set for a phase (0-16).
*
* +------------+--------------------------+--------------------------+
* |Index value | Data value coefficient 1 | Data value coefficient 2 |
* +------------+--------------------------+--------------------------+
* | 00h | B0 | A0 |
* +------------+--------------------------+--------------------------+
* | 01h | D0 | C0 |
* +------------+--------------------------+--------------------------+
* | 02h | F0 | E0 |
* +------------+--------------------------+--------------------------+
* | 03h | A1 | G0 |
* +------------+--------------------------+--------------------------+
* | 04h | C1 | B1 |
* +------------+--------------------------+--------------------------+
* | ... | ... | ... |
* +------------+--------------------------+--------------------------+
* | 38h | B16 | A16 |
* +------------+--------------------------+--------------------------+
* | 39h | D16 | C16 |
* +------------+--------------------------+--------------------------+
* | 3Ah | F16 | C16 |
* +------------+--------------------------+--------------------------+
* | 3Bh | Reserved | G16 |
* +------------+--------------------------+--------------------------+
*
* To enable nearest-neighbor scaling: program scaler coefficients with
* the center tap (Dxx) values set to 1 and all other values set to 0 as per
* SCALER_COEFFICIENT_FORMAT
*
*/
static void glk_program_nearest_filter_coefs(struct intel_display *display,
struct intel_dsb *dsb,
enum pipe pipe, int id, int set)
{
int i;
intel_de_write_dsb(display, dsb,
GLK_PS_COEF_INDEX_SET(pipe, id, set),
PS_COEF_INDEX_AUTO_INC);
for (i = 0; i < 17 * 7; i += 2) {
u32 tmp;
int t;
t = glk_coef_tap(i);
tmp = glk_nearest_filter_coef(t);
t = glk_coef_tap(i + 1);
tmp |= glk_nearest_filter_coef(t) << 16;
intel_de_write_dsb(display, dsb,
GLK_PS_COEF_DATA_SET(pipe, id, set), tmp);
}
intel_de_write_dsb(display, dsb,
GLK_PS_COEF_INDEX_SET(pipe, id, set), 0);
}
static u32 skl_scaler_get_filter_select(enum drm_scaling_filter filter)
{
if (filter == DRM_SCALING_FILTER_NEAREST_NEIGHBOR)
return (PS_FILTER_PROGRAMMED |
PS_Y_VERT_FILTER_SELECT(0) |
PS_Y_HORZ_FILTER_SELECT(0) |
PS_UV_VERT_FILTER_SELECT(0) |
PS_UV_HORZ_FILTER_SELECT(0));
return PS_FILTER_MEDIUM;
}
static void skl_scaler_setup_filter(struct intel_display *display,
struct intel_dsb *dsb, enum pipe pipe,
int id, int set, enum drm_scaling_filter filter)
{
switch (filter) {
case DRM_SCALING_FILTER_DEFAULT:
break;
case DRM_SCALING_FILTER_NEAREST_NEIGHBOR:
glk_program_nearest_filter_coefs(display, dsb, pipe, id, set);
break;
default:
MISSING_CASE(filter);
}
}
void skl_pfit_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
const struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
u16 uv_rgb_hphase, uv_rgb_vphase;
enum pipe pipe = crtc->pipe;
int width = drm_rect_width(dst);
int height = drm_rect_height(dst);
int x = dst->x1;
int y = dst->y1;
int hscale, vscale;
struct drm_rect src;
int id;
u32 ps_ctrl;
if (!crtc_state->pch_pfit.enabled)
return;
if (drm_WARN_ON(display->drm,
crtc_state->scaler_state.scaler_id < 0))
return;
drm_rect_init(&src, 0, 0,
drm_rect_width(&crtc_state->pipe_src) << 16,
drm_rect_height(&crtc_state->pipe_src) << 16);
hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX);
vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX);
uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
id = scaler_state->scaler_id;
ps_ctrl = PS_SCALER_EN | PS_BINDING_PIPE | scaler_state->scalers[id].mode |
skl_scaler_get_filter_select(crtc_state->hw.scaling_filter);
trace_intel_pipe_scaler_update_arm(crtc, id, x, y, width, height);
skl_scaler_setup_filter(display, NULL, pipe, id, 0,
crtc_state->hw.scaling_filter);
intel_de_write_fw(display, SKL_PS_CTRL(pipe, id), ps_ctrl);
intel_de_write_fw(display, SKL_PS_VPHASE(pipe, id),
PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
intel_de_write_fw(display, SKL_PS_HPHASE(pipe, id),
PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
intel_de_write_fw(display, SKL_PS_WIN_POS(pipe, id),
PS_WIN_XPOS(x) | PS_WIN_YPOS(y));
intel_de_write_fw(display, SKL_PS_WIN_SZ(pipe, id),
PS_WIN_XSIZE(width) | PS_WIN_YSIZE(height));
}
void
skl_program_plane_scaler(struct intel_dsb *dsb,
struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_display *display = to_intel_display(plane);
const struct drm_framebuffer *fb = plane_state->hw.fb;
enum pipe pipe = plane->pipe;
int scaler_id = plane_state->scaler_id;
const struct intel_scaler *scaler =
&crtc_state->scaler_state.scalers[scaler_id];
int crtc_x = plane_state->uapi.dst.x1;
int crtc_y = plane_state->uapi.dst.y1;
u32 crtc_w = drm_rect_width(&plane_state->uapi.dst);
u32 crtc_h = drm_rect_height(&plane_state->uapi.dst);
u16 y_hphase, uv_rgb_hphase;
u16 y_vphase, uv_rgb_vphase;
int hscale, vscale;
u32 ps_ctrl;
hscale = drm_rect_calc_hscale(&plane_state->uapi.src,
&plane_state->uapi.dst,
0, INT_MAX);
vscale = drm_rect_calc_vscale(&plane_state->uapi.src,
&plane_state->uapi.dst,
0, INT_MAX);
/* TODO: handle sub-pixel coordinates */
if (intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) &&
!icl_is_hdr_plane(display, plane->id)) {
y_hphase = skl_scaler_calc_phase(1, hscale, false);
y_vphase = skl_scaler_calc_phase(1, vscale, false);
/* MPEG2 chroma siting convention */
uv_rgb_hphase = skl_scaler_calc_phase(2, hscale, true);
uv_rgb_vphase = skl_scaler_calc_phase(2, vscale, false);
} else {
/* not used */
y_hphase = 0;
y_vphase = 0;
uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
}
ps_ctrl = PS_SCALER_EN | PS_BINDING_PLANE(plane->id) | scaler->mode |
skl_scaler_get_filter_select(plane_state->hw.scaling_filter);
trace_intel_plane_scaler_update_arm(plane, scaler_id,
crtc_x, crtc_y, crtc_w, crtc_h);
skl_scaler_setup_filter(display, dsb, pipe, scaler_id, 0,
plane_state->hw.scaling_filter);
intel_de_write_dsb(display, dsb, SKL_PS_CTRL(pipe, scaler_id),
ps_ctrl);
intel_de_write_dsb(display, dsb, SKL_PS_VPHASE(pipe, scaler_id),
PS_Y_PHASE(y_vphase) | PS_UV_RGB_PHASE(uv_rgb_vphase));
intel_de_write_dsb(display, dsb, SKL_PS_HPHASE(pipe, scaler_id),
PS_Y_PHASE(y_hphase) | PS_UV_RGB_PHASE(uv_rgb_hphase));
intel_de_write_dsb(display, dsb, SKL_PS_WIN_POS(pipe, scaler_id),
PS_WIN_XPOS(crtc_x) | PS_WIN_YPOS(crtc_y));
intel_de_write_dsb(display, dsb, SKL_PS_WIN_SZ(pipe, scaler_id),
PS_WIN_XSIZE(crtc_w) | PS_WIN_YSIZE(crtc_h));
}
static void skl_detach_scaler(struct intel_dsb *dsb,
struct intel_crtc *crtc, int id)
{
struct intel_display *display = to_intel_display(crtc);
trace_intel_scaler_disable_arm(crtc, id);
intel_de_write_dsb(display, dsb, SKL_PS_CTRL(crtc->pipe, id), 0);
intel_de_write_dsb(display, dsb, SKL_PS_WIN_POS(crtc->pipe, id), 0);
intel_de_write_dsb(display, dsb, SKL_PS_WIN_SZ(crtc->pipe, id), 0);
}
/*
* This function detaches (aka. unbinds) unused scalers in hardware
*/
void skl_detach_scalers(struct intel_dsb *dsb,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
const struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
int i;
/* loop through and disable scalers that aren't in use */
for (i = 0; i < crtc->num_scalers; i++) {
if (!scaler_state->scalers[i].in_use)
skl_detach_scaler(dsb, crtc, i);
}
}
void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
int i;
for (i = 0; i < crtc->num_scalers; i++)
skl_detach_scaler(NULL, crtc, i);
}
void skl_scaler_get_config(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
int id = -1;
int i;
/* find scaler attached to this pipe */
for (i = 0; i < crtc->num_scalers; i++) {
u32 ctl, pos, size;
ctl = intel_de_read(display, SKL_PS_CTRL(crtc->pipe, i));
if ((ctl & (PS_SCALER_EN | PS_BINDING_MASK)) != (PS_SCALER_EN | PS_BINDING_PIPE))
continue;
id = i;
crtc_state->pch_pfit.enabled = true;
pos = intel_de_read(display, SKL_PS_WIN_POS(crtc->pipe, i));
size = intel_de_read(display, SKL_PS_WIN_SZ(crtc->pipe, i));
drm_rect_init(&crtc_state->pch_pfit.dst,
REG_FIELD_GET(PS_WIN_XPOS_MASK, pos),
REG_FIELD_GET(PS_WIN_YPOS_MASK, pos),
REG_FIELD_GET(PS_WIN_XSIZE_MASK, size),
REG_FIELD_GET(PS_WIN_YSIZE_MASK, size));
scaler_state->scalers[i].in_use = true;
break;
}
scaler_state->scaler_id = id;
if (id >= 0)
scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
else
scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
}