linux/drivers/crypto/aspeed/aspeed-hace-hash.c
Herbert Xu fa13f1d7c7 crypto: aspeed - Fix hash fallback path typo
Fix typo in the fallback code path.

Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202506231830.us4hiwlZ-lkp@intel.com/
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2025-06-26 12:56:26 +08:00

826 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2021 Aspeed Technology Inc.
*/
#include "aspeed-hace.h"
#include <crypto/engine.h>
#include <crypto/internal/hash.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/scatterlist.h>
#include <linux/string.h>
#ifdef CONFIG_CRYPTO_DEV_ASPEED_DEBUG
#define AHASH_DBG(h, fmt, ...) \
dev_info((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
#else
#define AHASH_DBG(h, fmt, ...) \
dev_dbg((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
#endif
/* Initialization Vectors for SHA-family */
static const __be32 sha1_iv[8] = {
cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
cpu_to_be32(SHA1_H4), 0, 0, 0
};
static const __be32 sha224_iv[8] = {
cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
};
static const __be32 sha256_iv[8] = {
cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
};
static const __be64 sha384_iv[8] = {
cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7)
};
static const __be64 sha512_iv[8] = {
cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7)
};
static int aspeed_sham_init(struct ahash_request *req);
static int aspeed_ahash_req_update(struct aspeed_hace_dev *hace_dev);
static int aspeed_sham_export(struct ahash_request *req, void *out)
{
struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
union {
u8 *u8;
u64 *u64;
} p = { .u8 = out };
memcpy(out, rctx->digest, rctx->ivsize);
p.u8 += rctx->ivsize;
put_unaligned(rctx->digcnt[0], p.u64++);
if (rctx->ivsize == 64)
put_unaligned(rctx->digcnt[1], p.u64);
return 0;
}
static int aspeed_sham_import(struct ahash_request *req, const void *in)
{
struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
union {
const u8 *u8;
const u64 *u64;
} p = { .u8 = in };
int err;
err = aspeed_sham_init(req);
if (err)
return err;
memcpy(rctx->digest, in, rctx->ivsize);
p.u8 += rctx->ivsize;
rctx->digcnt[0] = get_unaligned(p.u64++);
if (rctx->ivsize == 64)
rctx->digcnt[1] = get_unaligned(p.u64);
return 0;
}
/* The purpose of this padding is to ensure that the padded message is a
* multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
* The bit "1" is appended at the end of the message followed by
* "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
* 128 bits block (SHA384/SHA512) equals to the message length in bits
* is appended.
*
* For SHA1/SHA224/SHA256, padlen is calculated as followed:
* - if message length < 56 bytes then padlen = 56 - message length
* - else padlen = 64 + 56 - message length
*
* For SHA384/SHA512, padlen is calculated as followed:
* - if message length < 112 bytes then padlen = 112 - message length
* - else padlen = 128 + 112 - message length
*/
static int aspeed_ahash_fill_padding(struct aspeed_hace_dev *hace_dev,
struct aspeed_sham_reqctx *rctx, u8 *buf)
{
unsigned int index, padlen, bitslen;
__be64 bits[2];
AHASH_DBG(hace_dev, "rctx flags:0x%x\n", (u32)rctx->flags);
switch (rctx->flags & SHA_FLAGS_MASK) {
case SHA_FLAGS_SHA1:
case SHA_FLAGS_SHA224:
case SHA_FLAGS_SHA256:
bits[0] = cpu_to_be64(rctx->digcnt[0] << 3);
index = rctx->digcnt[0] & 0x3f;
padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
bitslen = 8;
break;
default:
bits[1] = cpu_to_be64(rctx->digcnt[0] << 3);
bits[0] = cpu_to_be64(rctx->digcnt[1] << 3 |
rctx->digcnt[0] >> 61);
index = rctx->digcnt[0] & 0x7f;
padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
bitslen = 16;
break;
}
buf[0] = 0x80;
memset(buf + 1, 0, padlen - 1);
memcpy(buf + padlen, bits, bitslen);
return padlen + bitslen;
}
static void aspeed_ahash_update_counter(struct aspeed_sham_reqctx *rctx,
unsigned int len)
{
rctx->offset += len;
rctx->digcnt[0] += len;
if (rctx->digcnt[0] < len)
rctx->digcnt[1]++;
}
/*
* Prepare DMA buffer before hardware engine
* processing.
*/
static int aspeed_ahash_dma_prepare(struct aspeed_hace_dev *hace_dev)
{
struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
struct ahash_request *req = hash_engine->req;
struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
unsigned int length, remain;
bool final = false;
length = rctx->total - rctx->offset;
remain = length - round_down(length, rctx->block_size);
AHASH_DBG(hace_dev, "length:0x%x, remain:0x%x\n", length, remain);
if (length > ASPEED_HASH_SRC_DMA_BUF_LEN)
length = ASPEED_HASH_SRC_DMA_BUF_LEN;
else if (rctx->flags & SHA_FLAGS_FINUP) {
if (round_up(length, rctx->block_size) + rctx->block_size >
ASPEED_CRYPTO_SRC_DMA_BUF_LEN)
length = round_down(length - 1, rctx->block_size);
else
final = true;
} else
length -= remain;
scatterwalk_map_and_copy(hash_engine->ahash_src_addr, rctx->src_sg,
rctx->offset, length, 0);
aspeed_ahash_update_counter(rctx, length);
if (final)
length += aspeed_ahash_fill_padding(
hace_dev, rctx, hash_engine->ahash_src_addr + length);
rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest,
SHA512_DIGEST_SIZE,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
return -ENOMEM;
}
hash_engine->src_length = length;
hash_engine->src_dma = hash_engine->ahash_src_dma_addr;
hash_engine->digest_dma = rctx->digest_dma_addr;
return 0;
}
/*
* Prepare DMA buffer as SG list buffer before
* hardware engine processing.
*/
static int aspeed_ahash_dma_prepare_sg(struct aspeed_hace_dev *hace_dev)
{
struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
struct ahash_request *req = hash_engine->req;
struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
bool final = rctx->flags & SHA_FLAGS_FINUP;
int remain, sg_len, i, max_sg_nents;
unsigned int length, offset, total;
struct aspeed_sg_list *src_list;
struct scatterlist *s;
int rc = 0;
offset = rctx->offset;
length = rctx->total - offset;
remain = final ? 0 : length - round_down(length, rctx->block_size);
length -= remain;
AHASH_DBG(hace_dev, "%s:0x%x, %s:0x%x, %s:0x%x\n",
"rctx total", rctx->total,
"length", length, "remain", remain);
sg_len = dma_map_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
DMA_TO_DEVICE);
if (!sg_len) {
dev_warn(hace_dev->dev, "dma_map_sg() src error\n");
rc = -ENOMEM;
goto end;
}
max_sg_nents = ASPEED_HASH_SRC_DMA_BUF_LEN / sizeof(*src_list) - final;
sg_len = min(sg_len, max_sg_nents);
src_list = (struct aspeed_sg_list *)hash_engine->ahash_src_addr;
rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest,
SHA512_DIGEST_SIZE,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
rc = -ENOMEM;
goto free_src_sg;
}
total = 0;
for_each_sg(rctx->src_sg, s, sg_len, i) {
u32 phy_addr = sg_dma_address(s);
u32 len = sg_dma_len(s);
if (len <= offset) {
offset -= len;
continue;
}
len -= offset;
phy_addr += offset;
offset = 0;
if (length > len)
length -= len;
else {
/* Last sg list */
len = length;
length = 0;
}
total += len;
src_list[i].phy_addr = cpu_to_le32(phy_addr);
src_list[i].len = cpu_to_le32(len);
}
if (length != 0) {
total = round_down(total, rctx->block_size);
final = false;
}
aspeed_ahash_update_counter(rctx, total);
if (final) {
int len = aspeed_ahash_fill_padding(hace_dev, rctx,
rctx->buffer);
total += len;
rctx->buffer_dma_addr = dma_map_single(hace_dev->dev,
rctx->buffer,
sizeof(rctx->buffer),
DMA_TO_DEVICE);
if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) {
dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n");
rc = -ENOMEM;
goto free_rctx_digest;
}
src_list[i].phy_addr = cpu_to_le32(rctx->buffer_dma_addr);
src_list[i].len = cpu_to_le32(len);
i++;
}
src_list[i - 1].len |= cpu_to_le32(HASH_SG_LAST_LIST);
hash_engine->src_length = total;
hash_engine->src_dma = hash_engine->ahash_src_dma_addr;
hash_engine->digest_dma = rctx->digest_dma_addr;
return 0;
free_rctx_digest:
dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
free_src_sg:
dma_unmap_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
DMA_TO_DEVICE);
end:
return rc;
}
static int aspeed_ahash_complete(struct aspeed_hace_dev *hace_dev)
{
struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
struct ahash_request *req = hash_engine->req;
struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
AHASH_DBG(hace_dev, "\n");
dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
if (rctx->total - rctx->offset >= rctx->block_size ||
(rctx->total != rctx->offset && rctx->flags & SHA_FLAGS_FINUP))
return aspeed_ahash_req_update(hace_dev);
hash_engine->flags &= ~CRYPTO_FLAGS_BUSY;
if (rctx->flags & SHA_FLAGS_FINUP)
memcpy(req->result, rctx->digest, rctx->digsize);
crypto_finalize_hash_request(hace_dev->crypt_engine_hash, req,
rctx->total - rctx->offset);
return 0;
}
/*
* Trigger hardware engines to do the math.
*/
static int aspeed_hace_ahash_trigger(struct aspeed_hace_dev *hace_dev,
aspeed_hace_fn_t resume)
{
struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
struct ahash_request *req = hash_engine->req;
struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
AHASH_DBG(hace_dev, "src_dma:%pad, digest_dma:%pad, length:%zu\n",
&hash_engine->src_dma, &hash_engine->digest_dma,
hash_engine->src_length);
rctx->cmd |= HASH_CMD_INT_ENABLE;
hash_engine->resume = resume;
ast_hace_write(hace_dev, hash_engine->src_dma, ASPEED_HACE_HASH_SRC);
ast_hace_write(hace_dev, hash_engine->digest_dma,
ASPEED_HACE_HASH_DIGEST_BUFF);
ast_hace_write(hace_dev, hash_engine->digest_dma,
ASPEED_HACE_HASH_KEY_BUFF);
ast_hace_write(hace_dev, hash_engine->src_length,
ASPEED_HACE_HASH_DATA_LEN);
/* Memory barrier to ensure all data setup before engine starts */
mb();
ast_hace_write(hace_dev, rctx->cmd, ASPEED_HACE_HASH_CMD);
return -EINPROGRESS;
}
static int aspeed_ahash_update_resume_sg(struct aspeed_hace_dev *hace_dev)
{
struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
struct ahash_request *req = hash_engine->req;
struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
AHASH_DBG(hace_dev, "\n");
dma_unmap_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
DMA_TO_DEVICE);
if (rctx->flags & SHA_FLAGS_FINUP && rctx->total == rctx->offset)
dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr,
sizeof(rctx->buffer), DMA_TO_DEVICE);
rctx->cmd &= ~HASH_CMD_HASH_SRC_SG_CTRL;
return aspeed_ahash_complete(hace_dev);
}
static int aspeed_ahash_req_update(struct aspeed_hace_dev *hace_dev)
{
struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
struct ahash_request *req = hash_engine->req;
struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
aspeed_hace_fn_t resume;
int ret;
AHASH_DBG(hace_dev, "\n");
if (hace_dev->version == AST2600_VERSION) {
rctx->cmd |= HASH_CMD_HASH_SRC_SG_CTRL;
resume = aspeed_ahash_update_resume_sg;
} else {
resume = aspeed_ahash_complete;
}
ret = hash_engine->dma_prepare(hace_dev);
if (ret)
return ret;
return aspeed_hace_ahash_trigger(hace_dev, resume);
}
static int aspeed_hace_hash_handle_queue(struct aspeed_hace_dev *hace_dev,
struct ahash_request *req)
{
return crypto_transfer_hash_request_to_engine(
hace_dev->crypt_engine_hash, req);
}
static noinline int aspeed_ahash_fallback(struct ahash_request *req)
{
struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
HASH_FBREQ_ON_STACK(fbreq, req);
u8 *state = rctx->buffer;
struct scatterlist sg[2];
struct scatterlist *ssg;
int ret;
ssg = scatterwalk_ffwd(sg, req->src, rctx->offset);
ahash_request_set_crypt(fbreq, ssg, req->result,
rctx->total - rctx->offset);
ret = aspeed_sham_export(req, state) ?:
crypto_ahash_import_core(fbreq, state);
if (rctx->flags & SHA_FLAGS_FINUP)
ret = ret ?: crypto_ahash_finup(fbreq);
else
ret = ret ?: crypto_ahash_update(fbreq) ?:
crypto_ahash_export_core(fbreq, state) ?:
aspeed_sham_import(req, state);
HASH_REQUEST_ZERO(fbreq);
return ret;
}
static int aspeed_ahash_do_request(struct crypto_engine *engine, void *areq)
{
struct ahash_request *req = ahash_request_cast(areq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
struct aspeed_engine_hash *hash_engine;
int ret;
hash_engine = &hace_dev->hash_engine;
hash_engine->flags |= CRYPTO_FLAGS_BUSY;
ret = aspeed_ahash_req_update(hace_dev);
if (ret != -EINPROGRESS)
return aspeed_ahash_fallback(req);
return 0;
}
static void aspeed_ahash_prepare_request(struct crypto_engine *engine,
void *areq)
{
struct ahash_request *req = ahash_request_cast(areq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
struct aspeed_engine_hash *hash_engine;
hash_engine = &hace_dev->hash_engine;
hash_engine->req = req;
if (hace_dev->version == AST2600_VERSION)
hash_engine->dma_prepare = aspeed_ahash_dma_prepare_sg;
else
hash_engine->dma_prepare = aspeed_ahash_dma_prepare;
}
static int aspeed_ahash_do_one(struct crypto_engine *engine, void *areq)
{
aspeed_ahash_prepare_request(engine, areq);
return aspeed_ahash_do_request(engine, areq);
}
static int aspeed_sham_update(struct ahash_request *req)
{
struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
AHASH_DBG(hace_dev, "req->nbytes: %d\n", req->nbytes);
rctx->total = req->nbytes;
rctx->src_sg = req->src;
rctx->offset = 0;
rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
return aspeed_hace_hash_handle_queue(hace_dev, req);
}
static int aspeed_sham_finup(struct ahash_request *req)
{
struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
AHASH_DBG(hace_dev, "req->nbytes: %d\n", req->nbytes);
rctx->flags |= SHA_FLAGS_FINUP;
return aspeed_sham_update(req);
}
static int aspeed_sham_init(struct ahash_request *req)
{
struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
AHASH_DBG(hace_dev, "%s: digest size:%d\n",
crypto_tfm_alg_name(&tfm->base),
crypto_ahash_digestsize(tfm));
rctx->cmd = HASH_CMD_ACC_MODE;
rctx->flags = 0;
switch (crypto_ahash_digestsize(tfm)) {
case SHA1_DIGEST_SIZE:
rctx->cmd |= HASH_CMD_SHA1 | HASH_CMD_SHA_SWAP;
rctx->flags |= SHA_FLAGS_SHA1;
rctx->digsize = SHA1_DIGEST_SIZE;
rctx->block_size = SHA1_BLOCK_SIZE;
rctx->ivsize = 32;
memcpy(rctx->digest, sha1_iv, rctx->ivsize);
break;
case SHA224_DIGEST_SIZE:
rctx->cmd |= HASH_CMD_SHA224 | HASH_CMD_SHA_SWAP;
rctx->flags |= SHA_FLAGS_SHA224;
rctx->digsize = SHA224_DIGEST_SIZE;
rctx->block_size = SHA224_BLOCK_SIZE;
rctx->ivsize = 32;
memcpy(rctx->digest, sha224_iv, rctx->ivsize);
break;
case SHA256_DIGEST_SIZE:
rctx->cmd |= HASH_CMD_SHA256 | HASH_CMD_SHA_SWAP;
rctx->flags |= SHA_FLAGS_SHA256;
rctx->digsize = SHA256_DIGEST_SIZE;
rctx->block_size = SHA256_BLOCK_SIZE;
rctx->ivsize = 32;
memcpy(rctx->digest, sha256_iv, rctx->ivsize);
break;
case SHA384_DIGEST_SIZE:
rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA384 |
HASH_CMD_SHA_SWAP;
rctx->flags |= SHA_FLAGS_SHA384;
rctx->digsize = SHA384_DIGEST_SIZE;
rctx->block_size = SHA384_BLOCK_SIZE;
rctx->ivsize = 64;
memcpy(rctx->digest, sha384_iv, rctx->ivsize);
break;
case SHA512_DIGEST_SIZE:
rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA512 |
HASH_CMD_SHA_SWAP;
rctx->flags |= SHA_FLAGS_SHA512;
rctx->digsize = SHA512_DIGEST_SIZE;
rctx->block_size = SHA512_BLOCK_SIZE;
rctx->ivsize = 64;
memcpy(rctx->digest, sha512_iv, rctx->ivsize);
break;
default:
dev_warn(tctx->hace_dev->dev, "digest size %d not support\n",
crypto_ahash_digestsize(tfm));
return -EINVAL;
}
rctx->total = 0;
rctx->digcnt[0] = 0;
rctx->digcnt[1] = 0;
return 0;
}
static int aspeed_sham_digest(struct ahash_request *req)
{
return aspeed_sham_init(req) ? : aspeed_sham_finup(req);
}
static int aspeed_sham_cra_init(struct crypto_ahash *tfm)
{
struct ahash_alg *alg = crypto_ahash_alg(tfm);
struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct aspeed_hace_alg *ast_alg;
ast_alg = container_of(alg, struct aspeed_hace_alg, alg.ahash.base);
tctx->hace_dev = ast_alg->hace_dev;
return 0;
}
static struct aspeed_hace_alg aspeed_ahash_algs[] = {
{
.alg.ahash.base = {
.init = aspeed_sham_init,
.update = aspeed_sham_update,
.finup = aspeed_sham_finup,
.digest = aspeed_sham_digest,
.export = aspeed_sham_export,
.import = aspeed_sham_import,
.init_tfm = aspeed_sham_cra_init,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct aspeed_sham_reqctx),
.base = {
.cra_name = "sha1",
.cra_driver_name = "aspeed-sha1",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_AHASH_ALG_BLOCK_ONLY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aspeed_sham_ctx),
.cra_reqsize = sizeof(struct aspeed_sham_reqctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
}
}
},
.alg.ahash.op = {
.do_one_request = aspeed_ahash_do_one,
},
},
{
.alg.ahash.base = {
.init = aspeed_sham_init,
.update = aspeed_sham_update,
.finup = aspeed_sham_finup,
.digest = aspeed_sham_digest,
.export = aspeed_sham_export,
.import = aspeed_sham_import,
.init_tfm = aspeed_sham_cra_init,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct aspeed_sham_reqctx),
.base = {
.cra_name = "sha256",
.cra_driver_name = "aspeed-sha256",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_AHASH_ALG_BLOCK_ONLY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aspeed_sham_ctx),
.cra_reqsize = sizeof(struct aspeed_sham_reqctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
}
}
},
.alg.ahash.op = {
.do_one_request = aspeed_ahash_do_one,
},
},
{
.alg.ahash.base = {
.init = aspeed_sham_init,
.update = aspeed_sham_update,
.finup = aspeed_sham_finup,
.digest = aspeed_sham_digest,
.export = aspeed_sham_export,
.import = aspeed_sham_import,
.init_tfm = aspeed_sham_cra_init,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct aspeed_sham_reqctx),
.base = {
.cra_name = "sha224",
.cra_driver_name = "aspeed-sha224",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_AHASH_ALG_BLOCK_ONLY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aspeed_sham_ctx),
.cra_reqsize = sizeof(struct aspeed_sham_reqctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
}
}
},
.alg.ahash.op = {
.do_one_request = aspeed_ahash_do_one,
},
},
};
static struct aspeed_hace_alg aspeed_ahash_algs_g6[] = {
{
.alg.ahash.base = {
.init = aspeed_sham_init,
.update = aspeed_sham_update,
.finup = aspeed_sham_finup,
.digest = aspeed_sham_digest,
.export = aspeed_sham_export,
.import = aspeed_sham_import,
.init_tfm = aspeed_sham_cra_init,
.halg = {
.digestsize = SHA384_DIGEST_SIZE,
.statesize = sizeof(struct aspeed_sham_reqctx),
.base = {
.cra_name = "sha384",
.cra_driver_name = "aspeed-sha384",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_AHASH_ALG_BLOCK_ONLY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aspeed_sham_ctx),
.cra_reqsize = sizeof(struct aspeed_sham_reqctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
}
}
},
.alg.ahash.op = {
.do_one_request = aspeed_ahash_do_one,
},
},
{
.alg.ahash.base = {
.init = aspeed_sham_init,
.update = aspeed_sham_update,
.finup = aspeed_sham_finup,
.digest = aspeed_sham_digest,
.export = aspeed_sham_export,
.import = aspeed_sham_import,
.init_tfm = aspeed_sham_cra_init,
.halg = {
.digestsize = SHA512_DIGEST_SIZE,
.statesize = sizeof(struct aspeed_sham_reqctx),
.base = {
.cra_name = "sha512",
.cra_driver_name = "aspeed-sha512",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_AHASH_ALG_BLOCK_ONLY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aspeed_sham_ctx),
.cra_reqsize = sizeof(struct aspeed_sham_reqctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
}
}
},
.alg.ahash.op = {
.do_one_request = aspeed_ahash_do_one,
},
},
};
void aspeed_unregister_hace_hash_algs(struct aspeed_hace_dev *hace_dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs); i++)
crypto_engine_unregister_ahash(&aspeed_ahash_algs[i].alg.ahash);
if (hace_dev->version != AST2600_VERSION)
return;
for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs_g6); i++)
crypto_engine_unregister_ahash(&aspeed_ahash_algs_g6[i].alg.ahash);
}
void aspeed_register_hace_hash_algs(struct aspeed_hace_dev *hace_dev)
{
int rc, i;
AHASH_DBG(hace_dev, "\n");
for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs); i++) {
aspeed_ahash_algs[i].hace_dev = hace_dev;
rc = crypto_engine_register_ahash(&aspeed_ahash_algs[i].alg.ahash);
if (rc) {
AHASH_DBG(hace_dev, "Failed to register %s\n",
aspeed_ahash_algs[i].alg.ahash.base.halg.base.cra_name);
}
}
if (hace_dev->version != AST2600_VERSION)
return;
for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs_g6); i++) {
aspeed_ahash_algs_g6[i].hace_dev = hace_dev;
rc = crypto_engine_register_ahash(&aspeed_ahash_algs_g6[i].alg.ahash);
if (rc) {
AHASH_DBG(hace_dev, "Failed to register %s\n",
aspeed_ahash_algs_g6[i].alg.ahash.base.halg.base.cra_name);
}
}
}