// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2021 Aspeed Technology Inc. */ #include "aspeed-hace.h" #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_CRYPTO_DEV_ASPEED_DEBUG #define AHASH_DBG(h, fmt, ...) \ dev_info((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__) #else #define AHASH_DBG(h, fmt, ...) \ dev_dbg((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__) #endif /* Initialization Vectors for SHA-family */ static const __be32 sha1_iv[8] = { cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1), cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3), cpu_to_be32(SHA1_H4), 0, 0, 0 }; static const __be32 sha224_iv[8] = { cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1), cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3), cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5), cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7), }; static const __be32 sha256_iv[8] = { cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1), cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3), cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5), cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7), }; static const __be64 sha384_iv[8] = { cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1), cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3), cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5), cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7) }; static const __be64 sha512_iv[8] = { cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1), cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3), cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5), cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7) }; static int aspeed_sham_init(struct ahash_request *req); static int aspeed_ahash_req_update(struct aspeed_hace_dev *hace_dev); static int aspeed_sham_export(struct ahash_request *req, void *out) { struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); union { u8 *u8; u64 *u64; } p = { .u8 = out }; memcpy(out, rctx->digest, rctx->ivsize); p.u8 += rctx->ivsize; put_unaligned(rctx->digcnt[0], p.u64++); if (rctx->ivsize == 64) put_unaligned(rctx->digcnt[1], p.u64); return 0; } static int aspeed_sham_import(struct ahash_request *req, const void *in) { struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); union { const u8 *u8; const u64 *u64; } p = { .u8 = in }; int err; err = aspeed_sham_init(req); if (err) return err; memcpy(rctx->digest, in, rctx->ivsize); p.u8 += rctx->ivsize; rctx->digcnt[0] = get_unaligned(p.u64++); if (rctx->ivsize == 64) rctx->digcnt[1] = get_unaligned(p.u64); return 0; } /* The purpose of this padding is to ensure that the padded message is a * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512). * The bit "1" is appended at the end of the message followed by * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or * 128 bits block (SHA384/SHA512) equals to the message length in bits * is appended. * * For SHA1/SHA224/SHA256, padlen is calculated as followed: * - if message length < 56 bytes then padlen = 56 - message length * - else padlen = 64 + 56 - message length * * For SHA384/SHA512, padlen is calculated as followed: * - if message length < 112 bytes then padlen = 112 - message length * - else padlen = 128 + 112 - message length */ static int aspeed_ahash_fill_padding(struct aspeed_hace_dev *hace_dev, struct aspeed_sham_reqctx *rctx, u8 *buf) { unsigned int index, padlen, bitslen; __be64 bits[2]; AHASH_DBG(hace_dev, "rctx flags:0x%x\n", (u32)rctx->flags); switch (rctx->flags & SHA_FLAGS_MASK) { case SHA_FLAGS_SHA1: case SHA_FLAGS_SHA224: case SHA_FLAGS_SHA256: bits[0] = cpu_to_be64(rctx->digcnt[0] << 3); index = rctx->digcnt[0] & 0x3f; padlen = (index < 56) ? (56 - index) : ((64 + 56) - index); bitslen = 8; break; default: bits[1] = cpu_to_be64(rctx->digcnt[0] << 3); bits[0] = cpu_to_be64(rctx->digcnt[1] << 3 | rctx->digcnt[0] >> 61); index = rctx->digcnt[0] & 0x7f; padlen = (index < 112) ? (112 - index) : ((128 + 112) - index); bitslen = 16; break; } buf[0] = 0x80; memset(buf + 1, 0, padlen - 1); memcpy(buf + padlen, bits, bitslen); return padlen + bitslen; } static void aspeed_ahash_update_counter(struct aspeed_sham_reqctx *rctx, unsigned int len) { rctx->offset += len; rctx->digcnt[0] += len; if (rctx->digcnt[0] < len) rctx->digcnt[1]++; } /* * Prepare DMA buffer before hardware engine * processing. */ static int aspeed_ahash_dma_prepare(struct aspeed_hace_dev *hace_dev) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); unsigned int length, remain; bool final = false; length = rctx->total - rctx->offset; remain = length - round_down(length, rctx->block_size); AHASH_DBG(hace_dev, "length:0x%x, remain:0x%x\n", length, remain); if (length > ASPEED_HASH_SRC_DMA_BUF_LEN) length = ASPEED_HASH_SRC_DMA_BUF_LEN; else if (rctx->flags & SHA_FLAGS_FINUP) { if (round_up(length, rctx->block_size) + rctx->block_size > ASPEED_CRYPTO_SRC_DMA_BUF_LEN) length = round_down(length - 1, rctx->block_size); else final = true; } else length -= remain; scatterwalk_map_and_copy(hash_engine->ahash_src_addr, rctx->src_sg, rctx->offset, length, 0); aspeed_ahash_update_counter(rctx, length); if (final) length += aspeed_ahash_fill_padding( hace_dev, rctx, hash_engine->ahash_src_addr + length); rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) { dev_warn(hace_dev->dev, "dma_map() rctx digest error\n"); return -ENOMEM; } hash_engine->src_length = length; hash_engine->src_dma = hash_engine->ahash_src_dma_addr; hash_engine->digest_dma = rctx->digest_dma_addr; return 0; } /* * Prepare DMA buffer as SG list buffer before * hardware engine processing. */ static int aspeed_ahash_dma_prepare_sg(struct aspeed_hace_dev *hace_dev) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); bool final = rctx->flags & SHA_FLAGS_FINUP; int remain, sg_len, i, max_sg_nents; unsigned int length, offset, total; struct aspeed_sg_list *src_list; struct scatterlist *s; int rc = 0; offset = rctx->offset; length = rctx->total - offset; remain = final ? 0 : length - round_down(length, rctx->block_size); length -= remain; AHASH_DBG(hace_dev, "%s:0x%x, %s:0x%x, %s:0x%x\n", "rctx total", rctx->total, "length", length, "remain", remain); sg_len = dma_map_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents, DMA_TO_DEVICE); if (!sg_len) { dev_warn(hace_dev->dev, "dma_map_sg() src error\n"); rc = -ENOMEM; goto end; } max_sg_nents = ASPEED_HASH_SRC_DMA_BUF_LEN / sizeof(*src_list) - final; sg_len = min(sg_len, max_sg_nents); src_list = (struct aspeed_sg_list *)hash_engine->ahash_src_addr; rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) { dev_warn(hace_dev->dev, "dma_map() rctx digest error\n"); rc = -ENOMEM; goto free_src_sg; } total = 0; for_each_sg(rctx->src_sg, s, sg_len, i) { u32 phy_addr = sg_dma_address(s); u32 len = sg_dma_len(s); if (len <= offset) { offset -= len; continue; } len -= offset; phy_addr += offset; offset = 0; if (length > len) length -= len; else { /* Last sg list */ len = length; length = 0; } total += len; src_list[i].phy_addr = cpu_to_le32(phy_addr); src_list[i].len = cpu_to_le32(len); } if (length != 0) { total = round_down(total, rctx->block_size); final = false; } aspeed_ahash_update_counter(rctx, total); if (final) { int len = aspeed_ahash_fill_padding(hace_dev, rctx, rctx->buffer); total += len; rctx->buffer_dma_addr = dma_map_single(hace_dev->dev, rctx->buffer, sizeof(rctx->buffer), DMA_TO_DEVICE); if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) { dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n"); rc = -ENOMEM; goto free_rctx_digest; } src_list[i].phy_addr = cpu_to_le32(rctx->buffer_dma_addr); src_list[i].len = cpu_to_le32(len); i++; } src_list[i - 1].len |= cpu_to_le32(HASH_SG_LAST_LIST); hash_engine->src_length = total; hash_engine->src_dma = hash_engine->ahash_src_dma_addr; hash_engine->digest_dma = rctx->digest_dma_addr; return 0; free_rctx_digest: dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); free_src_sg: dma_unmap_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents, DMA_TO_DEVICE); end: return rc; } static int aspeed_ahash_complete(struct aspeed_hace_dev *hace_dev) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); AHASH_DBG(hace_dev, "\n"); dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); if (rctx->total - rctx->offset >= rctx->block_size || (rctx->total != rctx->offset && rctx->flags & SHA_FLAGS_FINUP)) return aspeed_ahash_req_update(hace_dev); hash_engine->flags &= ~CRYPTO_FLAGS_BUSY; if (rctx->flags & SHA_FLAGS_FINUP) memcpy(req->result, rctx->digest, rctx->digsize); crypto_finalize_hash_request(hace_dev->crypt_engine_hash, req, rctx->total - rctx->offset); return 0; } /* * Trigger hardware engines to do the math. */ static int aspeed_hace_ahash_trigger(struct aspeed_hace_dev *hace_dev, aspeed_hace_fn_t resume) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); AHASH_DBG(hace_dev, "src_dma:%pad, digest_dma:%pad, length:%zu\n", &hash_engine->src_dma, &hash_engine->digest_dma, hash_engine->src_length); rctx->cmd |= HASH_CMD_INT_ENABLE; hash_engine->resume = resume; ast_hace_write(hace_dev, hash_engine->src_dma, ASPEED_HACE_HASH_SRC); ast_hace_write(hace_dev, hash_engine->digest_dma, ASPEED_HACE_HASH_DIGEST_BUFF); ast_hace_write(hace_dev, hash_engine->digest_dma, ASPEED_HACE_HASH_KEY_BUFF); ast_hace_write(hace_dev, hash_engine->src_length, ASPEED_HACE_HASH_DATA_LEN); /* Memory barrier to ensure all data setup before engine starts */ mb(); ast_hace_write(hace_dev, rctx->cmd, ASPEED_HACE_HASH_CMD); return -EINPROGRESS; } static int aspeed_ahash_update_resume_sg(struct aspeed_hace_dev *hace_dev) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); AHASH_DBG(hace_dev, "\n"); dma_unmap_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents, DMA_TO_DEVICE); if (rctx->flags & SHA_FLAGS_FINUP && rctx->total == rctx->offset) dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr, sizeof(rctx->buffer), DMA_TO_DEVICE); rctx->cmd &= ~HASH_CMD_HASH_SRC_SG_CTRL; return aspeed_ahash_complete(hace_dev); } static int aspeed_ahash_req_update(struct aspeed_hace_dev *hace_dev) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); aspeed_hace_fn_t resume; int ret; AHASH_DBG(hace_dev, "\n"); if (hace_dev->version == AST2600_VERSION) { rctx->cmd |= HASH_CMD_HASH_SRC_SG_CTRL; resume = aspeed_ahash_update_resume_sg; } else { resume = aspeed_ahash_complete; } ret = hash_engine->dma_prepare(hace_dev); if (ret) return ret; return aspeed_hace_ahash_trigger(hace_dev, resume); } static int aspeed_hace_hash_handle_queue(struct aspeed_hace_dev *hace_dev, struct ahash_request *req) { return crypto_transfer_hash_request_to_engine( hace_dev->crypt_engine_hash, req); } static noinline int aspeed_ahash_fallback(struct ahash_request *req) { struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); HASH_FBREQ_ON_STACK(fbreq, req); u8 *state = rctx->buffer; struct scatterlist sg[2]; struct scatterlist *ssg; int ret; ssg = scatterwalk_ffwd(sg, req->src, rctx->offset); ahash_request_set_crypt(fbreq, ssg, req->result, rctx->total - rctx->offset); ret = aspeed_sham_export(req, state) ?: crypto_ahash_import_core(fbreq, state); if (rctx->flags & SHA_FLAGS_FINUP) ret = ret ?: crypto_ahash_finup(fbreq); else ret = ret ?: crypto_ahash_update(fbreq) ?: crypto_ahash_export_core(fbreq, state) ?: aspeed_sham_import(req, state); HASH_REQUEST_ZERO(fbreq); return ret; } static int aspeed_ahash_do_request(struct crypto_engine *engine, void *areq) { struct ahash_request *req = ahash_request_cast(areq); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct aspeed_hace_dev *hace_dev = tctx->hace_dev; struct aspeed_engine_hash *hash_engine; int ret; hash_engine = &hace_dev->hash_engine; hash_engine->flags |= CRYPTO_FLAGS_BUSY; ret = aspeed_ahash_req_update(hace_dev); if (ret != -EINPROGRESS) return aspeed_ahash_fallback(req); return 0; } static void aspeed_ahash_prepare_request(struct crypto_engine *engine, void *areq) { struct ahash_request *req = ahash_request_cast(areq); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct aspeed_hace_dev *hace_dev = tctx->hace_dev; struct aspeed_engine_hash *hash_engine; hash_engine = &hace_dev->hash_engine; hash_engine->req = req; if (hace_dev->version == AST2600_VERSION) hash_engine->dma_prepare = aspeed_ahash_dma_prepare_sg; else hash_engine->dma_prepare = aspeed_ahash_dma_prepare; } static int aspeed_ahash_do_one(struct crypto_engine *engine, void *areq) { aspeed_ahash_prepare_request(engine, areq); return aspeed_ahash_do_request(engine, areq); } static int aspeed_sham_update(struct ahash_request *req) { struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct aspeed_hace_dev *hace_dev = tctx->hace_dev; AHASH_DBG(hace_dev, "req->nbytes: %d\n", req->nbytes); rctx->total = req->nbytes; rctx->src_sg = req->src; rctx->offset = 0; rctx->src_nents = sg_nents_for_len(req->src, req->nbytes); return aspeed_hace_hash_handle_queue(hace_dev, req); } static int aspeed_sham_finup(struct ahash_request *req) { struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct aspeed_hace_dev *hace_dev = tctx->hace_dev; AHASH_DBG(hace_dev, "req->nbytes: %d\n", req->nbytes); rctx->flags |= SHA_FLAGS_FINUP; return aspeed_sham_update(req); } static int aspeed_sham_init(struct ahash_request *req) { struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct aspeed_hace_dev *hace_dev = tctx->hace_dev; AHASH_DBG(hace_dev, "%s: digest size:%d\n", crypto_tfm_alg_name(&tfm->base), crypto_ahash_digestsize(tfm)); rctx->cmd = HASH_CMD_ACC_MODE; rctx->flags = 0; switch (crypto_ahash_digestsize(tfm)) { case SHA1_DIGEST_SIZE: rctx->cmd |= HASH_CMD_SHA1 | HASH_CMD_SHA_SWAP; rctx->flags |= SHA_FLAGS_SHA1; rctx->digsize = SHA1_DIGEST_SIZE; rctx->block_size = SHA1_BLOCK_SIZE; rctx->ivsize = 32; memcpy(rctx->digest, sha1_iv, rctx->ivsize); break; case SHA224_DIGEST_SIZE: rctx->cmd |= HASH_CMD_SHA224 | HASH_CMD_SHA_SWAP; rctx->flags |= SHA_FLAGS_SHA224; rctx->digsize = SHA224_DIGEST_SIZE; rctx->block_size = SHA224_BLOCK_SIZE; rctx->ivsize = 32; memcpy(rctx->digest, sha224_iv, rctx->ivsize); break; case SHA256_DIGEST_SIZE: rctx->cmd |= HASH_CMD_SHA256 | HASH_CMD_SHA_SWAP; rctx->flags |= SHA_FLAGS_SHA256; rctx->digsize = SHA256_DIGEST_SIZE; rctx->block_size = SHA256_BLOCK_SIZE; rctx->ivsize = 32; memcpy(rctx->digest, sha256_iv, rctx->ivsize); break; case SHA384_DIGEST_SIZE: rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA384 | HASH_CMD_SHA_SWAP; rctx->flags |= SHA_FLAGS_SHA384; rctx->digsize = SHA384_DIGEST_SIZE; rctx->block_size = SHA384_BLOCK_SIZE; rctx->ivsize = 64; memcpy(rctx->digest, sha384_iv, rctx->ivsize); break; case SHA512_DIGEST_SIZE: rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA512 | HASH_CMD_SHA_SWAP; rctx->flags |= SHA_FLAGS_SHA512; rctx->digsize = SHA512_DIGEST_SIZE; rctx->block_size = SHA512_BLOCK_SIZE; rctx->ivsize = 64; memcpy(rctx->digest, sha512_iv, rctx->ivsize); break; default: dev_warn(tctx->hace_dev->dev, "digest size %d not support\n", crypto_ahash_digestsize(tfm)); return -EINVAL; } rctx->total = 0; rctx->digcnt[0] = 0; rctx->digcnt[1] = 0; return 0; } static int aspeed_sham_digest(struct ahash_request *req) { return aspeed_sham_init(req) ? : aspeed_sham_finup(req); } static int aspeed_sham_cra_init(struct crypto_ahash *tfm) { struct ahash_alg *alg = crypto_ahash_alg(tfm); struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct aspeed_hace_alg *ast_alg; ast_alg = container_of(alg, struct aspeed_hace_alg, alg.ahash.base); tctx->hace_dev = ast_alg->hace_dev; return 0; } static struct aspeed_hace_alg aspeed_ahash_algs[] = { { .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .export = aspeed_sham_export, .import = aspeed_sham_import, .init_tfm = aspeed_sham_cra_init, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "sha1", .cra_driver_name = "aspeed-sha1", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_AHASH_ALG_BLOCK_ONLY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx), .cra_reqsize = sizeof(struct aspeed_sham_reqctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, { .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .export = aspeed_sham_export, .import = aspeed_sham_import, .init_tfm = aspeed_sham_cra_init, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "sha256", .cra_driver_name = "aspeed-sha256", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_AHASH_ALG_BLOCK_ONLY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx), .cra_reqsize = sizeof(struct aspeed_sham_reqctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, { .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .export = aspeed_sham_export, .import = aspeed_sham_import, .init_tfm = aspeed_sham_cra_init, .halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "sha224", .cra_driver_name = "aspeed-sha224", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_AHASH_ALG_BLOCK_ONLY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx), .cra_reqsize = sizeof(struct aspeed_sham_reqctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, }; static struct aspeed_hace_alg aspeed_ahash_algs_g6[] = { { .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .export = aspeed_sham_export, .import = aspeed_sham_import, .init_tfm = aspeed_sham_cra_init, .halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "sha384", .cra_driver_name = "aspeed-sha384", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_AHASH_ALG_BLOCK_ONLY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx), .cra_reqsize = sizeof(struct aspeed_sham_reqctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, { .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .export = aspeed_sham_export, .import = aspeed_sham_import, .init_tfm = aspeed_sham_cra_init, .halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "sha512", .cra_driver_name = "aspeed-sha512", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_AHASH_ALG_BLOCK_ONLY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx), .cra_reqsize = sizeof(struct aspeed_sham_reqctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, }; void aspeed_unregister_hace_hash_algs(struct aspeed_hace_dev *hace_dev) { int i; for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs); i++) crypto_engine_unregister_ahash(&aspeed_ahash_algs[i].alg.ahash); if (hace_dev->version != AST2600_VERSION) return; for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs_g6); i++) crypto_engine_unregister_ahash(&aspeed_ahash_algs_g6[i].alg.ahash); } void aspeed_register_hace_hash_algs(struct aspeed_hace_dev *hace_dev) { int rc, i; AHASH_DBG(hace_dev, "\n"); for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs); i++) { aspeed_ahash_algs[i].hace_dev = hace_dev; rc = crypto_engine_register_ahash(&aspeed_ahash_algs[i].alg.ahash); if (rc) { AHASH_DBG(hace_dev, "Failed to register %s\n", aspeed_ahash_algs[i].alg.ahash.base.halg.base.cra_name); } } if (hace_dev->version != AST2600_VERSION) return; for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs_g6); i++) { aspeed_ahash_algs_g6[i].hace_dev = hace_dev; rc = crypto_engine_register_ahash(&aspeed_ahash_algs_g6[i].alg.ahash); if (rc) { AHASH_DBG(hace_dev, "Failed to register %s\n", aspeed_ahash_algs_g6[i].alg.ahash.base.halg.base.cra_name); } } }