mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

- Host driver for GICv5, the next generation interrupt controller for arm64, including support for interrupt routing, MSIs, interrupt translation and wired interrupts. - Use FEAT_GCIE_LEGACY on GICv5 systems to virtualize GICv3 VMs on GICv5 hardware, leveraging the legacy VGIC interface. - Userspace control of the 'nASSGIcap' GICv3 feature, allowing userspace to disable support for SGIs w/o an active state on hardware that previously advertised it unconditionally. - Map supporting endpoints with cacheable memory attributes on systems with FEAT_S2FWB and DIC where KVM no longer needs to perform cache maintenance on the address range. - Nested support for FEAT_RAS and FEAT_DoubleFault2, allowing the guest hypervisor to inject external aborts into an L2 VM and take traps of masked external aborts to the hypervisor. - Convert more system register sanitization to the config-driven implementation. - Fixes to the visibility of EL2 registers, namely making VGICv3 system registers accessible through the VGIC device instead of the ONE_REG vCPU ioctls. - Various cleanups and minor fixes. -----BEGIN PGP SIGNATURE----- iI0EABYIADUWIQSNXHjWXuzMZutrKNKivnWIJHzdFgUCaIezbRccb2xpdmVyLnVw dG9uQGxpbnV4LmRldgAKCRCivnWIJHzdFr/eAQDY5NIG5cR6ZcAWnPQLmGWpz2ou pq4Jhn9E/mGR3n5L1AEAsJpfLLpOsmnLBdwfbjmW59gGsa8k3i5tjWEOJ6yzAwk= =r+sp -----END PGP SIGNATURE----- Merge tag 'kvmarm-6.17' of https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 changes for 6.17, round #1 - Host driver for GICv5, the next generation interrupt controller for arm64, including support for interrupt routing, MSIs, interrupt translation and wired interrupts. - Use FEAT_GCIE_LEGACY on GICv5 systems to virtualize GICv3 VMs on GICv5 hardware, leveraging the legacy VGIC interface. - Userspace control of the 'nASSGIcap' GICv3 feature, allowing userspace to disable support for SGIs w/o an active state on hardware that previously advertised it unconditionally. - Map supporting endpoints with cacheable memory attributes on systems with FEAT_S2FWB and DIC where KVM no longer needs to perform cache maintenance on the address range. - Nested support for FEAT_RAS and FEAT_DoubleFault2, allowing the guest hypervisor to inject external aborts into an L2 VM and take traps of masked external aborts to the hypervisor. - Convert more system register sanitization to the config-driven implementation. - Fixes to the visibility of EL2 registers, namely making VGICv3 system registers accessible through the VGIC device instead of the ONE_REG vCPU ioctls. - Various cleanups and minor fixes.
1795 lines
45 KiB
C
1795 lines
45 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2017 - Columbia University and Linaro Ltd.
|
|
* Author: Jintack Lim <jintack.lim@linaro.org>
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <asm/fixmap.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_nested.h>
|
|
#include <asm/sysreg.h>
|
|
|
|
#include "sys_regs.h"
|
|
|
|
struct vncr_tlb {
|
|
/* The guest's VNCR_EL2 */
|
|
u64 gva;
|
|
struct s1_walk_info wi;
|
|
struct s1_walk_result wr;
|
|
|
|
u64 hpa;
|
|
|
|
/* -1 when not mapped on a CPU */
|
|
int cpu;
|
|
|
|
/*
|
|
* true if the TLB is valid. Can only be changed with the
|
|
* mmu_lock held.
|
|
*/
|
|
bool valid;
|
|
};
|
|
|
|
/*
|
|
* Ratio of live shadow S2 MMU per vcpu. This is a trade-off between
|
|
* memory usage and potential number of different sets of S2 PTs in
|
|
* the guests. Running out of S2 MMUs only affects performance (we
|
|
* will invalidate them more often).
|
|
*/
|
|
#define S2_MMU_PER_VCPU 2
|
|
|
|
void kvm_init_nested(struct kvm *kvm)
|
|
{
|
|
kvm->arch.nested_mmus = NULL;
|
|
kvm->arch.nested_mmus_size = 0;
|
|
atomic_set(&kvm->arch.vncr_map_count, 0);
|
|
}
|
|
|
|
static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
|
|
{
|
|
/*
|
|
* We only initialise the IPA range on the canonical MMU, which
|
|
* defines the contract between KVM and userspace on where the
|
|
* "hardware" is in the IPA space. This affects the validity of MMIO
|
|
* exits forwarded to userspace, for example.
|
|
*
|
|
* For nested S2s, we use the PARange as exposed to the guest, as it
|
|
* is allowed to use it at will to expose whatever memory map it
|
|
* wants to its own guests as it would be on real HW.
|
|
*/
|
|
return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm));
|
|
}
|
|
|
|
int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_s2_mmu *tmp;
|
|
int num_mmus, ret = 0;
|
|
|
|
if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features) &&
|
|
!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
|
|
return -EINVAL;
|
|
|
|
if (!vcpu->arch.ctxt.vncr_array)
|
|
vcpu->arch.ctxt.vncr_array = (u64 *)__get_free_page(GFP_KERNEL_ACCOUNT |
|
|
__GFP_ZERO);
|
|
|
|
if (!vcpu->arch.ctxt.vncr_array)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Let's treat memory allocation failures as benign: If we fail to
|
|
* allocate anything, return an error and keep the allocated array
|
|
* alive. Userspace may try to recover by intializing the vcpu
|
|
* again, and there is no reason to affect the whole VM for this.
|
|
*/
|
|
num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU;
|
|
tmp = kvrealloc(kvm->arch.nested_mmus,
|
|
size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus),
|
|
GFP_KERNEL_ACCOUNT | __GFP_ZERO);
|
|
if (!tmp)
|
|
return -ENOMEM;
|
|
|
|
swap(kvm->arch.nested_mmus, tmp);
|
|
|
|
/*
|
|
* If we went through a realocation, adjust the MMU back-pointers in
|
|
* the previously initialised kvm_pgtable structures.
|
|
*/
|
|
if (kvm->arch.nested_mmus != tmp)
|
|
for (int i = 0; i < kvm->arch.nested_mmus_size; i++)
|
|
kvm->arch.nested_mmus[i].pgt->mmu = &kvm->arch.nested_mmus[i];
|
|
|
|
for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++)
|
|
ret = init_nested_s2_mmu(kvm, &kvm->arch.nested_mmus[i]);
|
|
|
|
if (ret) {
|
|
for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++)
|
|
kvm_free_stage2_pgd(&kvm->arch.nested_mmus[i]);
|
|
|
|
free_page((unsigned long)vcpu->arch.ctxt.vncr_array);
|
|
vcpu->arch.ctxt.vncr_array = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
kvm->arch.nested_mmus_size = num_mmus;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct s2_walk_info {
|
|
int (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
|
|
void *data;
|
|
u64 baddr;
|
|
unsigned int max_oa_bits;
|
|
unsigned int pgshift;
|
|
unsigned int sl;
|
|
unsigned int t0sz;
|
|
bool be;
|
|
};
|
|
|
|
static u32 compute_fsc(int level, u32 fsc)
|
|
{
|
|
return fsc | (level & 0x3);
|
|
}
|
|
|
|
static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
|
|
{
|
|
u32 esr;
|
|
|
|
esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
|
|
esr |= compute_fsc(level, fsc);
|
|
return esr;
|
|
}
|
|
|
|
static int get_ia_size(struct s2_walk_info *wi)
|
|
{
|
|
return 64 - wi->t0sz;
|
|
}
|
|
|
|
static int check_base_s2_limits(struct s2_walk_info *wi,
|
|
int level, int input_size, int stride)
|
|
{
|
|
int start_size, ia_size;
|
|
|
|
ia_size = get_ia_size(wi);
|
|
|
|
/* Check translation limits */
|
|
switch (BIT(wi->pgshift)) {
|
|
case SZ_64K:
|
|
if (level == 0 || (level == 1 && ia_size <= 42))
|
|
return -EFAULT;
|
|
break;
|
|
case SZ_16K:
|
|
if (level == 0 || (level == 1 && ia_size <= 40))
|
|
return -EFAULT;
|
|
break;
|
|
case SZ_4K:
|
|
if (level < 0 || (level == 0 && ia_size <= 42))
|
|
return -EFAULT;
|
|
break;
|
|
}
|
|
|
|
/* Check input size limits */
|
|
if (input_size > ia_size)
|
|
return -EFAULT;
|
|
|
|
/* Check number of entries in starting level table */
|
|
start_size = input_size - ((3 - level) * stride + wi->pgshift);
|
|
if (start_size < 1 || start_size > stride + 4)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check if output is within boundaries */
|
|
static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
|
|
{
|
|
unsigned int output_size = wi->max_oa_bits;
|
|
|
|
if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is essentially a C-version of the pseudo code from the ARM ARM
|
|
* AArch64.TranslationTableWalk function. I strongly recommend looking at
|
|
* that pseudocode in trying to understand this.
|
|
*
|
|
* Must be called with the kvm->srcu read lock held
|
|
*/
|
|
static int walk_nested_s2_pgd(phys_addr_t ipa,
|
|
struct s2_walk_info *wi, struct kvm_s2_trans *out)
|
|
{
|
|
int first_block_level, level, stride, input_size, base_lower_bound;
|
|
phys_addr_t base_addr;
|
|
unsigned int addr_top, addr_bottom;
|
|
u64 desc; /* page table entry */
|
|
int ret;
|
|
phys_addr_t paddr;
|
|
|
|
switch (BIT(wi->pgshift)) {
|
|
default:
|
|
case SZ_64K:
|
|
case SZ_16K:
|
|
level = 3 - wi->sl;
|
|
first_block_level = 2;
|
|
break;
|
|
case SZ_4K:
|
|
level = 2 - wi->sl;
|
|
first_block_level = 1;
|
|
break;
|
|
}
|
|
|
|
stride = wi->pgshift - 3;
|
|
input_size = get_ia_size(wi);
|
|
if (input_size > 48 || input_size < 25)
|
|
return -EFAULT;
|
|
|
|
ret = check_base_s2_limits(wi, level, input_size, stride);
|
|
if (WARN_ON(ret))
|
|
return ret;
|
|
|
|
base_lower_bound = 3 + input_size - ((3 - level) * stride +
|
|
wi->pgshift);
|
|
base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);
|
|
|
|
if (check_output_size(wi, base_addr)) {
|
|
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
|
|
return 1;
|
|
}
|
|
|
|
addr_top = input_size - 1;
|
|
|
|
while (1) {
|
|
phys_addr_t index;
|
|
|
|
addr_bottom = (3 - level) * stride + wi->pgshift;
|
|
index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
|
|
>> (addr_bottom - 3);
|
|
|
|
paddr = base_addr | index;
|
|
ret = wi->read_desc(paddr, &desc, wi->data);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* Handle reversedescriptors if endianness differs between the
|
|
* host and the guest hypervisor.
|
|
*/
|
|
if (wi->be)
|
|
desc = be64_to_cpu((__force __be64)desc);
|
|
else
|
|
desc = le64_to_cpu((__force __le64)desc);
|
|
|
|
/* Check for valid descriptor at this point */
|
|
if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
|
|
out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
|
|
out->desc = desc;
|
|
return 1;
|
|
}
|
|
|
|
/* We're at the final level or block translation level */
|
|
if ((desc & 3) == 1 || level == 3)
|
|
break;
|
|
|
|
if (check_output_size(wi, desc)) {
|
|
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
|
|
out->desc = desc;
|
|
return 1;
|
|
}
|
|
|
|
base_addr = desc & GENMASK_ULL(47, wi->pgshift);
|
|
|
|
level += 1;
|
|
addr_top = addr_bottom - 1;
|
|
}
|
|
|
|
if (level < first_block_level) {
|
|
out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
|
|
out->desc = desc;
|
|
return 1;
|
|
}
|
|
|
|
if (check_output_size(wi, desc)) {
|
|
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
|
|
out->desc = desc;
|
|
return 1;
|
|
}
|
|
|
|
if (!(desc & BIT(10))) {
|
|
out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
|
|
out->desc = desc;
|
|
return 1;
|
|
}
|
|
|
|
addr_bottom += contiguous_bit_shift(desc, wi, level);
|
|
|
|
/* Calculate and return the result */
|
|
paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
|
|
(ipa & GENMASK_ULL(addr_bottom - 1, 0));
|
|
out->output = paddr;
|
|
out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
|
|
out->readable = desc & (0b01 << 6);
|
|
out->writable = desc & (0b10 << 6);
|
|
out->level = level;
|
|
out->desc = desc;
|
|
return 0;
|
|
}
|
|
|
|
static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
|
|
{
|
|
struct kvm_vcpu *vcpu = data;
|
|
|
|
return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
|
|
}
|
|
|
|
static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
|
|
{
|
|
wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;
|
|
|
|
switch (vtcr & VTCR_EL2_TG0_MASK) {
|
|
case VTCR_EL2_TG0_4K:
|
|
wi->pgshift = 12; break;
|
|
case VTCR_EL2_TG0_16K:
|
|
wi->pgshift = 14; break;
|
|
case VTCR_EL2_TG0_64K:
|
|
default: /* IMPDEF: treat any other value as 64k */
|
|
wi->pgshift = 16; break;
|
|
}
|
|
|
|
wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
|
|
/* Global limit for now, should eventually be per-VM */
|
|
wi->max_oa_bits = min(get_kvm_ipa_limit(),
|
|
ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr)));
|
|
}
|
|
|
|
int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
|
|
struct kvm_s2_trans *result)
|
|
{
|
|
u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
|
|
struct s2_walk_info wi;
|
|
int ret;
|
|
|
|
result->esr = 0;
|
|
|
|
if (!vcpu_has_nv(vcpu))
|
|
return 0;
|
|
|
|
wi.read_desc = read_guest_s2_desc;
|
|
wi.data = vcpu;
|
|
wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
|
|
|
|
vtcr_to_walk_info(vtcr, &wi);
|
|
|
|
wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;
|
|
|
|
ret = walk_nested_s2_pgd(gipa, &wi, result);
|
|
if (ret)
|
|
result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned int ttl_to_size(u8 ttl)
|
|
{
|
|
int level = ttl & 3;
|
|
int gran = (ttl >> 2) & 3;
|
|
unsigned int max_size = 0;
|
|
|
|
switch (gran) {
|
|
case TLBI_TTL_TG_4K:
|
|
switch (level) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
max_size = SZ_1G;
|
|
break;
|
|
case 2:
|
|
max_size = SZ_2M;
|
|
break;
|
|
case 3:
|
|
max_size = SZ_4K;
|
|
break;
|
|
}
|
|
break;
|
|
case TLBI_TTL_TG_16K:
|
|
switch (level) {
|
|
case 0:
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
max_size = SZ_32M;
|
|
break;
|
|
case 3:
|
|
max_size = SZ_16K;
|
|
break;
|
|
}
|
|
break;
|
|
case TLBI_TTL_TG_64K:
|
|
switch (level) {
|
|
case 0:
|
|
case 1:
|
|
/* No 52bit IPA support */
|
|
break;
|
|
case 2:
|
|
max_size = SZ_512M;
|
|
break;
|
|
case 3:
|
|
max_size = SZ_64K;
|
|
break;
|
|
}
|
|
break;
|
|
default: /* No size information */
|
|
break;
|
|
}
|
|
|
|
return max_size;
|
|
}
|
|
|
|
static u8 pgshift_level_to_ttl(u16 shift, u8 level)
|
|
{
|
|
u8 ttl;
|
|
|
|
switch(shift) {
|
|
case 12:
|
|
ttl = TLBI_TTL_TG_4K;
|
|
break;
|
|
case 14:
|
|
ttl = TLBI_TTL_TG_16K;
|
|
break;
|
|
case 16:
|
|
ttl = TLBI_TTL_TG_64K;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
ttl <<= 2;
|
|
ttl |= level & 3;
|
|
|
|
return ttl;
|
|
}
|
|
|
|
/*
|
|
* Compute the equivalent of the TTL field by parsing the shadow PT. The
|
|
* granule size is extracted from the cached VTCR_EL2.TG0 while the level is
|
|
* retrieved from first entry carrying the level as a tag.
|
|
*/
|
|
static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr)
|
|
{
|
|
u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr;
|
|
kvm_pte_t pte;
|
|
u8 ttl, level;
|
|
|
|
lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock);
|
|
|
|
switch (vtcr & VTCR_EL2_TG0_MASK) {
|
|
case VTCR_EL2_TG0_4K:
|
|
ttl = (TLBI_TTL_TG_4K << 2);
|
|
break;
|
|
case VTCR_EL2_TG0_16K:
|
|
ttl = (TLBI_TTL_TG_16K << 2);
|
|
break;
|
|
case VTCR_EL2_TG0_64K:
|
|
default: /* IMPDEF: treat any other value as 64k */
|
|
ttl = (TLBI_TTL_TG_64K << 2);
|
|
break;
|
|
}
|
|
|
|
tmp = addr;
|
|
|
|
again:
|
|
/* Iteratively compute the block sizes for a particular granule size */
|
|
switch (vtcr & VTCR_EL2_TG0_MASK) {
|
|
case VTCR_EL2_TG0_4K:
|
|
if (sz < SZ_4K) sz = SZ_4K;
|
|
else if (sz < SZ_2M) sz = SZ_2M;
|
|
else if (sz < SZ_1G) sz = SZ_1G;
|
|
else sz = 0;
|
|
break;
|
|
case VTCR_EL2_TG0_16K:
|
|
if (sz < SZ_16K) sz = SZ_16K;
|
|
else if (sz < SZ_32M) sz = SZ_32M;
|
|
else sz = 0;
|
|
break;
|
|
case VTCR_EL2_TG0_64K:
|
|
default: /* IMPDEF: treat any other value as 64k */
|
|
if (sz < SZ_64K) sz = SZ_64K;
|
|
else if (sz < SZ_512M) sz = SZ_512M;
|
|
else sz = 0;
|
|
break;
|
|
}
|
|
|
|
if (sz == 0)
|
|
return 0;
|
|
|
|
tmp &= ~(sz - 1);
|
|
if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL))
|
|
goto again;
|
|
if (!(pte & PTE_VALID))
|
|
goto again;
|
|
level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte);
|
|
if (!level)
|
|
goto again;
|
|
|
|
ttl |= level;
|
|
|
|
/*
|
|
* We now have found some level information in the shadow S2. Check
|
|
* that the resulting range is actually including the original IPA.
|
|
*/
|
|
sz = ttl_to_size(ttl);
|
|
if (addr < (tmp + sz))
|
|
return ttl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val)
|
|
{
|
|
struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
|
|
unsigned long max_size;
|
|
u8 ttl;
|
|
|
|
ttl = FIELD_GET(TLBI_TTL_MASK, val);
|
|
|
|
if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) {
|
|
/* No TTL, check the shadow S2 for a hint */
|
|
u64 addr = (val & GENMASK_ULL(35, 0)) << 12;
|
|
ttl = get_guest_mapping_ttl(mmu, addr);
|
|
}
|
|
|
|
max_size = ttl_to_size(ttl);
|
|
|
|
if (!max_size) {
|
|
/* Compute the maximum extent of the invalidation */
|
|
switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) {
|
|
case VTCR_EL2_TG0_4K:
|
|
max_size = SZ_1G;
|
|
break;
|
|
case VTCR_EL2_TG0_16K:
|
|
max_size = SZ_32M;
|
|
break;
|
|
case VTCR_EL2_TG0_64K:
|
|
default: /* IMPDEF: treat any other value as 64k */
|
|
/*
|
|
* No, we do not support 52bit IPA in nested yet. Once
|
|
* we do, this should be 4TB.
|
|
*/
|
|
max_size = SZ_512M;
|
|
break;
|
|
}
|
|
}
|
|
|
|
WARN_ON(!max_size);
|
|
return max_size;
|
|
}
|
|
|
|
/*
|
|
* We can have multiple *different* MMU contexts with the same VMID:
|
|
*
|
|
* - S2 being enabled or not, hence differing by the HCR_EL2.VM bit
|
|
*
|
|
* - Multiple vcpus using private S2s (huh huh...), hence differing by the
|
|
* VBBTR_EL2.BADDR address
|
|
*
|
|
* - A combination of the above...
|
|
*
|
|
* We can always identify which MMU context to pick at run-time. However,
|
|
* TLB invalidation involving a VMID must take action on all the TLBs using
|
|
* this particular VMID. This translates into applying the same invalidation
|
|
* operation to all the contexts that are using this VMID. Moar phun!
|
|
*/
|
|
void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
|
|
const union tlbi_info *info,
|
|
void (*tlbi_callback)(struct kvm_s2_mmu *,
|
|
const union tlbi_info *))
|
|
{
|
|
write_lock(&kvm->mmu_lock);
|
|
|
|
for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
|
|
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
|
|
|
|
if (!kvm_s2_mmu_valid(mmu))
|
|
continue;
|
|
|
|
if (vmid == get_vmid(mmu->tlb_vttbr))
|
|
tlbi_callback(mmu, info);
|
|
}
|
|
|
|
write_unlock(&kvm->mmu_lock);
|
|
}
|
|
|
|
struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
bool nested_stage2_enabled;
|
|
u64 vttbr, vtcr, hcr;
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
|
|
vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
|
|
hcr = vcpu_read_sys_reg(vcpu, HCR_EL2);
|
|
|
|
nested_stage2_enabled = hcr & HCR_VM;
|
|
|
|
/* Don't consider the CnP bit for the vttbr match */
|
|
vttbr &= ~VTTBR_CNP_BIT;
|
|
|
|
/*
|
|
* Two possibilities when looking up a S2 MMU context:
|
|
*
|
|
* - either S2 is enabled in the guest, and we need a context that is
|
|
* S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR,
|
|
* which makes it safe from a TLB conflict perspective (a broken
|
|
* guest won't be able to generate them),
|
|
*
|
|
* - or S2 is disabled, and we need a context that is S2-disabled
|
|
* and matches the VMID only, as all TLBs are tagged by VMID even
|
|
* if S2 translation is disabled.
|
|
*/
|
|
for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
|
|
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
|
|
|
|
if (!kvm_s2_mmu_valid(mmu))
|
|
continue;
|
|
|
|
if (nested_stage2_enabled &&
|
|
mmu->nested_stage2_enabled &&
|
|
vttbr == mmu->tlb_vttbr &&
|
|
vtcr == mmu->tlb_vtcr)
|
|
return mmu;
|
|
|
|
if (!nested_stage2_enabled &&
|
|
!mmu->nested_stage2_enabled &&
|
|
get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr))
|
|
return mmu;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_s2_mmu *s2_mmu;
|
|
int i;
|
|
|
|
lockdep_assert_held_write(&vcpu->kvm->mmu_lock);
|
|
|
|
s2_mmu = lookup_s2_mmu(vcpu);
|
|
if (s2_mmu)
|
|
goto out;
|
|
|
|
/*
|
|
* Make sure we don't always search from the same point, or we
|
|
* will always reuse a potentially active context, leaving
|
|
* free contexts unused.
|
|
*/
|
|
for (i = kvm->arch.nested_mmus_next;
|
|
i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next);
|
|
i++) {
|
|
s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size];
|
|
|
|
if (atomic_read(&s2_mmu->refcnt) == 0)
|
|
break;
|
|
}
|
|
BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */
|
|
|
|
/* Set the scene for the next search */
|
|
kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size;
|
|
|
|
/* Make sure we don't forget to do the laundry */
|
|
if (kvm_s2_mmu_valid(s2_mmu))
|
|
s2_mmu->pending_unmap = true;
|
|
|
|
/*
|
|
* The virtual VMID (modulo CnP) will be used as a key when matching
|
|
* an existing kvm_s2_mmu.
|
|
*
|
|
* We cache VTCR at allocation time, once and for all. It'd be great
|
|
* if the guest didn't screw that one up, as this is not very
|
|
* forgiving...
|
|
*/
|
|
s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT;
|
|
s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
|
|
s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM;
|
|
|
|
out:
|
|
atomic_inc(&s2_mmu->refcnt);
|
|
|
|
/*
|
|
* Set the vCPU request to perform an unmap, even if the pending unmap
|
|
* originates from another vCPU. This guarantees that the MMU has been
|
|
* completely unmapped before any vCPU actually uses it, and allows
|
|
* multiple vCPUs to lend a hand with completing the unmap.
|
|
*/
|
|
if (s2_mmu->pending_unmap)
|
|
kvm_make_request(KVM_REQ_NESTED_S2_UNMAP, vcpu);
|
|
|
|
return s2_mmu;
|
|
}
|
|
|
|
void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
|
|
{
|
|
/* CnP being set denotes an invalid entry */
|
|
mmu->tlb_vttbr = VTTBR_CNP_BIT;
|
|
mmu->nested_stage2_enabled = false;
|
|
atomic_set(&mmu->refcnt, 0);
|
|
}
|
|
|
|
void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* If the vCPU kept its reference on the MMU after the last put,
|
|
* keep rolling with it.
|
|
*/
|
|
if (is_hyp_ctxt(vcpu)) {
|
|
if (!vcpu->arch.hw_mmu)
|
|
vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
|
|
} else {
|
|
if (!vcpu->arch.hw_mmu) {
|
|
scoped_guard(write_lock, &vcpu->kvm->mmu_lock)
|
|
vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu);
|
|
}
|
|
|
|
if (__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV)
|
|
kvm_make_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu);
|
|
}
|
|
}
|
|
|
|
void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Unconditionally drop the VNCR mapping if we have one */
|
|
if (host_data_test_flag(L1_VNCR_MAPPED)) {
|
|
BUG_ON(vcpu->arch.vncr_tlb->cpu != smp_processor_id());
|
|
BUG_ON(is_hyp_ctxt(vcpu));
|
|
|
|
clear_fixmap(vncr_fixmap(vcpu->arch.vncr_tlb->cpu));
|
|
vcpu->arch.vncr_tlb->cpu = -1;
|
|
host_data_clear_flag(L1_VNCR_MAPPED);
|
|
atomic_dec(&vcpu->kvm->arch.vncr_map_count);
|
|
}
|
|
|
|
/*
|
|
* Keep a reference on the associated stage-2 MMU if the vCPU is
|
|
* scheduling out and not in WFI emulation, suggesting it is likely to
|
|
* reuse the MMU sometime soon.
|
|
*/
|
|
if (vcpu->scheduled_out && !vcpu_get_flag(vcpu, IN_WFI))
|
|
return;
|
|
|
|
if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu))
|
|
atomic_dec(&vcpu->arch.hw_mmu->refcnt);
|
|
|
|
vcpu->arch.hw_mmu = NULL;
|
|
}
|
|
|
|
/*
|
|
* Returns non-zero if permission fault is handled by injecting it to the next
|
|
* level hypervisor.
|
|
*/
|
|
int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
|
|
{
|
|
bool forward_fault = false;
|
|
|
|
trans->esr = 0;
|
|
|
|
if (!kvm_vcpu_trap_is_permission_fault(vcpu))
|
|
return 0;
|
|
|
|
if (kvm_vcpu_trap_is_iabt(vcpu)) {
|
|
forward_fault = !kvm_s2_trans_executable(trans);
|
|
} else {
|
|
bool write_fault = kvm_is_write_fault(vcpu);
|
|
|
|
forward_fault = ((write_fault && !trans->writable) ||
|
|
(!write_fault && !trans->readable));
|
|
}
|
|
|
|
if (forward_fault)
|
|
trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);
|
|
|
|
return forward_fault;
|
|
}
|
|
|
|
int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
|
|
{
|
|
vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
|
|
vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);
|
|
|
|
return kvm_inject_nested_sync(vcpu, esr_el2);
|
|
}
|
|
|
|
static void invalidate_vncr(struct vncr_tlb *vt)
|
|
{
|
|
vt->valid = false;
|
|
if (vt->cpu != -1)
|
|
clear_fixmap(vncr_fixmap(vt->cpu));
|
|
}
|
|
|
|
static void kvm_invalidate_vncr_ipa(struct kvm *kvm, u64 start, u64 end)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
unsigned long i;
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY))
|
|
return;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
|
|
u64 ipa_start, ipa_end, ipa_size;
|
|
|
|
/*
|
|
* Careful here: We end-up here from an MMU notifier,
|
|
* and this can race against a vcpu not being onlined
|
|
* yet, without the pseudo-TLB being allocated.
|
|
*
|
|
* Skip those, as they obviously don't participate in
|
|
* the invalidation at this stage.
|
|
*/
|
|
if (!vt)
|
|
continue;
|
|
|
|
if (!vt->valid)
|
|
continue;
|
|
|
|
ipa_size = ttl_to_size(pgshift_level_to_ttl(vt->wi.pgshift,
|
|
vt->wr.level));
|
|
ipa_start = vt->wr.pa & (ipa_size - 1);
|
|
ipa_end = ipa_start + ipa_size;
|
|
|
|
if (ipa_end <= start || ipa_start >= end)
|
|
continue;
|
|
|
|
invalidate_vncr(vt);
|
|
}
|
|
}
|
|
|
|
struct s1e2_tlbi_scope {
|
|
enum {
|
|
TLBI_ALL,
|
|
TLBI_VA,
|
|
TLBI_VAA,
|
|
TLBI_ASID,
|
|
} type;
|
|
|
|
u16 asid;
|
|
u64 va;
|
|
u64 size;
|
|
};
|
|
|
|
static void invalidate_vncr_va(struct kvm *kvm,
|
|
struct s1e2_tlbi_scope *scope)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
unsigned long i;
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
|
|
u64 va_start, va_end, va_size;
|
|
|
|
if (!vt->valid)
|
|
continue;
|
|
|
|
va_size = ttl_to_size(pgshift_level_to_ttl(vt->wi.pgshift,
|
|
vt->wr.level));
|
|
va_start = vt->gva & (va_size - 1);
|
|
va_end = va_start + va_size;
|
|
|
|
switch (scope->type) {
|
|
case TLBI_ALL:
|
|
break;
|
|
|
|
case TLBI_VA:
|
|
if (va_end <= scope->va ||
|
|
va_start >= (scope->va + scope->size))
|
|
continue;
|
|
if (vt->wr.nG && vt->wr.asid != scope->asid)
|
|
continue;
|
|
break;
|
|
|
|
case TLBI_VAA:
|
|
if (va_end <= scope->va ||
|
|
va_start >= (scope->va + scope->size))
|
|
continue;
|
|
break;
|
|
|
|
case TLBI_ASID:
|
|
if (!vt->wr.nG || vt->wr.asid != scope->asid)
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
invalidate_vncr(vt);
|
|
}
|
|
}
|
|
|
|
#define tlbi_va_s1_to_va(v) (u64)sign_extend64((v) << 12, 48)
|
|
|
|
static void compute_s1_tlbi_range(struct kvm_vcpu *vcpu, u32 inst, u64 val,
|
|
struct s1e2_tlbi_scope *scope)
|
|
{
|
|
switch (inst) {
|
|
case OP_TLBI_ALLE2:
|
|
case OP_TLBI_ALLE2IS:
|
|
case OP_TLBI_ALLE2OS:
|
|
case OP_TLBI_VMALLE1:
|
|
case OP_TLBI_VMALLE1IS:
|
|
case OP_TLBI_VMALLE1OS:
|
|
case OP_TLBI_ALLE2NXS:
|
|
case OP_TLBI_ALLE2ISNXS:
|
|
case OP_TLBI_ALLE2OSNXS:
|
|
case OP_TLBI_VMALLE1NXS:
|
|
case OP_TLBI_VMALLE1ISNXS:
|
|
case OP_TLBI_VMALLE1OSNXS:
|
|
scope->type = TLBI_ALL;
|
|
break;
|
|
case OP_TLBI_VAE2:
|
|
case OP_TLBI_VAE2IS:
|
|
case OP_TLBI_VAE2OS:
|
|
case OP_TLBI_VAE1:
|
|
case OP_TLBI_VAE1IS:
|
|
case OP_TLBI_VAE1OS:
|
|
case OP_TLBI_VAE2NXS:
|
|
case OP_TLBI_VAE2ISNXS:
|
|
case OP_TLBI_VAE2OSNXS:
|
|
case OP_TLBI_VAE1NXS:
|
|
case OP_TLBI_VAE1ISNXS:
|
|
case OP_TLBI_VAE1OSNXS:
|
|
case OP_TLBI_VALE2:
|
|
case OP_TLBI_VALE2IS:
|
|
case OP_TLBI_VALE2OS:
|
|
case OP_TLBI_VALE1:
|
|
case OP_TLBI_VALE1IS:
|
|
case OP_TLBI_VALE1OS:
|
|
case OP_TLBI_VALE2NXS:
|
|
case OP_TLBI_VALE2ISNXS:
|
|
case OP_TLBI_VALE2OSNXS:
|
|
case OP_TLBI_VALE1NXS:
|
|
case OP_TLBI_VALE1ISNXS:
|
|
case OP_TLBI_VALE1OSNXS:
|
|
scope->type = TLBI_VA;
|
|
scope->size = ttl_to_size(FIELD_GET(TLBI_TTL_MASK, val));
|
|
if (!scope->size)
|
|
scope->size = SZ_1G;
|
|
scope->va = tlbi_va_s1_to_va(val) & ~(scope->size - 1);
|
|
scope->asid = FIELD_GET(TLBIR_ASID_MASK, val);
|
|
break;
|
|
case OP_TLBI_ASIDE1:
|
|
case OP_TLBI_ASIDE1IS:
|
|
case OP_TLBI_ASIDE1OS:
|
|
case OP_TLBI_ASIDE1NXS:
|
|
case OP_TLBI_ASIDE1ISNXS:
|
|
case OP_TLBI_ASIDE1OSNXS:
|
|
scope->type = TLBI_ASID;
|
|
scope->asid = FIELD_GET(TLBIR_ASID_MASK, val);
|
|
break;
|
|
case OP_TLBI_VAAE1:
|
|
case OP_TLBI_VAAE1IS:
|
|
case OP_TLBI_VAAE1OS:
|
|
case OP_TLBI_VAAE1NXS:
|
|
case OP_TLBI_VAAE1ISNXS:
|
|
case OP_TLBI_VAAE1OSNXS:
|
|
case OP_TLBI_VAALE1:
|
|
case OP_TLBI_VAALE1IS:
|
|
case OP_TLBI_VAALE1OS:
|
|
case OP_TLBI_VAALE1NXS:
|
|
case OP_TLBI_VAALE1ISNXS:
|
|
case OP_TLBI_VAALE1OSNXS:
|
|
scope->type = TLBI_VAA;
|
|
scope->size = ttl_to_size(FIELD_GET(TLBI_TTL_MASK, val));
|
|
if (!scope->size)
|
|
scope->size = SZ_1G;
|
|
scope->va = tlbi_va_s1_to_va(val) & ~(scope->size - 1);
|
|
break;
|
|
case OP_TLBI_RVAE2:
|
|
case OP_TLBI_RVAE2IS:
|
|
case OP_TLBI_RVAE2OS:
|
|
case OP_TLBI_RVAE1:
|
|
case OP_TLBI_RVAE1IS:
|
|
case OP_TLBI_RVAE1OS:
|
|
case OP_TLBI_RVAE2NXS:
|
|
case OP_TLBI_RVAE2ISNXS:
|
|
case OP_TLBI_RVAE2OSNXS:
|
|
case OP_TLBI_RVAE1NXS:
|
|
case OP_TLBI_RVAE1ISNXS:
|
|
case OP_TLBI_RVAE1OSNXS:
|
|
case OP_TLBI_RVALE2:
|
|
case OP_TLBI_RVALE2IS:
|
|
case OP_TLBI_RVALE2OS:
|
|
case OP_TLBI_RVALE1:
|
|
case OP_TLBI_RVALE1IS:
|
|
case OP_TLBI_RVALE1OS:
|
|
case OP_TLBI_RVALE2NXS:
|
|
case OP_TLBI_RVALE2ISNXS:
|
|
case OP_TLBI_RVALE2OSNXS:
|
|
case OP_TLBI_RVALE1NXS:
|
|
case OP_TLBI_RVALE1ISNXS:
|
|
case OP_TLBI_RVALE1OSNXS:
|
|
scope->type = TLBI_VA;
|
|
scope->va = decode_range_tlbi(val, &scope->size, &scope->asid);
|
|
break;
|
|
case OP_TLBI_RVAAE1:
|
|
case OP_TLBI_RVAAE1IS:
|
|
case OP_TLBI_RVAAE1OS:
|
|
case OP_TLBI_RVAAE1NXS:
|
|
case OP_TLBI_RVAAE1ISNXS:
|
|
case OP_TLBI_RVAAE1OSNXS:
|
|
case OP_TLBI_RVAALE1:
|
|
case OP_TLBI_RVAALE1IS:
|
|
case OP_TLBI_RVAALE1OS:
|
|
case OP_TLBI_RVAALE1NXS:
|
|
case OP_TLBI_RVAALE1ISNXS:
|
|
case OP_TLBI_RVAALE1OSNXS:
|
|
scope->type = TLBI_VAA;
|
|
scope->va = decode_range_tlbi(val, &scope->size, NULL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void kvm_handle_s1e2_tlbi(struct kvm_vcpu *vcpu, u32 inst, u64 val)
|
|
{
|
|
struct s1e2_tlbi_scope scope = {};
|
|
|
|
compute_s1_tlbi_range(vcpu, inst, val, &scope);
|
|
|
|
guard(write_lock)(&vcpu->kvm->mmu_lock);
|
|
invalidate_vncr_va(vcpu->kvm, &scope);
|
|
}
|
|
|
|
void kvm_nested_s2_wp(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
|
|
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
|
|
|
|
if (kvm_s2_mmu_valid(mmu))
|
|
kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu));
|
|
}
|
|
|
|
kvm_invalidate_vncr_ipa(kvm, 0, BIT(kvm->arch.mmu.pgt->ia_bits));
|
|
}
|
|
|
|
void kvm_nested_s2_unmap(struct kvm *kvm, bool may_block)
|
|
{
|
|
int i;
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
|
|
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
|
|
|
|
if (kvm_s2_mmu_valid(mmu))
|
|
kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), may_block);
|
|
}
|
|
|
|
kvm_invalidate_vncr_ipa(kvm, 0, BIT(kvm->arch.mmu.pgt->ia_bits));
|
|
}
|
|
|
|
void kvm_nested_s2_flush(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
|
|
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
|
|
|
|
if (kvm_s2_mmu_valid(mmu))
|
|
kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu));
|
|
}
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_all(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
|
|
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
|
|
|
|
if (!WARN_ON(atomic_read(&mmu->refcnt)))
|
|
kvm_free_stage2_pgd(mmu);
|
|
}
|
|
kvfree(kvm->arch.nested_mmus);
|
|
kvm->arch.nested_mmus = NULL;
|
|
kvm->arch.nested_mmus_size = 0;
|
|
kvm_uninit_stage2_mmu(kvm);
|
|
}
|
|
|
|
/*
|
|
* Dealing with VNCR_EL2 exposed by the *guest* is a complicated matter:
|
|
*
|
|
* - We introduce an internal representation of a vcpu-private TLB,
|
|
* representing the mapping between the guest VA contained in VNCR_EL2,
|
|
* the IPA the guest's EL2 PTs point to, and the actual PA this lives at.
|
|
*
|
|
* - On translation fault from a nested VNCR access, we create such a TLB.
|
|
* If there is no mapping to describe, the guest inherits the fault.
|
|
* Crucially, no actual mapping is done at this stage.
|
|
*
|
|
* - On vcpu_load() in a non-HYP context with HCR_EL2.NV==1, if the above
|
|
* TLB exists, we map it in the fixmap for this CPU, and run with it. We
|
|
* have to respect the permissions dictated by the guest, but not the
|
|
* memory type (FWB is a must).
|
|
*
|
|
* - Note that we usually don't do a vcpu_load() on the back of a fault
|
|
* (unless we are preempted), so the resolution of a translation fault
|
|
* must go via a request that will map the VNCR page in the fixmap.
|
|
* vcpu_load() might as well use the same mechanism.
|
|
*
|
|
* - On vcpu_put() in a non-HYP context with HCR_EL2.NV==1, if the TLB was
|
|
* mapped, we unmap it. Yes it is that simple. The TLB still exists
|
|
* though, and may be reused at a later load.
|
|
*
|
|
* - On permission fault, we simply forward the fault to the guest's EL2.
|
|
* Get out of my way.
|
|
*
|
|
* - On any TLBI for the EL2&0 translation regime, we must find any TLB that
|
|
* intersects with the TLBI request, invalidate it, and unmap the page
|
|
* from the fixmap. Because we need to look at all the vcpu-private TLBs,
|
|
* this requires some wide-ranging locking to ensure that nothing races
|
|
* against it. This may require some refcounting to avoid the search when
|
|
* no such TLB is present.
|
|
*
|
|
* - On MMU notifiers, we must invalidate our TLB in a similar way, but
|
|
* looking at the IPA instead. The funny part is that there may not be a
|
|
* stage-2 mapping for this page if L1 hasn't accessed it using LD/ST
|
|
* instructions.
|
|
*/
|
|
|
|
int kvm_vcpu_allocate_vncr_tlb(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY))
|
|
return 0;
|
|
|
|
vcpu->arch.vncr_tlb = kzalloc(sizeof(*vcpu->arch.vncr_tlb),
|
|
GFP_KERNEL_ACCOUNT);
|
|
if (!vcpu->arch.vncr_tlb)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 read_vncr_el2(struct kvm_vcpu *vcpu)
|
|
{
|
|
return (u64)sign_extend64(__vcpu_sys_reg(vcpu, VNCR_EL2), 48);
|
|
}
|
|
|
|
static int kvm_translate_vncr(struct kvm_vcpu *vcpu)
|
|
{
|
|
bool write_fault, writable;
|
|
unsigned long mmu_seq;
|
|
struct vncr_tlb *vt;
|
|
struct page *page;
|
|
u64 va, pfn, gfn;
|
|
int ret;
|
|
|
|
vt = vcpu->arch.vncr_tlb;
|
|
|
|
/*
|
|
* If we're about to walk the EL2 S1 PTs, we must invalidate the
|
|
* current TLB, as it could be sampled from another vcpu doing a
|
|
* TLBI *IS. A real CPU wouldn't do that, but we only keep a single
|
|
* translation, so not much of a choice.
|
|
*
|
|
* We also prepare the next walk wilst we're at it.
|
|
*/
|
|
scoped_guard(write_lock, &vcpu->kvm->mmu_lock) {
|
|
invalidate_vncr(vt);
|
|
|
|
vt->wi = (struct s1_walk_info) {
|
|
.regime = TR_EL20,
|
|
.as_el0 = false,
|
|
.pan = false,
|
|
};
|
|
vt->wr = (struct s1_walk_result){};
|
|
}
|
|
|
|
guard(srcu)(&vcpu->kvm->srcu);
|
|
|
|
va = read_vncr_el2(vcpu);
|
|
|
|
ret = __kvm_translate_va(vcpu, &vt->wi, &vt->wr, va);
|
|
if (ret)
|
|
return ret;
|
|
|
|
write_fault = kvm_is_write_fault(vcpu);
|
|
|
|
mmu_seq = vcpu->kvm->mmu_invalidate_seq;
|
|
smp_rmb();
|
|
|
|
gfn = vt->wr.pa >> PAGE_SHIFT;
|
|
pfn = kvm_faultin_pfn(vcpu, gfn, write_fault, &writable, &page);
|
|
if (is_error_noslot_pfn(pfn) || (write_fault && !writable))
|
|
return -EFAULT;
|
|
|
|
scoped_guard(write_lock, &vcpu->kvm->mmu_lock) {
|
|
if (mmu_invalidate_retry(vcpu->kvm, mmu_seq))
|
|
return -EAGAIN;
|
|
|
|
vt->gva = va;
|
|
vt->hpa = pfn << PAGE_SHIFT;
|
|
vt->valid = true;
|
|
vt->cpu = -1;
|
|
|
|
kvm_make_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu);
|
|
kvm_release_faultin_page(vcpu->kvm, page, false, vt->wr.pw);
|
|
}
|
|
|
|
if (vt->wr.pw)
|
|
mark_page_dirty(vcpu->kvm, gfn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void inject_vncr_perm(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
|
|
/* Adjust the fault level to reflect that of the guest's */
|
|
esr &= ~ESR_ELx_FSC;
|
|
esr |= FIELD_PREP(ESR_ELx_FSC,
|
|
ESR_ELx_FSC_PERM_L(vt->wr.level));
|
|
|
|
kvm_inject_nested_sync(vcpu, esr);
|
|
}
|
|
|
|
static bool kvm_vncr_tlb_lookup(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
|
|
|
|
lockdep_assert_held_read(&vcpu->kvm->mmu_lock);
|
|
|
|
if (!vt->valid)
|
|
return false;
|
|
|
|
if (read_vncr_el2(vcpu) != vt->gva)
|
|
return false;
|
|
|
|
if (vt->wr.nG) {
|
|
u64 tcr = vcpu_read_sys_reg(vcpu, TCR_EL2);
|
|
u64 ttbr = ((tcr & TCR_A1) ?
|
|
vcpu_read_sys_reg(vcpu, TTBR1_EL2) :
|
|
vcpu_read_sys_reg(vcpu, TTBR0_EL2));
|
|
u16 asid;
|
|
|
|
asid = FIELD_GET(TTBR_ASID_MASK, ttbr);
|
|
if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR0_EL1, ASIDBITS, 16) ||
|
|
!(tcr & TCR_ASID16))
|
|
asid &= GENMASK(7, 0);
|
|
|
|
return asid != vt->wr.asid;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int kvm_handle_vncr_abort(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
|
|
BUG_ON(!(esr & ESR_ELx_VNCR_SHIFT));
|
|
|
|
if (esr_fsc_is_permission_fault(esr)) {
|
|
inject_vncr_perm(vcpu);
|
|
} else if (esr_fsc_is_translation_fault(esr)) {
|
|
bool valid;
|
|
int ret;
|
|
|
|
scoped_guard(read_lock, &vcpu->kvm->mmu_lock)
|
|
valid = kvm_vncr_tlb_lookup(vcpu);
|
|
|
|
if (!valid)
|
|
ret = kvm_translate_vncr(vcpu);
|
|
else
|
|
ret = -EPERM;
|
|
|
|
switch (ret) {
|
|
case -EAGAIN:
|
|
case -ENOMEM:
|
|
/* Let's try again... */
|
|
break;
|
|
case -EFAULT:
|
|
case -EINVAL:
|
|
case -ENOENT:
|
|
case -EACCES:
|
|
/*
|
|
* Translation failed, inject the corresponding
|
|
* exception back to EL2.
|
|
*/
|
|
BUG_ON(!vt->wr.failed);
|
|
|
|
esr &= ~ESR_ELx_FSC;
|
|
esr |= FIELD_PREP(ESR_ELx_FSC, vt->wr.fst);
|
|
|
|
kvm_inject_nested_sync(vcpu, esr);
|
|
break;
|
|
case -EPERM:
|
|
/* Hack to deal with POE until we get kernel support */
|
|
inject_vncr_perm(vcpu);
|
|
break;
|
|
case 0:
|
|
break;
|
|
}
|
|
} else {
|
|
WARN_ONCE(1, "Unhandled VNCR abort, ESR=%llx\n", esr);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void kvm_map_l1_vncr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
|
|
pgprot_t prot;
|
|
|
|
guard(preempt)();
|
|
guard(read_lock)(&vcpu->kvm->mmu_lock);
|
|
|
|
/*
|
|
* The request to map VNCR may have raced against some other
|
|
* event, such as an interrupt, and may not be valid anymore.
|
|
*/
|
|
if (is_hyp_ctxt(vcpu))
|
|
return;
|
|
|
|
/*
|
|
* Check that the pseudo-TLB is valid and that VNCR_EL2 still
|
|
* contains the expected value. If it doesn't, we simply bail out
|
|
* without a mapping -- a transformed MSR/MRS will generate the
|
|
* fault and allows us to populate the pseudo-TLB.
|
|
*/
|
|
if (!vt->valid)
|
|
return;
|
|
|
|
if (read_vncr_el2(vcpu) != vt->gva)
|
|
return;
|
|
|
|
if (vt->wr.nG) {
|
|
u64 tcr = vcpu_read_sys_reg(vcpu, TCR_EL2);
|
|
u64 ttbr = ((tcr & TCR_A1) ?
|
|
vcpu_read_sys_reg(vcpu, TTBR1_EL2) :
|
|
vcpu_read_sys_reg(vcpu, TTBR0_EL2));
|
|
u16 asid;
|
|
|
|
asid = FIELD_GET(TTBR_ASID_MASK, ttbr);
|
|
if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR0_EL1, ASIDBITS, 16) ||
|
|
!(tcr & TCR_ASID16))
|
|
asid &= GENMASK(7, 0);
|
|
|
|
if (asid != vt->wr.asid)
|
|
return;
|
|
}
|
|
|
|
vt->cpu = smp_processor_id();
|
|
|
|
if (vt->wr.pw && vt->wr.pr)
|
|
prot = PAGE_KERNEL;
|
|
else if (vt->wr.pr)
|
|
prot = PAGE_KERNEL_RO;
|
|
else
|
|
prot = PAGE_NONE;
|
|
|
|
/*
|
|
* We can't map write-only (or no permission at all) in the kernel,
|
|
* but the guest can do it if using POE, so we'll have to turn a
|
|
* translation fault into a permission fault at runtime.
|
|
* FIXME: WO doesn't work at all, need POE support in the kernel.
|
|
*/
|
|
if (pgprot_val(prot) != pgprot_val(PAGE_NONE)) {
|
|
__set_fixmap(vncr_fixmap(vt->cpu), vt->hpa, prot);
|
|
host_data_set_flag(L1_VNCR_MAPPED);
|
|
atomic_inc(&vcpu->kvm->arch.vncr_map_count);
|
|
}
|
|
}
|
|
|
|
#define has_tgran_2(__r, __sz) \
|
|
({ \
|
|
u64 _s1, _s2, _mmfr0 = __r; \
|
|
\
|
|
_s2 = SYS_FIELD_GET(ID_AA64MMFR0_EL1, \
|
|
TGRAN##__sz##_2, _mmfr0); \
|
|
\
|
|
_s1 = SYS_FIELD_GET(ID_AA64MMFR0_EL1, \
|
|
TGRAN##__sz, _mmfr0); \
|
|
\
|
|
((_s2 != ID_AA64MMFR0_EL1_TGRAN##__sz##_2_NI && \
|
|
_s2 != ID_AA64MMFR0_EL1_TGRAN##__sz##_2_TGRAN##__sz) || \
|
|
(_s2 == ID_AA64MMFR0_EL1_TGRAN##__sz##_2_TGRAN##__sz && \
|
|
_s1 != ID_AA64MMFR0_EL1_TGRAN##__sz##_NI)); \
|
|
})
|
|
/*
|
|
* Our emulated CPU doesn't support all the possible features. For the
|
|
* sake of simplicity (and probably mental sanity), wipe out a number
|
|
* of feature bits we don't intend to support for the time being.
|
|
* This list should get updated as new features get added to the NV
|
|
* support, and new extension to the architecture.
|
|
*/
|
|
u64 limit_nv_id_reg(struct kvm *kvm, u32 reg, u64 val)
|
|
{
|
|
u64 orig_val = val;
|
|
|
|
switch (reg) {
|
|
case SYS_ID_AA64ISAR0_EL1:
|
|
/* Support everything but TME */
|
|
val &= ~ID_AA64ISAR0_EL1_TME;
|
|
break;
|
|
|
|
case SYS_ID_AA64ISAR1_EL1:
|
|
/* Support everything but LS64 and Spec Invalidation */
|
|
val &= ~(ID_AA64ISAR1_EL1_LS64 |
|
|
ID_AA64ISAR1_EL1_SPECRES);
|
|
break;
|
|
|
|
case SYS_ID_AA64PFR0_EL1:
|
|
/* No RME, AMU, MPAM, or S-EL2 */
|
|
val &= ~(ID_AA64PFR0_EL1_RME |
|
|
ID_AA64PFR0_EL1_AMU |
|
|
ID_AA64PFR0_EL1_MPAM |
|
|
ID_AA64PFR0_EL1_SEL2 |
|
|
ID_AA64PFR0_EL1_EL3 |
|
|
ID_AA64PFR0_EL1_EL2 |
|
|
ID_AA64PFR0_EL1_EL1 |
|
|
ID_AA64PFR0_EL1_EL0);
|
|
/* 64bit only at any EL */
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL0, IMP);
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL1, IMP);
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL2, IMP);
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL3, IMP);
|
|
break;
|
|
|
|
case SYS_ID_AA64PFR1_EL1:
|
|
/* Only support BTI, SSBS, CSV2_frac */
|
|
val &= (ID_AA64PFR1_EL1_BT |
|
|
ID_AA64PFR1_EL1_SSBS |
|
|
ID_AA64PFR1_EL1_CSV2_frac);
|
|
break;
|
|
|
|
case SYS_ID_AA64MMFR0_EL1:
|
|
/* Hide ExS, Secure Memory */
|
|
val &= ~(ID_AA64MMFR0_EL1_EXS |
|
|
ID_AA64MMFR0_EL1_TGRAN4_2 |
|
|
ID_AA64MMFR0_EL1_TGRAN16_2 |
|
|
ID_AA64MMFR0_EL1_TGRAN64_2 |
|
|
ID_AA64MMFR0_EL1_SNSMEM);
|
|
|
|
/* Hide CNTPOFF if present */
|
|
val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, ECV, IMP);
|
|
|
|
/* Disallow unsupported S2 page sizes */
|
|
switch (PAGE_SIZE) {
|
|
case SZ_64K:
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, NI);
|
|
fallthrough;
|
|
case SZ_16K:
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, NI);
|
|
fallthrough;
|
|
case SZ_4K:
|
|
/* Support everything */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Since we can't support a guest S2 page size smaller
|
|
* than the host's own page size (due to KVM only
|
|
* populating its own S2 using the kernel's page
|
|
* size), advertise the limitation using FEAT_GTG.
|
|
*/
|
|
switch (PAGE_SIZE) {
|
|
case SZ_4K:
|
|
if (has_tgran_2(orig_val, 4))
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, IMP);
|
|
fallthrough;
|
|
case SZ_16K:
|
|
if (has_tgran_2(orig_val, 16))
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, IMP);
|
|
fallthrough;
|
|
case SZ_64K:
|
|
if (has_tgran_2(orig_val, 64))
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN64_2, IMP);
|
|
break;
|
|
}
|
|
|
|
/* Cap PARange to 48bits */
|
|
val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, PARANGE, 48);
|
|
break;
|
|
|
|
case SYS_ID_AA64MMFR1_EL1:
|
|
val &= (ID_AA64MMFR1_EL1_HCX |
|
|
ID_AA64MMFR1_EL1_PAN |
|
|
ID_AA64MMFR1_EL1_LO |
|
|
ID_AA64MMFR1_EL1_HPDS |
|
|
ID_AA64MMFR1_EL1_VH |
|
|
ID_AA64MMFR1_EL1_VMIDBits);
|
|
/* FEAT_E2H0 implies no VHE */
|
|
if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features))
|
|
val &= ~ID_AA64MMFR1_EL1_VH;
|
|
break;
|
|
|
|
case SYS_ID_AA64MMFR2_EL1:
|
|
val &= ~(ID_AA64MMFR2_EL1_BBM |
|
|
ID_AA64MMFR2_EL1_TTL |
|
|
GENMASK_ULL(47, 44) |
|
|
ID_AA64MMFR2_EL1_ST |
|
|
ID_AA64MMFR2_EL1_CCIDX |
|
|
ID_AA64MMFR2_EL1_VARange);
|
|
|
|
/* Force TTL support */
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR2_EL1, TTL, IMP);
|
|
break;
|
|
|
|
case SYS_ID_AA64MMFR4_EL1:
|
|
/*
|
|
* You get EITHER
|
|
*
|
|
* - FEAT_VHE without FEAT_E2H0
|
|
* - FEAT_NV limited to FEAT_NV2
|
|
* - HCR_EL2.NV1 being RES0
|
|
*
|
|
* OR
|
|
*
|
|
* - FEAT_E2H0 without FEAT_VHE nor FEAT_NV
|
|
*
|
|
* Life is too short for anything else.
|
|
*/
|
|
if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features)) {
|
|
val = 0;
|
|
} else {
|
|
val = SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY);
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, E2H0, NI_NV1);
|
|
}
|
|
break;
|
|
|
|
case SYS_ID_AA64DFR0_EL1:
|
|
/* Only limited support for PMU, Debug, BPs, WPs, and HPMN0 */
|
|
val &= (ID_AA64DFR0_EL1_PMUVer |
|
|
ID_AA64DFR0_EL1_WRPs |
|
|
ID_AA64DFR0_EL1_BRPs |
|
|
ID_AA64DFR0_EL1_DebugVer|
|
|
ID_AA64DFR0_EL1_HPMN0);
|
|
|
|
/* Cap Debug to ARMv8.1 */
|
|
val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, VHE);
|
|
break;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *vcpu,
|
|
enum vcpu_sysreg sr, u64 v)
|
|
{
|
|
struct kvm_sysreg_masks *masks;
|
|
|
|
masks = vcpu->kvm->arch.sysreg_masks;
|
|
|
|
if (masks) {
|
|
sr -= __SANITISED_REG_START__;
|
|
|
|
v &= ~masks->mask[sr].res0;
|
|
v |= masks->mask[sr].res1;
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
static __always_inline void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1)
|
|
{
|
|
int i = sr - __SANITISED_REG_START__;
|
|
|
|
BUILD_BUG_ON(!__builtin_constant_p(sr));
|
|
BUILD_BUG_ON(sr < __SANITISED_REG_START__);
|
|
BUILD_BUG_ON(sr >= NR_SYS_REGS);
|
|
|
|
kvm->arch.sysreg_masks->mask[i].res0 = res0;
|
|
kvm->arch.sysreg_masks->mask[i].res1 = res1;
|
|
}
|
|
|
|
int kvm_init_nv_sysregs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
u64 res0, res1;
|
|
|
|
lockdep_assert_held(&kvm->arch.config_lock);
|
|
|
|
if (kvm->arch.sysreg_masks)
|
|
goto out;
|
|
|
|
kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)),
|
|
GFP_KERNEL_ACCOUNT);
|
|
if (!kvm->arch.sysreg_masks)
|
|
return -ENOMEM;
|
|
|
|
/* VTTBR_EL2 */
|
|
res0 = res1 = 0;
|
|
if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16))
|
|
res0 |= GENMASK(63, 56);
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP))
|
|
res0 |= VTTBR_CNP_BIT;
|
|
set_sysreg_masks(kvm, VTTBR_EL2, res0, res1);
|
|
|
|
/* VTCR_EL2 */
|
|
res0 = GENMASK(63, 32) | GENMASK(30, 20);
|
|
res1 = BIT(31);
|
|
set_sysreg_masks(kvm, VTCR_EL2, res0, res1);
|
|
|
|
/* VMPIDR_EL2 */
|
|
res0 = GENMASK(63, 40) | GENMASK(30, 24);
|
|
res1 = BIT(31);
|
|
set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1);
|
|
|
|
/* HCR_EL2 */
|
|
get_reg_fixed_bits(kvm, HCR_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, HCR_EL2, res0, res1);
|
|
|
|
/* HCRX_EL2 */
|
|
get_reg_fixed_bits(kvm, HCRX_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, HCRX_EL2, res0, res1);
|
|
|
|
/* HFG[RW]TR_EL2 */
|
|
get_reg_fixed_bits(kvm, HFGRTR_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, HFGRTR_EL2, res0, res1);
|
|
get_reg_fixed_bits(kvm, HFGWTR_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, HFGWTR_EL2, res0, res1);
|
|
|
|
/* HDFG[RW]TR_EL2 */
|
|
get_reg_fixed_bits(kvm, HDFGRTR_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, HDFGRTR_EL2, res0, res1);
|
|
get_reg_fixed_bits(kvm, HDFGWTR_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, HDFGWTR_EL2, res0, res1);
|
|
|
|
/* HFGITR_EL2 */
|
|
get_reg_fixed_bits(kvm, HFGITR_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, HFGITR_EL2, res0, res1);
|
|
|
|
/* HAFGRTR_EL2 - not a lot to see here */
|
|
get_reg_fixed_bits(kvm, HAFGRTR_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1);
|
|
|
|
/* HFG[RW]TR2_EL2 */
|
|
get_reg_fixed_bits(kvm, HFGRTR2_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, HFGRTR2_EL2, res0, res1);
|
|
get_reg_fixed_bits(kvm, HFGWTR2_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, HFGWTR2_EL2, res0, res1);
|
|
|
|
/* HDFG[RW]TR2_EL2 */
|
|
get_reg_fixed_bits(kvm, HDFGRTR2_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, HDFGRTR2_EL2, res0, res1);
|
|
get_reg_fixed_bits(kvm, HDFGWTR2_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, HDFGWTR2_EL2, res0, res1);
|
|
|
|
/* HFGITR2_EL2 */
|
|
get_reg_fixed_bits(kvm, HFGITR2_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, HFGITR2_EL2, res0, res1);
|
|
|
|
/* TCR2_EL2 */
|
|
get_reg_fixed_bits(kvm, TCR2_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, TCR2_EL2, res0, res1);
|
|
|
|
/* SCTLR_EL1 */
|
|
get_reg_fixed_bits(kvm, SCTLR_EL1, &res0, &res1);
|
|
set_sysreg_masks(kvm, SCTLR_EL1, res0, res1);
|
|
|
|
/* SCTLR2_ELx */
|
|
get_reg_fixed_bits(kvm, SCTLR2_EL1, &res0, &res1);
|
|
set_sysreg_masks(kvm, SCTLR2_EL1, res0, res1);
|
|
get_reg_fixed_bits(kvm, SCTLR2_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, SCTLR2_EL2, res0, res1);
|
|
|
|
/* MDCR_EL2 */
|
|
get_reg_fixed_bits(kvm, MDCR_EL2, &res0, &res1);
|
|
set_sysreg_masks(kvm, MDCR_EL2, res0, res1);
|
|
|
|
/* CNTHCTL_EL2 */
|
|
res0 = GENMASK(63, 20);
|
|
res1 = 0;
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RME, IMP))
|
|
res0 |= CNTHCTL_CNTPMASK | CNTHCTL_CNTVMASK;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, CNTPOFF)) {
|
|
res0 |= CNTHCTL_ECV;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, IMP))
|
|
res0 |= (CNTHCTL_EL1TVT | CNTHCTL_EL1TVCT |
|
|
CNTHCTL_EL1NVPCT | CNTHCTL_EL1NVVCT);
|
|
}
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP))
|
|
res0 |= GENMASK(11, 8);
|
|
set_sysreg_masks(kvm, CNTHCTL_EL2, res0, res1);
|
|
|
|
/* ICH_HCR_EL2 */
|
|
res0 = ICH_HCR_EL2_RES0;
|
|
res1 = ICH_HCR_EL2_RES1;
|
|
if (!(kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_EL2_TDS))
|
|
res0 |= ICH_HCR_EL2_TDIR;
|
|
/* No GICv4 is presented to the guest */
|
|
res0 |= ICH_HCR_EL2_DVIM | ICH_HCR_EL2_vSGIEOICount;
|
|
set_sysreg_masks(kvm, ICH_HCR_EL2, res0, res1);
|
|
|
|
/* VNCR_EL2 */
|
|
set_sysreg_masks(kvm, VNCR_EL2, VNCR_EL2_RES0, VNCR_EL2_RES1);
|
|
|
|
out:
|
|
for (enum vcpu_sysreg sr = __SANITISED_REG_START__; sr < NR_SYS_REGS; sr++)
|
|
__vcpu_rmw_sys_reg(vcpu, sr, |=, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void check_nested_vcpu_requests(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (kvm_check_request(KVM_REQ_NESTED_S2_UNMAP, vcpu)) {
|
|
struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
|
|
|
|
write_lock(&vcpu->kvm->mmu_lock);
|
|
if (mmu->pending_unmap) {
|
|
kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), true);
|
|
mmu->pending_unmap = false;
|
|
}
|
|
write_unlock(&vcpu->kvm->mmu_lock);
|
|
}
|
|
|
|
if (kvm_check_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu))
|
|
kvm_map_l1_vncr(vcpu);
|
|
|
|
/* Must be last, as may switch context! */
|
|
if (kvm_check_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu))
|
|
kvm_inject_nested_irq(vcpu);
|
|
}
|
|
|
|
/*
|
|
* One of the many architectural bugs in FEAT_NV2 is that the guest hypervisor
|
|
* can write to HCR_EL2 behind our back, potentially changing the exception
|
|
* routing / masking for even the host context.
|
|
*
|
|
* What follows is some slop to (1) react to exception routing / masking and (2)
|
|
* preserve the pending SError state across translation regimes.
|
|
*/
|
|
void kvm_nested_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu_has_nv(vcpu))
|
|
return;
|
|
|
|
if (unlikely(vcpu_test_and_clear_flag(vcpu, NESTED_SERROR_PENDING)))
|
|
kvm_inject_serror_esr(vcpu, vcpu_get_vsesr(vcpu));
|
|
}
|
|
|
|
void kvm_nested_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long *hcr = vcpu_hcr(vcpu);
|
|
|
|
if (!vcpu_has_nv(vcpu))
|
|
return;
|
|
|
|
/*
|
|
* We previously decided that an SError was deliverable to the guest.
|
|
* Reap the pending state from HCR_EL2 and...
|
|
*/
|
|
if (unlikely(__test_and_clear_bit(__ffs(HCR_VSE), hcr)))
|
|
vcpu_set_flag(vcpu, NESTED_SERROR_PENDING);
|
|
|
|
/*
|
|
* Re-attempt SError injection in case the deliverability has changed,
|
|
* which is necessary to faithfully emulate WFI the case of a pending
|
|
* SError being a wakeup condition.
|
|
*/
|
|
if (unlikely(vcpu_test_and_clear_flag(vcpu, NESTED_SERROR_PENDING)))
|
|
kvm_inject_serror_esr(vcpu, vcpu_get_vsesr(vcpu));
|
|
}
|