linux/arch/arm64/kvm/nested.c

1796 lines
45 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2017 - Columbia University and Linaro Ltd.
* Author: Jintack Lim <jintack.lim@linaro.org>
*/
#include <linux/bitfield.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <asm/fixmap.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_nested.h>
#include <asm/sysreg.h>
#include "sys_regs.h"
struct vncr_tlb {
/* The guest's VNCR_EL2 */
u64 gva;
struct s1_walk_info wi;
struct s1_walk_result wr;
u64 hpa;
/* -1 when not mapped on a CPU */
int cpu;
/*
* true if the TLB is valid. Can only be changed with the
* mmu_lock held.
*/
bool valid;
};
/*
* Ratio of live shadow S2 MMU per vcpu. This is a trade-off between
* memory usage and potential number of different sets of S2 PTs in
* the guests. Running out of S2 MMUs only affects performance (we
* will invalidate them more often).
*/
#define S2_MMU_PER_VCPU 2
void kvm_init_nested(struct kvm *kvm)
{
kvm->arch.nested_mmus = NULL;
kvm->arch.nested_mmus_size = 0;
atomic_set(&kvm->arch.vncr_map_count, 0);
}
static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
{
/*
* We only initialise the IPA range on the canonical MMU, which
* defines the contract between KVM and userspace on where the
* "hardware" is in the IPA space. This affects the validity of MMIO
* exits forwarded to userspace, for example.
*
* For nested S2s, we use the PARange as exposed to the guest, as it
* is allowed to use it at will to expose whatever memory map it
* wants to its own guests as it would be on real HW.
*/
return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm));
}
int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_s2_mmu *tmp;
int num_mmus, ret = 0;
if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features) &&
!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
return -EINVAL;
if (!vcpu->arch.ctxt.vncr_array)
vcpu->arch.ctxt.vncr_array = (u64 *)__get_free_page(GFP_KERNEL_ACCOUNT |
__GFP_ZERO);
if (!vcpu->arch.ctxt.vncr_array)
return -ENOMEM;
/*
* Let's treat memory allocation failures as benign: If we fail to
* allocate anything, return an error and keep the allocated array
* alive. Userspace may try to recover by intializing the vcpu
* again, and there is no reason to affect the whole VM for this.
*/
num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU;
tmp = kvrealloc(kvm->arch.nested_mmus,
size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus),
GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!tmp)
return -ENOMEM;
swap(kvm->arch.nested_mmus, tmp);
/*
* If we went through a realocation, adjust the MMU back-pointers in
* the previously initialised kvm_pgtable structures.
*/
if (kvm->arch.nested_mmus != tmp)
for (int i = 0; i < kvm->arch.nested_mmus_size; i++)
kvm->arch.nested_mmus[i].pgt->mmu = &kvm->arch.nested_mmus[i];
for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++)
ret = init_nested_s2_mmu(kvm, &kvm->arch.nested_mmus[i]);
if (ret) {
for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++)
kvm_free_stage2_pgd(&kvm->arch.nested_mmus[i]);
free_page((unsigned long)vcpu->arch.ctxt.vncr_array);
vcpu->arch.ctxt.vncr_array = NULL;
return ret;
}
kvm->arch.nested_mmus_size = num_mmus;
return 0;
}
struct s2_walk_info {
int (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
void *data;
u64 baddr;
unsigned int max_oa_bits;
unsigned int pgshift;
unsigned int sl;
unsigned int t0sz;
bool be;
};
static u32 compute_fsc(int level, u32 fsc)
{
return fsc | (level & 0x3);
}
static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
{
u32 esr;
esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
esr |= compute_fsc(level, fsc);
return esr;
}
static int get_ia_size(struct s2_walk_info *wi)
{
return 64 - wi->t0sz;
}
static int check_base_s2_limits(struct s2_walk_info *wi,
int level, int input_size, int stride)
{
int start_size, ia_size;
ia_size = get_ia_size(wi);
/* Check translation limits */
switch (BIT(wi->pgshift)) {
case SZ_64K:
if (level == 0 || (level == 1 && ia_size <= 42))
return -EFAULT;
break;
case SZ_16K:
if (level == 0 || (level == 1 && ia_size <= 40))
return -EFAULT;
break;
case SZ_4K:
if (level < 0 || (level == 0 && ia_size <= 42))
return -EFAULT;
break;
}
/* Check input size limits */
if (input_size > ia_size)
return -EFAULT;
/* Check number of entries in starting level table */
start_size = input_size - ((3 - level) * stride + wi->pgshift);
if (start_size < 1 || start_size > stride + 4)
return -EFAULT;
return 0;
}
/* Check if output is within boundaries */
static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
{
unsigned int output_size = wi->max_oa_bits;
if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
return -1;
return 0;
}
/*
* This is essentially a C-version of the pseudo code from the ARM ARM
* AArch64.TranslationTableWalk function. I strongly recommend looking at
* that pseudocode in trying to understand this.
*
* Must be called with the kvm->srcu read lock held
*/
static int walk_nested_s2_pgd(phys_addr_t ipa,
struct s2_walk_info *wi, struct kvm_s2_trans *out)
{
int first_block_level, level, stride, input_size, base_lower_bound;
phys_addr_t base_addr;
unsigned int addr_top, addr_bottom;
u64 desc; /* page table entry */
int ret;
phys_addr_t paddr;
switch (BIT(wi->pgshift)) {
default:
case SZ_64K:
case SZ_16K:
level = 3 - wi->sl;
first_block_level = 2;
break;
case SZ_4K:
level = 2 - wi->sl;
first_block_level = 1;
break;
}
stride = wi->pgshift - 3;
input_size = get_ia_size(wi);
if (input_size > 48 || input_size < 25)
return -EFAULT;
ret = check_base_s2_limits(wi, level, input_size, stride);
if (WARN_ON(ret))
return ret;
base_lower_bound = 3 + input_size - ((3 - level) * stride +
wi->pgshift);
base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);
if (check_output_size(wi, base_addr)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
return 1;
}
addr_top = input_size - 1;
while (1) {
phys_addr_t index;
addr_bottom = (3 - level) * stride + wi->pgshift;
index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
>> (addr_bottom - 3);
paddr = base_addr | index;
ret = wi->read_desc(paddr, &desc, wi->data);
if (ret < 0)
return ret;
/*
* Handle reversedescriptors if endianness differs between the
* host and the guest hypervisor.
*/
if (wi->be)
desc = be64_to_cpu((__force __be64)desc);
else
desc = le64_to_cpu((__force __le64)desc);
/* Check for valid descriptor at this point */
if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
out->desc = desc;
return 1;
}
/* We're at the final level or block translation level */
if ((desc & 3) == 1 || level == 3)
break;
if (check_output_size(wi, desc)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
out->desc = desc;
return 1;
}
base_addr = desc & GENMASK_ULL(47, wi->pgshift);
level += 1;
addr_top = addr_bottom - 1;
}
if (level < first_block_level) {
out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
out->desc = desc;
return 1;
}
if (check_output_size(wi, desc)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
out->desc = desc;
return 1;
}
if (!(desc & BIT(10))) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
out->desc = desc;
return 1;
}
addr_bottom += contiguous_bit_shift(desc, wi, level);
/* Calculate and return the result */
paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
(ipa & GENMASK_ULL(addr_bottom - 1, 0));
out->output = paddr;
out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
out->readable = desc & (0b01 << 6);
out->writable = desc & (0b10 << 6);
out->level = level;
out->desc = desc;
return 0;
}
static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
{
struct kvm_vcpu *vcpu = data;
return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
}
static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
{
wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;
switch (vtcr & VTCR_EL2_TG0_MASK) {
case VTCR_EL2_TG0_4K:
wi->pgshift = 12; break;
case VTCR_EL2_TG0_16K:
wi->pgshift = 14; break;
case VTCR_EL2_TG0_64K:
default: /* IMPDEF: treat any other value as 64k */
wi->pgshift = 16; break;
}
wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
/* Global limit for now, should eventually be per-VM */
wi->max_oa_bits = min(get_kvm_ipa_limit(),
ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr)));
}
int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
struct kvm_s2_trans *result)
{
u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
struct s2_walk_info wi;
int ret;
result->esr = 0;
if (!vcpu_has_nv(vcpu))
return 0;
wi.read_desc = read_guest_s2_desc;
wi.data = vcpu;
wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
vtcr_to_walk_info(vtcr, &wi);
wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;
ret = walk_nested_s2_pgd(gipa, &wi, result);
if (ret)
result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);
return ret;
}
static unsigned int ttl_to_size(u8 ttl)
{
int level = ttl & 3;
int gran = (ttl >> 2) & 3;
unsigned int max_size = 0;
switch (gran) {
case TLBI_TTL_TG_4K:
switch (level) {
case 0:
break;
case 1:
max_size = SZ_1G;
break;
case 2:
max_size = SZ_2M;
break;
case 3:
max_size = SZ_4K;
break;
}
break;
case TLBI_TTL_TG_16K:
switch (level) {
case 0:
case 1:
break;
case 2:
max_size = SZ_32M;
break;
case 3:
max_size = SZ_16K;
break;
}
break;
case TLBI_TTL_TG_64K:
switch (level) {
case 0:
case 1:
/* No 52bit IPA support */
break;
case 2:
max_size = SZ_512M;
break;
case 3:
max_size = SZ_64K;
break;
}
break;
default: /* No size information */
break;
}
return max_size;
}
static u8 pgshift_level_to_ttl(u16 shift, u8 level)
{
u8 ttl;
switch(shift) {
case 12:
ttl = TLBI_TTL_TG_4K;
break;
case 14:
ttl = TLBI_TTL_TG_16K;
break;
case 16:
ttl = TLBI_TTL_TG_64K;
break;
default:
BUG();
}
ttl <<= 2;
ttl |= level & 3;
return ttl;
}
/*
* Compute the equivalent of the TTL field by parsing the shadow PT. The
* granule size is extracted from the cached VTCR_EL2.TG0 while the level is
* retrieved from first entry carrying the level as a tag.
*/
static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr)
{
u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr;
kvm_pte_t pte;
u8 ttl, level;
lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock);
switch (vtcr & VTCR_EL2_TG0_MASK) {
case VTCR_EL2_TG0_4K:
ttl = (TLBI_TTL_TG_4K << 2);
break;
case VTCR_EL2_TG0_16K:
ttl = (TLBI_TTL_TG_16K << 2);
break;
case VTCR_EL2_TG0_64K:
default: /* IMPDEF: treat any other value as 64k */
ttl = (TLBI_TTL_TG_64K << 2);
break;
}
tmp = addr;
again:
/* Iteratively compute the block sizes for a particular granule size */
switch (vtcr & VTCR_EL2_TG0_MASK) {
case VTCR_EL2_TG0_4K:
if (sz < SZ_4K) sz = SZ_4K;
else if (sz < SZ_2M) sz = SZ_2M;
else if (sz < SZ_1G) sz = SZ_1G;
else sz = 0;
break;
case VTCR_EL2_TG0_16K:
if (sz < SZ_16K) sz = SZ_16K;
else if (sz < SZ_32M) sz = SZ_32M;
else sz = 0;
break;
case VTCR_EL2_TG0_64K:
default: /* IMPDEF: treat any other value as 64k */
if (sz < SZ_64K) sz = SZ_64K;
else if (sz < SZ_512M) sz = SZ_512M;
else sz = 0;
break;
}
if (sz == 0)
return 0;
tmp &= ~(sz - 1);
if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL))
goto again;
if (!(pte & PTE_VALID))
goto again;
level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte);
if (!level)
goto again;
ttl |= level;
/*
* We now have found some level information in the shadow S2. Check
* that the resulting range is actually including the original IPA.
*/
sz = ttl_to_size(ttl);
if (addr < (tmp + sz))
return ttl;
return 0;
}
unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val)
{
struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
unsigned long max_size;
u8 ttl;
ttl = FIELD_GET(TLBI_TTL_MASK, val);
if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) {
/* No TTL, check the shadow S2 for a hint */
u64 addr = (val & GENMASK_ULL(35, 0)) << 12;
ttl = get_guest_mapping_ttl(mmu, addr);
}
max_size = ttl_to_size(ttl);
if (!max_size) {
/* Compute the maximum extent of the invalidation */
switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) {
case VTCR_EL2_TG0_4K:
max_size = SZ_1G;
break;
case VTCR_EL2_TG0_16K:
max_size = SZ_32M;
break;
case VTCR_EL2_TG0_64K:
default: /* IMPDEF: treat any other value as 64k */
/*
* No, we do not support 52bit IPA in nested yet. Once
* we do, this should be 4TB.
*/
max_size = SZ_512M;
break;
}
}
WARN_ON(!max_size);
return max_size;
}
/*
* We can have multiple *different* MMU contexts with the same VMID:
*
* - S2 being enabled or not, hence differing by the HCR_EL2.VM bit
*
* - Multiple vcpus using private S2s (huh huh...), hence differing by the
* VBBTR_EL2.BADDR address
*
* - A combination of the above...
*
* We can always identify which MMU context to pick at run-time. However,
* TLB invalidation involving a VMID must take action on all the TLBs using
* this particular VMID. This translates into applying the same invalidation
* operation to all the contexts that are using this VMID. Moar phun!
*/
void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
const union tlbi_info *info,
void (*tlbi_callback)(struct kvm_s2_mmu *,
const union tlbi_info *))
{
write_lock(&kvm->mmu_lock);
for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (!kvm_s2_mmu_valid(mmu))
continue;
if (vmid == get_vmid(mmu->tlb_vttbr))
tlbi_callback(mmu, info);
}
write_unlock(&kvm->mmu_lock);
}
struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
bool nested_stage2_enabled;
u64 vttbr, vtcr, hcr;
lockdep_assert_held_write(&kvm->mmu_lock);
vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
hcr = vcpu_read_sys_reg(vcpu, HCR_EL2);
nested_stage2_enabled = hcr & HCR_VM;
/* Don't consider the CnP bit for the vttbr match */
vttbr &= ~VTTBR_CNP_BIT;
/*
* Two possibilities when looking up a S2 MMU context:
*
* - either S2 is enabled in the guest, and we need a context that is
* S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR,
* which makes it safe from a TLB conflict perspective (a broken
* guest won't be able to generate them),
*
* - or S2 is disabled, and we need a context that is S2-disabled
* and matches the VMID only, as all TLBs are tagged by VMID even
* if S2 translation is disabled.
*/
for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (!kvm_s2_mmu_valid(mmu))
continue;
if (nested_stage2_enabled &&
mmu->nested_stage2_enabled &&
vttbr == mmu->tlb_vttbr &&
vtcr == mmu->tlb_vtcr)
return mmu;
if (!nested_stage2_enabled &&
!mmu->nested_stage2_enabled &&
get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr))
return mmu;
}
return NULL;
}
static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_s2_mmu *s2_mmu;
int i;
lockdep_assert_held_write(&vcpu->kvm->mmu_lock);
s2_mmu = lookup_s2_mmu(vcpu);
if (s2_mmu)
goto out;
/*
* Make sure we don't always search from the same point, or we
* will always reuse a potentially active context, leaving
* free contexts unused.
*/
for (i = kvm->arch.nested_mmus_next;
i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next);
i++) {
s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size];
if (atomic_read(&s2_mmu->refcnt) == 0)
break;
}
BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */
/* Set the scene for the next search */
kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size;
/* Make sure we don't forget to do the laundry */
if (kvm_s2_mmu_valid(s2_mmu))
s2_mmu->pending_unmap = true;
/*
* The virtual VMID (modulo CnP) will be used as a key when matching
* an existing kvm_s2_mmu.
*
* We cache VTCR at allocation time, once and for all. It'd be great
* if the guest didn't screw that one up, as this is not very
* forgiving...
*/
s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT;
s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM;
out:
atomic_inc(&s2_mmu->refcnt);
/*
* Set the vCPU request to perform an unmap, even if the pending unmap
* originates from another vCPU. This guarantees that the MMU has been
* completely unmapped before any vCPU actually uses it, and allows
* multiple vCPUs to lend a hand with completing the unmap.
*/
if (s2_mmu->pending_unmap)
kvm_make_request(KVM_REQ_NESTED_S2_UNMAP, vcpu);
return s2_mmu;
}
void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
{
/* CnP being set denotes an invalid entry */
mmu->tlb_vttbr = VTTBR_CNP_BIT;
mmu->nested_stage2_enabled = false;
atomic_set(&mmu->refcnt, 0);
}
void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
{
/*
* If the vCPU kept its reference on the MMU after the last put,
* keep rolling with it.
*/
if (is_hyp_ctxt(vcpu)) {
if (!vcpu->arch.hw_mmu)
vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
} else {
if (!vcpu->arch.hw_mmu) {
scoped_guard(write_lock, &vcpu->kvm->mmu_lock)
vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu);
}
if (__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV)
kvm_make_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu);
}
}
void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
{
/* Unconditionally drop the VNCR mapping if we have one */
if (host_data_test_flag(L1_VNCR_MAPPED)) {
BUG_ON(vcpu->arch.vncr_tlb->cpu != smp_processor_id());
BUG_ON(is_hyp_ctxt(vcpu));
clear_fixmap(vncr_fixmap(vcpu->arch.vncr_tlb->cpu));
vcpu->arch.vncr_tlb->cpu = -1;
host_data_clear_flag(L1_VNCR_MAPPED);
atomic_dec(&vcpu->kvm->arch.vncr_map_count);
}
/*
* Keep a reference on the associated stage-2 MMU if the vCPU is
* scheduling out and not in WFI emulation, suggesting it is likely to
* reuse the MMU sometime soon.
*/
if (vcpu->scheduled_out && !vcpu_get_flag(vcpu, IN_WFI))
return;
if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu))
atomic_dec(&vcpu->arch.hw_mmu->refcnt);
vcpu->arch.hw_mmu = NULL;
}
/*
* Returns non-zero if permission fault is handled by injecting it to the next
* level hypervisor.
*/
int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
{
bool forward_fault = false;
trans->esr = 0;
if (!kvm_vcpu_trap_is_permission_fault(vcpu))
return 0;
if (kvm_vcpu_trap_is_iabt(vcpu)) {
forward_fault = !kvm_s2_trans_executable(trans);
} else {
bool write_fault = kvm_is_write_fault(vcpu);
forward_fault = ((write_fault && !trans->writable) ||
(!write_fault && !trans->readable));
}
if (forward_fault)
trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);
return forward_fault;
}
int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
{
vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);
return kvm_inject_nested_sync(vcpu, esr_el2);
}
static void invalidate_vncr(struct vncr_tlb *vt)
{
vt->valid = false;
if (vt->cpu != -1)
clear_fixmap(vncr_fixmap(vt->cpu));
}
static void kvm_invalidate_vncr_ipa(struct kvm *kvm, u64 start, u64 end)
{
struct kvm_vcpu *vcpu;
unsigned long i;
lockdep_assert_held_write(&kvm->mmu_lock);
if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY))
return;
kvm_for_each_vcpu(i, vcpu, kvm) {
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
u64 ipa_start, ipa_end, ipa_size;
/*
* Careful here: We end-up here from an MMU notifier,
* and this can race against a vcpu not being onlined
* yet, without the pseudo-TLB being allocated.
*
* Skip those, as they obviously don't participate in
* the invalidation at this stage.
*/
if (!vt)
continue;
if (!vt->valid)
continue;
ipa_size = ttl_to_size(pgshift_level_to_ttl(vt->wi.pgshift,
vt->wr.level));
ipa_start = vt->wr.pa & (ipa_size - 1);
ipa_end = ipa_start + ipa_size;
if (ipa_end <= start || ipa_start >= end)
continue;
invalidate_vncr(vt);
}
}
struct s1e2_tlbi_scope {
enum {
TLBI_ALL,
TLBI_VA,
TLBI_VAA,
TLBI_ASID,
} type;
u16 asid;
u64 va;
u64 size;
};
static void invalidate_vncr_va(struct kvm *kvm,
struct s1e2_tlbi_scope *scope)
{
struct kvm_vcpu *vcpu;
unsigned long i;
lockdep_assert_held_write(&kvm->mmu_lock);
kvm_for_each_vcpu(i, vcpu, kvm) {
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
u64 va_start, va_end, va_size;
if (!vt->valid)
continue;
va_size = ttl_to_size(pgshift_level_to_ttl(vt->wi.pgshift,
vt->wr.level));
va_start = vt->gva & (va_size - 1);
va_end = va_start + va_size;
switch (scope->type) {
case TLBI_ALL:
break;
case TLBI_VA:
if (va_end <= scope->va ||
va_start >= (scope->va + scope->size))
continue;
if (vt->wr.nG && vt->wr.asid != scope->asid)
continue;
break;
case TLBI_VAA:
if (va_end <= scope->va ||
va_start >= (scope->va + scope->size))
continue;
break;
case TLBI_ASID:
if (!vt->wr.nG || vt->wr.asid != scope->asid)
continue;
break;
}
invalidate_vncr(vt);
}
}
#define tlbi_va_s1_to_va(v) (u64)sign_extend64((v) << 12, 48)
static void compute_s1_tlbi_range(struct kvm_vcpu *vcpu, u32 inst, u64 val,
struct s1e2_tlbi_scope *scope)
{
switch (inst) {
case OP_TLBI_ALLE2:
case OP_TLBI_ALLE2IS:
case OP_TLBI_ALLE2OS:
case OP_TLBI_VMALLE1:
case OP_TLBI_VMALLE1IS:
case OP_TLBI_VMALLE1OS:
case OP_TLBI_ALLE2NXS:
case OP_TLBI_ALLE2ISNXS:
case OP_TLBI_ALLE2OSNXS:
case OP_TLBI_VMALLE1NXS:
case OP_TLBI_VMALLE1ISNXS:
case OP_TLBI_VMALLE1OSNXS:
scope->type = TLBI_ALL;
break;
case OP_TLBI_VAE2:
case OP_TLBI_VAE2IS:
case OP_TLBI_VAE2OS:
case OP_TLBI_VAE1:
case OP_TLBI_VAE1IS:
case OP_TLBI_VAE1OS:
case OP_TLBI_VAE2NXS:
case OP_TLBI_VAE2ISNXS:
case OP_TLBI_VAE2OSNXS:
case OP_TLBI_VAE1NXS:
case OP_TLBI_VAE1ISNXS:
case OP_TLBI_VAE1OSNXS:
case OP_TLBI_VALE2:
case OP_TLBI_VALE2IS:
case OP_TLBI_VALE2OS:
case OP_TLBI_VALE1:
case OP_TLBI_VALE1IS:
case OP_TLBI_VALE1OS:
case OP_TLBI_VALE2NXS:
case OP_TLBI_VALE2ISNXS:
case OP_TLBI_VALE2OSNXS:
case OP_TLBI_VALE1NXS:
case OP_TLBI_VALE1ISNXS:
case OP_TLBI_VALE1OSNXS:
scope->type = TLBI_VA;
scope->size = ttl_to_size(FIELD_GET(TLBI_TTL_MASK, val));
if (!scope->size)
scope->size = SZ_1G;
scope->va = tlbi_va_s1_to_va(val) & ~(scope->size - 1);
scope->asid = FIELD_GET(TLBIR_ASID_MASK, val);
break;
case OP_TLBI_ASIDE1:
case OP_TLBI_ASIDE1IS:
case OP_TLBI_ASIDE1OS:
case OP_TLBI_ASIDE1NXS:
case OP_TLBI_ASIDE1ISNXS:
case OP_TLBI_ASIDE1OSNXS:
scope->type = TLBI_ASID;
scope->asid = FIELD_GET(TLBIR_ASID_MASK, val);
break;
case OP_TLBI_VAAE1:
case OP_TLBI_VAAE1IS:
case OP_TLBI_VAAE1OS:
case OP_TLBI_VAAE1NXS:
case OP_TLBI_VAAE1ISNXS:
case OP_TLBI_VAAE1OSNXS:
case OP_TLBI_VAALE1:
case OP_TLBI_VAALE1IS:
case OP_TLBI_VAALE1OS:
case OP_TLBI_VAALE1NXS:
case OP_TLBI_VAALE1ISNXS:
case OP_TLBI_VAALE1OSNXS:
scope->type = TLBI_VAA;
scope->size = ttl_to_size(FIELD_GET(TLBI_TTL_MASK, val));
if (!scope->size)
scope->size = SZ_1G;
scope->va = tlbi_va_s1_to_va(val) & ~(scope->size - 1);
break;
case OP_TLBI_RVAE2:
case OP_TLBI_RVAE2IS:
case OP_TLBI_RVAE2OS:
case OP_TLBI_RVAE1:
case OP_TLBI_RVAE1IS:
case OP_TLBI_RVAE1OS:
case OP_TLBI_RVAE2NXS:
case OP_TLBI_RVAE2ISNXS:
case OP_TLBI_RVAE2OSNXS:
case OP_TLBI_RVAE1NXS:
case OP_TLBI_RVAE1ISNXS:
case OP_TLBI_RVAE1OSNXS:
case OP_TLBI_RVALE2:
case OP_TLBI_RVALE2IS:
case OP_TLBI_RVALE2OS:
case OP_TLBI_RVALE1:
case OP_TLBI_RVALE1IS:
case OP_TLBI_RVALE1OS:
case OP_TLBI_RVALE2NXS:
case OP_TLBI_RVALE2ISNXS:
case OP_TLBI_RVALE2OSNXS:
case OP_TLBI_RVALE1NXS:
case OP_TLBI_RVALE1ISNXS:
case OP_TLBI_RVALE1OSNXS:
scope->type = TLBI_VA;
scope->va = decode_range_tlbi(val, &scope->size, &scope->asid);
break;
case OP_TLBI_RVAAE1:
case OP_TLBI_RVAAE1IS:
case OP_TLBI_RVAAE1OS:
case OP_TLBI_RVAAE1NXS:
case OP_TLBI_RVAAE1ISNXS:
case OP_TLBI_RVAAE1OSNXS:
case OP_TLBI_RVAALE1:
case OP_TLBI_RVAALE1IS:
case OP_TLBI_RVAALE1OS:
case OP_TLBI_RVAALE1NXS:
case OP_TLBI_RVAALE1ISNXS:
case OP_TLBI_RVAALE1OSNXS:
scope->type = TLBI_VAA;
scope->va = decode_range_tlbi(val, &scope->size, NULL);
break;
}
}
void kvm_handle_s1e2_tlbi(struct kvm_vcpu *vcpu, u32 inst, u64 val)
{
struct s1e2_tlbi_scope scope = {};
compute_s1_tlbi_range(vcpu, inst, val, &scope);
guard(write_lock)(&vcpu->kvm->mmu_lock);
invalidate_vncr_va(vcpu->kvm, &scope);
}
void kvm_nested_s2_wp(struct kvm *kvm)
{
int i;
lockdep_assert_held_write(&kvm->mmu_lock);
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (kvm_s2_mmu_valid(mmu))
kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu));
}
kvm_invalidate_vncr_ipa(kvm, 0, BIT(kvm->arch.mmu.pgt->ia_bits));
}
void kvm_nested_s2_unmap(struct kvm *kvm, bool may_block)
{
int i;
lockdep_assert_held_write(&kvm->mmu_lock);
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (kvm_s2_mmu_valid(mmu))
kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), may_block);
}
kvm_invalidate_vncr_ipa(kvm, 0, BIT(kvm->arch.mmu.pgt->ia_bits));
}
void kvm_nested_s2_flush(struct kvm *kvm)
{
int i;
lockdep_assert_held_write(&kvm->mmu_lock);
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (kvm_s2_mmu_valid(mmu))
kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu));
}
}
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
int i;
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (!WARN_ON(atomic_read(&mmu->refcnt)))
kvm_free_stage2_pgd(mmu);
}
kvfree(kvm->arch.nested_mmus);
kvm->arch.nested_mmus = NULL;
kvm->arch.nested_mmus_size = 0;
kvm_uninit_stage2_mmu(kvm);
}
/*
* Dealing with VNCR_EL2 exposed by the *guest* is a complicated matter:
*
* - We introduce an internal representation of a vcpu-private TLB,
* representing the mapping between the guest VA contained in VNCR_EL2,
* the IPA the guest's EL2 PTs point to, and the actual PA this lives at.
*
* - On translation fault from a nested VNCR access, we create such a TLB.
* If there is no mapping to describe, the guest inherits the fault.
* Crucially, no actual mapping is done at this stage.
*
* - On vcpu_load() in a non-HYP context with HCR_EL2.NV==1, if the above
* TLB exists, we map it in the fixmap for this CPU, and run with it. We
* have to respect the permissions dictated by the guest, but not the
* memory type (FWB is a must).
*
* - Note that we usually don't do a vcpu_load() on the back of a fault
* (unless we are preempted), so the resolution of a translation fault
* must go via a request that will map the VNCR page in the fixmap.
* vcpu_load() might as well use the same mechanism.
*
* - On vcpu_put() in a non-HYP context with HCR_EL2.NV==1, if the TLB was
* mapped, we unmap it. Yes it is that simple. The TLB still exists
* though, and may be reused at a later load.
*
* - On permission fault, we simply forward the fault to the guest's EL2.
* Get out of my way.
*
* - On any TLBI for the EL2&0 translation regime, we must find any TLB that
* intersects with the TLBI request, invalidate it, and unmap the page
* from the fixmap. Because we need to look at all the vcpu-private TLBs,
* this requires some wide-ranging locking to ensure that nothing races
* against it. This may require some refcounting to avoid the search when
* no such TLB is present.
*
* - On MMU notifiers, we must invalidate our TLB in a similar way, but
* looking at the IPA instead. The funny part is that there may not be a
* stage-2 mapping for this page if L1 hasn't accessed it using LD/ST
* instructions.
*/
int kvm_vcpu_allocate_vncr_tlb(struct kvm_vcpu *vcpu)
{
if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY))
return 0;
vcpu->arch.vncr_tlb = kzalloc(sizeof(*vcpu->arch.vncr_tlb),
GFP_KERNEL_ACCOUNT);
if (!vcpu->arch.vncr_tlb)
return -ENOMEM;
return 0;
}
static u64 read_vncr_el2(struct kvm_vcpu *vcpu)
{
return (u64)sign_extend64(__vcpu_sys_reg(vcpu, VNCR_EL2), 48);
}
static int kvm_translate_vncr(struct kvm_vcpu *vcpu)
{
bool write_fault, writable;
unsigned long mmu_seq;
struct vncr_tlb *vt;
struct page *page;
u64 va, pfn, gfn;
int ret;
vt = vcpu->arch.vncr_tlb;
/*
* If we're about to walk the EL2 S1 PTs, we must invalidate the
* current TLB, as it could be sampled from another vcpu doing a
* TLBI *IS. A real CPU wouldn't do that, but we only keep a single
* translation, so not much of a choice.
*
* We also prepare the next walk wilst we're at it.
*/
scoped_guard(write_lock, &vcpu->kvm->mmu_lock) {
invalidate_vncr(vt);
vt->wi = (struct s1_walk_info) {
.regime = TR_EL20,
.as_el0 = false,
.pan = false,
};
vt->wr = (struct s1_walk_result){};
}
guard(srcu)(&vcpu->kvm->srcu);
va = read_vncr_el2(vcpu);
ret = __kvm_translate_va(vcpu, &vt->wi, &vt->wr, va);
if (ret)
return ret;
write_fault = kvm_is_write_fault(vcpu);
mmu_seq = vcpu->kvm->mmu_invalidate_seq;
smp_rmb();
gfn = vt->wr.pa >> PAGE_SHIFT;
pfn = kvm_faultin_pfn(vcpu, gfn, write_fault, &writable, &page);
if (is_error_noslot_pfn(pfn) || (write_fault && !writable))
return -EFAULT;
scoped_guard(write_lock, &vcpu->kvm->mmu_lock) {
if (mmu_invalidate_retry(vcpu->kvm, mmu_seq))
return -EAGAIN;
vt->gva = va;
vt->hpa = pfn << PAGE_SHIFT;
vt->valid = true;
vt->cpu = -1;
kvm_make_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu);
kvm_release_faultin_page(vcpu->kvm, page, false, vt->wr.pw);
}
if (vt->wr.pw)
mark_page_dirty(vcpu->kvm, gfn);
return 0;
}
static void inject_vncr_perm(struct kvm_vcpu *vcpu)
{
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
u64 esr = kvm_vcpu_get_esr(vcpu);
/* Adjust the fault level to reflect that of the guest's */
esr &= ~ESR_ELx_FSC;
esr |= FIELD_PREP(ESR_ELx_FSC,
ESR_ELx_FSC_PERM_L(vt->wr.level));
kvm_inject_nested_sync(vcpu, esr);
}
static bool kvm_vncr_tlb_lookup(struct kvm_vcpu *vcpu)
{
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
lockdep_assert_held_read(&vcpu->kvm->mmu_lock);
if (!vt->valid)
return false;
if (read_vncr_el2(vcpu) != vt->gva)
return false;
if (vt->wr.nG) {
u64 tcr = vcpu_read_sys_reg(vcpu, TCR_EL2);
u64 ttbr = ((tcr & TCR_A1) ?
vcpu_read_sys_reg(vcpu, TTBR1_EL2) :
vcpu_read_sys_reg(vcpu, TTBR0_EL2));
u16 asid;
asid = FIELD_GET(TTBR_ASID_MASK, ttbr);
if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR0_EL1, ASIDBITS, 16) ||
!(tcr & TCR_ASID16))
asid &= GENMASK(7, 0);
return asid != vt->wr.asid;
}
return true;
}
int kvm_handle_vncr_abort(struct kvm_vcpu *vcpu)
{
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
u64 esr = kvm_vcpu_get_esr(vcpu);
BUG_ON(!(esr & ESR_ELx_VNCR_SHIFT));
if (esr_fsc_is_permission_fault(esr)) {
inject_vncr_perm(vcpu);
} else if (esr_fsc_is_translation_fault(esr)) {
bool valid;
int ret;
scoped_guard(read_lock, &vcpu->kvm->mmu_lock)
valid = kvm_vncr_tlb_lookup(vcpu);
if (!valid)
ret = kvm_translate_vncr(vcpu);
else
ret = -EPERM;
switch (ret) {
case -EAGAIN:
case -ENOMEM:
/* Let's try again... */
break;
case -EFAULT:
case -EINVAL:
case -ENOENT:
case -EACCES:
/*
* Translation failed, inject the corresponding
* exception back to EL2.
*/
BUG_ON(!vt->wr.failed);
esr &= ~ESR_ELx_FSC;
esr |= FIELD_PREP(ESR_ELx_FSC, vt->wr.fst);
kvm_inject_nested_sync(vcpu, esr);
break;
case -EPERM:
/* Hack to deal with POE until we get kernel support */
inject_vncr_perm(vcpu);
break;
case 0:
break;
}
} else {
WARN_ONCE(1, "Unhandled VNCR abort, ESR=%llx\n", esr);
}
return 1;
}
static void kvm_map_l1_vncr(struct kvm_vcpu *vcpu)
{
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
pgprot_t prot;
guard(preempt)();
guard(read_lock)(&vcpu->kvm->mmu_lock);
/*
* The request to map VNCR may have raced against some other
* event, such as an interrupt, and may not be valid anymore.
*/
if (is_hyp_ctxt(vcpu))
return;
/*
* Check that the pseudo-TLB is valid and that VNCR_EL2 still
* contains the expected value. If it doesn't, we simply bail out
* without a mapping -- a transformed MSR/MRS will generate the
* fault and allows us to populate the pseudo-TLB.
*/
if (!vt->valid)
return;
if (read_vncr_el2(vcpu) != vt->gva)
return;
if (vt->wr.nG) {
u64 tcr = vcpu_read_sys_reg(vcpu, TCR_EL2);
u64 ttbr = ((tcr & TCR_A1) ?
vcpu_read_sys_reg(vcpu, TTBR1_EL2) :
vcpu_read_sys_reg(vcpu, TTBR0_EL2));
u16 asid;
asid = FIELD_GET(TTBR_ASID_MASK, ttbr);
if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR0_EL1, ASIDBITS, 16) ||
!(tcr & TCR_ASID16))
asid &= GENMASK(7, 0);
if (asid != vt->wr.asid)
return;
}
vt->cpu = smp_processor_id();
if (vt->wr.pw && vt->wr.pr)
prot = PAGE_KERNEL;
else if (vt->wr.pr)
prot = PAGE_KERNEL_RO;
else
prot = PAGE_NONE;
/*
* We can't map write-only (or no permission at all) in the kernel,
* but the guest can do it if using POE, so we'll have to turn a
* translation fault into a permission fault at runtime.
* FIXME: WO doesn't work at all, need POE support in the kernel.
*/
if (pgprot_val(prot) != pgprot_val(PAGE_NONE)) {
__set_fixmap(vncr_fixmap(vt->cpu), vt->hpa, prot);
host_data_set_flag(L1_VNCR_MAPPED);
atomic_inc(&vcpu->kvm->arch.vncr_map_count);
}
}
#define has_tgran_2(__r, __sz) \
({ \
u64 _s1, _s2, _mmfr0 = __r; \
\
_s2 = SYS_FIELD_GET(ID_AA64MMFR0_EL1, \
TGRAN##__sz##_2, _mmfr0); \
\
_s1 = SYS_FIELD_GET(ID_AA64MMFR0_EL1, \
TGRAN##__sz, _mmfr0); \
\
((_s2 != ID_AA64MMFR0_EL1_TGRAN##__sz##_2_NI && \
_s2 != ID_AA64MMFR0_EL1_TGRAN##__sz##_2_TGRAN##__sz) || \
(_s2 == ID_AA64MMFR0_EL1_TGRAN##__sz##_2_TGRAN##__sz && \
_s1 != ID_AA64MMFR0_EL1_TGRAN##__sz##_NI)); \
})
/*
* Our emulated CPU doesn't support all the possible features. For the
* sake of simplicity (and probably mental sanity), wipe out a number
* of feature bits we don't intend to support for the time being.
* This list should get updated as new features get added to the NV
* support, and new extension to the architecture.
*/
u64 limit_nv_id_reg(struct kvm *kvm, u32 reg, u64 val)
{
u64 orig_val = val;
switch (reg) {
case SYS_ID_AA64ISAR0_EL1:
/* Support everything but TME */
val &= ~ID_AA64ISAR0_EL1_TME;
break;
case SYS_ID_AA64ISAR1_EL1:
/* Support everything but LS64 and Spec Invalidation */
val &= ~(ID_AA64ISAR1_EL1_LS64 |
ID_AA64ISAR1_EL1_SPECRES);
break;
case SYS_ID_AA64PFR0_EL1:
/* No RME, AMU, MPAM, or S-EL2 */
val &= ~(ID_AA64PFR0_EL1_RME |
ID_AA64PFR0_EL1_AMU |
ID_AA64PFR0_EL1_MPAM |
ID_AA64PFR0_EL1_SEL2 |
ID_AA64PFR0_EL1_EL3 |
ID_AA64PFR0_EL1_EL2 |
ID_AA64PFR0_EL1_EL1 |
ID_AA64PFR0_EL1_EL0);
/* 64bit only at any EL */
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL0, IMP);
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL1, IMP);
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL2, IMP);
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL3, IMP);
break;
case SYS_ID_AA64PFR1_EL1:
/* Only support BTI, SSBS, CSV2_frac */
val &= (ID_AA64PFR1_EL1_BT |
ID_AA64PFR1_EL1_SSBS |
ID_AA64PFR1_EL1_CSV2_frac);
break;
case SYS_ID_AA64MMFR0_EL1:
/* Hide ExS, Secure Memory */
val &= ~(ID_AA64MMFR0_EL1_EXS |
ID_AA64MMFR0_EL1_TGRAN4_2 |
ID_AA64MMFR0_EL1_TGRAN16_2 |
ID_AA64MMFR0_EL1_TGRAN64_2 |
ID_AA64MMFR0_EL1_SNSMEM);
/* Hide CNTPOFF if present */
val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, ECV, IMP);
/* Disallow unsupported S2 page sizes */
switch (PAGE_SIZE) {
case SZ_64K:
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, NI);
fallthrough;
case SZ_16K:
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, NI);
fallthrough;
case SZ_4K:
/* Support everything */
break;
}
/*
* Since we can't support a guest S2 page size smaller
* than the host's own page size (due to KVM only
* populating its own S2 using the kernel's page
* size), advertise the limitation using FEAT_GTG.
*/
switch (PAGE_SIZE) {
case SZ_4K:
if (has_tgran_2(orig_val, 4))
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, IMP);
fallthrough;
case SZ_16K:
if (has_tgran_2(orig_val, 16))
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, IMP);
fallthrough;
case SZ_64K:
if (has_tgran_2(orig_val, 64))
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN64_2, IMP);
break;
}
/* Cap PARange to 48bits */
val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, PARANGE, 48);
break;
case SYS_ID_AA64MMFR1_EL1:
val &= (ID_AA64MMFR1_EL1_HCX |
ID_AA64MMFR1_EL1_PAN |
ID_AA64MMFR1_EL1_LO |
ID_AA64MMFR1_EL1_HPDS |
ID_AA64MMFR1_EL1_VH |
ID_AA64MMFR1_EL1_VMIDBits);
/* FEAT_E2H0 implies no VHE */
if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features))
val &= ~ID_AA64MMFR1_EL1_VH;
break;
case SYS_ID_AA64MMFR2_EL1:
val &= ~(ID_AA64MMFR2_EL1_BBM |
ID_AA64MMFR2_EL1_TTL |
GENMASK_ULL(47, 44) |
ID_AA64MMFR2_EL1_ST |
ID_AA64MMFR2_EL1_CCIDX |
ID_AA64MMFR2_EL1_VARange);
/* Force TTL support */
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR2_EL1, TTL, IMP);
break;
case SYS_ID_AA64MMFR4_EL1:
/*
* You get EITHER
*
* - FEAT_VHE without FEAT_E2H0
* - FEAT_NV limited to FEAT_NV2
* - HCR_EL2.NV1 being RES0
*
* OR
*
* - FEAT_E2H0 without FEAT_VHE nor FEAT_NV
*
* Life is too short for anything else.
*/
if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features)) {
val = 0;
} else {
val = SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY);
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, E2H0, NI_NV1);
}
break;
case SYS_ID_AA64DFR0_EL1:
/* Only limited support for PMU, Debug, BPs, WPs, and HPMN0 */
val &= (ID_AA64DFR0_EL1_PMUVer |
ID_AA64DFR0_EL1_WRPs |
ID_AA64DFR0_EL1_BRPs |
ID_AA64DFR0_EL1_DebugVer|
ID_AA64DFR0_EL1_HPMN0);
/* Cap Debug to ARMv8.1 */
val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, VHE);
break;
}
return val;
}
u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *vcpu,
enum vcpu_sysreg sr, u64 v)
{
struct kvm_sysreg_masks *masks;
masks = vcpu->kvm->arch.sysreg_masks;
if (masks) {
sr -= __SANITISED_REG_START__;
v &= ~masks->mask[sr].res0;
v |= masks->mask[sr].res1;
}
return v;
}
static __always_inline void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1)
{
int i = sr - __SANITISED_REG_START__;
BUILD_BUG_ON(!__builtin_constant_p(sr));
BUILD_BUG_ON(sr < __SANITISED_REG_START__);
BUILD_BUG_ON(sr >= NR_SYS_REGS);
kvm->arch.sysreg_masks->mask[i].res0 = res0;
kvm->arch.sysreg_masks->mask[i].res1 = res1;
}
int kvm_init_nv_sysregs(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
u64 res0, res1;
lockdep_assert_held(&kvm->arch.config_lock);
if (kvm->arch.sysreg_masks)
goto out;
kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)),
GFP_KERNEL_ACCOUNT);
if (!kvm->arch.sysreg_masks)
return -ENOMEM;
/* VTTBR_EL2 */
res0 = res1 = 0;
if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16))
res0 |= GENMASK(63, 56);
if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP))
res0 |= VTTBR_CNP_BIT;
set_sysreg_masks(kvm, VTTBR_EL2, res0, res1);
/* VTCR_EL2 */
res0 = GENMASK(63, 32) | GENMASK(30, 20);
res1 = BIT(31);
set_sysreg_masks(kvm, VTCR_EL2, res0, res1);
/* VMPIDR_EL2 */
res0 = GENMASK(63, 40) | GENMASK(30, 24);
res1 = BIT(31);
set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1);
/* HCR_EL2 */
get_reg_fixed_bits(kvm, HCR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HCR_EL2, res0, res1);
/* HCRX_EL2 */
get_reg_fixed_bits(kvm, HCRX_EL2, &res0, &res1);
set_sysreg_masks(kvm, HCRX_EL2, res0, res1);
/* HFG[RW]TR_EL2 */
get_reg_fixed_bits(kvm, HFGRTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGRTR_EL2, res0, res1);
get_reg_fixed_bits(kvm, HFGWTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGWTR_EL2, res0, res1);
/* HDFG[RW]TR_EL2 */
get_reg_fixed_bits(kvm, HDFGRTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HDFGRTR_EL2, res0, res1);
get_reg_fixed_bits(kvm, HDFGWTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HDFGWTR_EL2, res0, res1);
/* HFGITR_EL2 */
get_reg_fixed_bits(kvm, HFGITR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGITR_EL2, res0, res1);
/* HAFGRTR_EL2 - not a lot to see here */
get_reg_fixed_bits(kvm, HAFGRTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1);
/* HFG[RW]TR2_EL2 */
get_reg_fixed_bits(kvm, HFGRTR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGRTR2_EL2, res0, res1);
get_reg_fixed_bits(kvm, HFGWTR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGWTR2_EL2, res0, res1);
/* HDFG[RW]TR2_EL2 */
get_reg_fixed_bits(kvm, HDFGRTR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HDFGRTR2_EL2, res0, res1);
get_reg_fixed_bits(kvm, HDFGWTR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HDFGWTR2_EL2, res0, res1);
/* HFGITR2_EL2 */
get_reg_fixed_bits(kvm, HFGITR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGITR2_EL2, res0, res1);
/* TCR2_EL2 */
get_reg_fixed_bits(kvm, TCR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, TCR2_EL2, res0, res1);
/* SCTLR_EL1 */
get_reg_fixed_bits(kvm, SCTLR_EL1, &res0, &res1);
set_sysreg_masks(kvm, SCTLR_EL1, res0, res1);
/* SCTLR2_ELx */
get_reg_fixed_bits(kvm, SCTLR2_EL1, &res0, &res1);
set_sysreg_masks(kvm, SCTLR2_EL1, res0, res1);
get_reg_fixed_bits(kvm, SCTLR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, SCTLR2_EL2, res0, res1);
/* MDCR_EL2 */
get_reg_fixed_bits(kvm, MDCR_EL2, &res0, &res1);
set_sysreg_masks(kvm, MDCR_EL2, res0, res1);
/* CNTHCTL_EL2 */
res0 = GENMASK(63, 20);
res1 = 0;
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RME, IMP))
res0 |= CNTHCTL_CNTPMASK | CNTHCTL_CNTVMASK;
if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, CNTPOFF)) {
res0 |= CNTHCTL_ECV;
if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, IMP))
res0 |= (CNTHCTL_EL1TVT | CNTHCTL_EL1TVCT |
CNTHCTL_EL1NVPCT | CNTHCTL_EL1NVVCT);
}
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP))
res0 |= GENMASK(11, 8);
set_sysreg_masks(kvm, CNTHCTL_EL2, res0, res1);
/* ICH_HCR_EL2 */
res0 = ICH_HCR_EL2_RES0;
res1 = ICH_HCR_EL2_RES1;
if (!(kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_EL2_TDS))
res0 |= ICH_HCR_EL2_TDIR;
/* No GICv4 is presented to the guest */
res0 |= ICH_HCR_EL2_DVIM | ICH_HCR_EL2_vSGIEOICount;
set_sysreg_masks(kvm, ICH_HCR_EL2, res0, res1);
/* VNCR_EL2 */
set_sysreg_masks(kvm, VNCR_EL2, VNCR_EL2_RES0, VNCR_EL2_RES1);
out:
for (enum vcpu_sysreg sr = __SANITISED_REG_START__; sr < NR_SYS_REGS; sr++)
__vcpu_rmw_sys_reg(vcpu, sr, |=, 0);
return 0;
}
void check_nested_vcpu_requests(struct kvm_vcpu *vcpu)
{
if (kvm_check_request(KVM_REQ_NESTED_S2_UNMAP, vcpu)) {
struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
write_lock(&vcpu->kvm->mmu_lock);
if (mmu->pending_unmap) {
kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), true);
mmu->pending_unmap = false;
}
write_unlock(&vcpu->kvm->mmu_lock);
}
if (kvm_check_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu))
kvm_map_l1_vncr(vcpu);
/* Must be last, as may switch context! */
if (kvm_check_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu))
kvm_inject_nested_irq(vcpu);
}
/*
* One of the many architectural bugs in FEAT_NV2 is that the guest hypervisor
* can write to HCR_EL2 behind our back, potentially changing the exception
* routing / masking for even the host context.
*
* What follows is some slop to (1) react to exception routing / masking and (2)
* preserve the pending SError state across translation regimes.
*/
void kvm_nested_flush_hwstate(struct kvm_vcpu *vcpu)
{
if (!vcpu_has_nv(vcpu))
return;
if (unlikely(vcpu_test_and_clear_flag(vcpu, NESTED_SERROR_PENDING)))
kvm_inject_serror_esr(vcpu, vcpu_get_vsesr(vcpu));
}
void kvm_nested_sync_hwstate(struct kvm_vcpu *vcpu)
{
unsigned long *hcr = vcpu_hcr(vcpu);
if (!vcpu_has_nv(vcpu))
return;
/*
* We previously decided that an SError was deliverable to the guest.
* Reap the pending state from HCR_EL2 and...
*/
if (unlikely(__test_and_clear_bit(__ffs(HCR_VSE), hcr)))
vcpu_set_flag(vcpu, NESTED_SERROR_PENDING);
/*
* Re-attempt SError injection in case the deliverability has changed,
* which is necessary to faithfully emulate WFI the case of a pending
* SError being a wakeup condition.
*/
if (unlikely(vcpu_test_and_clear_flag(vcpu, NESTED_SERROR_PENDING)))
kvm_inject_serror_esr(vcpu, vcpu_get_vsesr(vcpu));
}