encounter an MCE in kernel space but while copying from user memory by
sending them a SIGBUS on return to user space and umapping the faulty
memory, by Tony Luck and Youquan Song.
* memcpy_mcsafe() rework by splitting the functionality into
copy_mc_to_user() and copy_mc_to_kernel(). This, as a result, enables
support for new hardware which can recover from a machine check
encountered during a fast string copy and makes that the default and
lets the older hardware which does not support that advance recovery,
opt in to use the old, fragile, slow variant, by Dan Williams.
* New AMD hw enablement, by Yazen Ghannam and Akshay Gupta.
* Do not use MSR-tracing accessors in #MC context and flag any fault
while accessing MCA architectural MSRs as an architectural violation
with the hope that such hw/fw misdesigns are caught early during the hw
eval phase and they don't make it into production.
* Misc fixes, improvements and cleanups, as always.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+EIpUACgkQEsHwGGHe
VUouoBAAgwb+NkWZtIqGImV4f+LOyFjhTR/r/7ZyiijXdbhOIuAdc/jQM31mQxug
sX2jxaRYnf1n6SLA0ggX99gwr2deRQ/hsNf5Abw55GC+Z1dOxpGL0k59A3ELl1IR
H9KYmCAFQIHvzfk38qcdND73XHcgthQoXFBOG9wAPAdgDWnaiWt6lcLAq8OiJTmp
D8pInAYhcnL8YXwMGyQQ1KkFn9HwydoWDsK5Ff2shaw2/+dMQqd1zetenbVtjhLb
iNYGvV7Bi/RQ8PyMbzmtTWa4kwQJAHC2gptkGxty//2ADGVBbqUQdqF9TjIWCNy5
V6Ldv5zo0/1s7DOzji3htzqkSs/K1Ea6d2LtZjejkJipHKV5x068UC6Fu+PlfS2D
VZfcICeapU4G2F3Zvks2DlZ7dVTbHCvoI78Qi7bBgczPUVmk6iqah4xuQaiHyBJc
kTFDA4Nnf/026GpoWRiFry9vqdnHBZyLet5A6Y+SoWF0FbhYnCVPpq4MnussYoav
lUIi9ZZav6X2RZp9DDM1f9d5xubtKq0DKt93wvzqAhjK0T2DikckJ+riOYkI6N8t
fHCBNUkdfgyMzJUTBPAzYQ7RmjbjKWJi7xWP0oz6+GqOJkQfSTVC5/2yEffbb3ya
whYRS6iklbl7yshzaOeecXsZcAeK2oGPfoHg34WkHFgXdF5mNgA=
=u1Wg
-----END PGP SIGNATURE-----
Merge tag 'ras_updates_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov:
- Extend the recovery from MCE in kernel space also to processes which
encounter an MCE in kernel space but while copying from user memory
by sending them a SIGBUS on return to user space and umapping the
faulty memory, by Tony Luck and Youquan Song.
- memcpy_mcsafe() rework by splitting the functionality into
copy_mc_to_user() and copy_mc_to_kernel(). This, as a result, enables
support for new hardware which can recover from a machine check
encountered during a fast string copy and makes that the default and
lets the older hardware which does not support that advance recovery,
opt in to use the old, fragile, slow variant, by Dan Williams.
- New AMD hw enablement, by Yazen Ghannam and Akshay Gupta.
- Do not use MSR-tracing accessors in #MC context and flag any fault
while accessing MCA architectural MSRs as an architectural violation
with the hope that such hw/fw misdesigns are caught early during the
hw eval phase and they don't make it into production.
- Misc fixes, improvements and cleanups, as always.
* tag 'ras_updates_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Allow for copy_mc_fragile symbol checksum to be generated
x86/mce: Decode a kernel instruction to determine if it is copying from user
x86/mce: Recover from poison found while copying from user space
x86/mce: Avoid tail copy when machine check terminated a copy from user
x86/mce: Add _ASM_EXTABLE_CPY for copy user access
x86/mce: Provide method to find out the type of an exception handler
x86/mce: Pass pointer to saved pt_regs to severity calculation routines
x86/copy_mc: Introduce copy_mc_enhanced_fast_string()
x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}()
x86/mce: Drop AMD-specific "DEFERRED" case from Intel severity rule list
x86/mce: Add Skylake quirk for patrol scrub reported errors
RAS/CEC: Convert to DEFINE_SHOW_ATTRIBUTE()
x86/mce: Annotate mce_rd/wrmsrl() with noinstr
x86/mce/dev-mcelog: Do not update kflags on AMD systems
x86/mce: Stop mce_reign() from re-computing severity for every CPU
x86/mce: Make mce_rdmsrl() panic on an inaccessible MSR
x86/mce: Increase maximum number of banks to 64
x86/mce: Delay clearing IA32_MCG_STATUS to the end of do_machine_check()
x86/MCE/AMD, EDAC/mce_amd: Remove struct smca_hwid.xec_bitmap
RAS/CEC: Fix cec_init() prototype
On PPC64, get_tbl() is defined as an alias of get_tb() which return
the result of mftb(). That exactly the same as what the PPC32 version
does. We don't need two versions.
Remove the PPC64 definition of get_tbl() and use the PPC32 version
for both.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/a8eaabb87d69534e533ebac805163e08146e05bd.1601556145.git.christophe.leroy@csgroup.eu
get_tbl() is confusing as it returns the content of TBL register
on PPC32 but the concatenation of TBL and TBU on PPC64.
Use mftb() instead.
Do the same with get_tbu() for consistency allthough it's name
is less confusing.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/41573406a4eab98838decaa91649086fef1e6119.1601556145.git.christophe.leroy@csgroup.eu
On PPC64, we have mftb().
On PPC32, we have mftbl() and an #define mftb() mftbl().
mftb() and mftbl() are equivalent, their purpose is to read the
content of SPRN_TRBL, as returned by 'mftb' simplified instruction.
binutils seems to define 'mftbl' instruction as an equivalent
of 'mftb'.
However in both 32 bits and 64 bits documentation, only 'mftb' is
defined, and when performing a disassembly with objdump, the displayed
instruction is 'mftb'
No need to have two ways to do the same thing with different
names, rename mftbl() to have only mftb().
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/94dc68d3d9ef9eb549796d4b938b6ba0305a049b.1601556145.git.christophe.leroy@csgroup.eu
PowerPC 601 has been retired.
Remove all associated specific code.
CPU_FTRS_PPC601 has CPU_FTR_COHERENT_ICACHE and CPU_FTR_COMMON.
CPU_FTR_COMMON is already present via other CPU_FTRS.
None of the remaining CPU selects CPU_FTR_COHERENT_ICACHE.
So CPU_FTRS_PPC601 can be removed from the possible features,
hence can be removed completely.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/60b725d55e21beec3335175c20b77903ff98284f.1601362098.git.christophe.leroy@csgroup.eu
This config option isn't in any defconfig.
The very first versions of Powerpc 601 have a bug which
requires additional sync before and/or after some instructions.
This was more than 25 years ago and time has come to retire
those buggy versions of the 601 from the kernel.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/55b46bff16705b1ae7bf0a60ccd522b1010ebf75.1601362098.git.christophe.leroy@csgroup.eu
Similar to commit 89c140bbae ("pseries: Fix 64 bit logical memory block panic")
make sure different variables tracking lmb_size are updated to be 64 bit.
Fixes: af9d00e93a ("powerpc/mm/radix: Create separate mappings for hot-plugged memory")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201007114836.282468-4-aneesh.kumar@linux.ibm.com
Similar to commit 89c140bbae ("pseries: Fix 64 bit logical memory block panic")
make sure different variables tracking lmb_size are updated to be 64 bit.
This was found by code audit.
Cc: stable@vger.kernel.org
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201007114836.282468-2-aneesh.kumar@linux.ibm.com
The inline execution path for the hardware assisted branch flush
instruction failed to set CTR to the correct value before bcctr,
causing a crash when the feature is enabled.
Fixes: 4d24e21cc6 ("powerpc/security: Allow for processors that flush the link stack using the special bcctr")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201007080605.64423-1-npiggin@gmail.com
The eeh_pe->config_addr field was supposed to be removed in
commit 35d64734b6 ("powerpc/eeh: Clean up PE addressing") which made it
largely unused. Finish the job.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201007040903.819081-1-oohall@gmail.com
During memory hot-add, dlpar_add_lmb() calls memory_add_physaddr_to_nid()
to determine which node id (nid) to use when later calling __add_memory().
This is wasteful. On pseries, memory_add_physaddr_to_nid() finds an
appropriate nid for a given address by looking up the LMB containing the
address and then passing that LMB to of_drconf_to_nid_single() to get the
nid. In dlpar_add_lmb() we get this address from the LMB itself.
In short, we have a pointer to an LMB and then we are searching for
that LMB *again* in order to find its nid.
If we call of_drconf_to_nid_single() directly from dlpar_add_lmb() we
can skip the redundant lookup. The only error handling we need to
duplicate from memory_add_physaddr_to_nid() is the fallback to the
default nid when drconf_to_nid_single() returns -1 (NUMA_NO_NODE) or
an invalid nid.
Skipping the extra lookup makes hot-add operations faster, especially
on machines with many LMBs.
Consider an LPAR with 126976 LMBs. In one test, hot-adding 126000
LMBs on an upatched kernel took ~3.5 hours while a patched kernel
completed the same operation in ~2 hours:
Unpatched (12450 seconds):
Sep 9 04:06:31 ltc-brazos1 drmgr[810169]: drmgr: -c mem -a -q 126000
Sep 9 04:06:31 ltc-brazos1 kernel: pseries-hotplug-mem: Attempting to hot-add 126000 LMB(s)
[...]
Sep 9 07:34:01 ltc-brazos1 kernel: pseries-hotplug-mem: Memory at 20000000 (drc index 80000002) was hot-added
Patched (7065 seconds):
Sep 8 21:49:57 ltc-brazos1 drmgr[877703]: drmgr: -c mem -a -q 126000
Sep 8 21:49:57 ltc-brazos1 kernel: pseries-hotplug-mem: Attempting to hot-add 126000 LMB(s)
[...]
Sep 8 23:27:42 ltc-brazos1 kernel: pseries-hotplug-mem: Memory at 20000000 (drc index 80000002) was hot-added
It should be noted that the speedup grows more substantial when
hot-adding LMBs at the end of the drconf range. This is because we
are skipping a linear LMB search.
To see the distinction, consider smaller hot-add test on the same
LPAR. A perf-stat run with 10 iterations showed that hot-adding 4096
LMBs completed less than 1 second faster on a patched kernel:
Unpatched:
Performance counter stats for 'drmgr -c mem -a -q 4096' (10 runs):
104,753.42 msec task-clock # 0.992 CPUs utilized ( +- 0.55% )
4,708 context-switches # 0.045 K/sec ( +- 0.69% )
2,444 cpu-migrations # 0.023 K/sec ( +- 1.25% )
394 page-faults # 0.004 K/sec ( +- 0.22% )
445,902,503,057 cycles # 4.257 GHz ( +- 0.55% ) (66.67%)
8,558,376,740 stalled-cycles-frontend # 1.92% frontend cycles idle ( +- 0.88% ) (49.99%)
300,346,181,651 stalled-cycles-backend # 67.36% backend cycles idle ( +- 0.76% ) (50.01%)
258,091,488,691 instructions # 0.58 insn per cycle
# 1.16 stalled cycles per insn ( +- 0.22% ) (66.67%)
70,568,169,256 branches # 673.660 M/sec ( +- 0.17% ) (50.01%)
3,100,725,426 branch-misses # 4.39% of all branches ( +- 0.20% ) (49.99%)
105.583 +- 0.589 seconds time elapsed ( +- 0.56% )
Patched:
Performance counter stats for 'drmgr -c mem -a -q 4096' (10 runs):
104,055.69 msec task-clock # 0.993 CPUs utilized ( +- 0.32% )
4,606 context-switches # 0.044 K/sec ( +- 0.20% )
2,463 cpu-migrations # 0.024 K/sec ( +- 0.93% )
394 page-faults # 0.004 K/sec ( +- 0.25% )
442,951,129,921 cycles # 4.257 GHz ( +- 0.32% ) (66.66%)
8,710,413,329 stalled-cycles-frontend # 1.97% frontend cycles idle ( +- 0.47% ) (50.06%)
299,656,905,836 stalled-cycles-backend # 67.65% backend cycles idle ( +- 0.39% ) (50.02%)
252,731,168,193 instructions # 0.57 insn per cycle
# 1.19 stalled cycles per insn ( +- 0.20% ) (66.66%)
68,902,851,121 branches # 662.173 M/sec ( +- 0.13% ) (49.94%)
3,100,242,882 branch-misses # 4.50% of all branches ( +- 0.15% ) (49.98%)
104.829 +- 0.325 seconds time elapsed ( +- 0.31% )
This is consistent. An add-by-count hot-add operation adds LMBs
greedily, so LMBs near the start of the drconf range are considered
first. On an otherwise idle LPAR with so many LMBs we would expect to
find the LMBs we need near the start of the drconf range, hence the
smaller speedup.
Signed-off-by: Scott Cheloha <cheloha@linux.ibm.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200916145122.3408129-1-cheloha@linux.ibm.com
Now that cpu_core_mask has been removed and topology_core_cpumask has
been updated to use cpu_cpu_mask, we no more need
get_physical_package_id.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-4-srikar@linux.vnet.ibm.com
Anton Blanchard reported that his 4096 vcpu KVM guest took around 30
minutes to boot. He also analyzed it to the time taken to iterate while
setting the cpu_core_mask.
Further analysis shows that cpu_core_mask and cpu_cpu_mask for any CPU
would be equal on Power. However updating cpu_core_mask took forever to
update as its a per cpu cpumask variable. Instead cpu_cpu_mask was a per
NODE /per DIE cpumask that was shared by all the respective CPUs.
Also cpu_cpu_mask is needed from a scheduler perspective. However
cpu_core_map is an exported symbol. Hence stop updating cpu_core_map
and make it point to cpu_cpu_mask.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-3-srikar@linux.vnet.ibm.com
On Power, cpu_core_mask and cpu_cpu_mask refer to the same set of CPUs.
cpu_cpu_mask is needed by scheduler, hence look at deprecating
cpu_core_mask. Before deleting the cpu_core_mask, ensure its only user
is moved to cpu_cpu_mask.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-2-srikar@linux.vnet.ibm.com
Althought AMR is stashed in the checkpoint area, currently we don't save
it to the per thread checkpoint struct after a treclaim and so we don't
restore it either from that struct when we trechkpt. As a consequence when
the transaction is later rolled back the kernel space AMR value when the
trechkpt was done appears in userspace.
That commit saves and restores AMR accordingly on treclaim and trechkpt.
Since AMR value is also used in kernel space in other functions, it also
takes care of stashing kernel live AMR into the stack before treclaim and
before trechkpt, restoring it later, just before returning from tm_reclaim
and __tm_recheckpoint.
Is also fixes two nonrelated comments about CR and MSR.
Signed-off-by: Gustavo Romero <gromero@linux.ibm.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200919150025.9609-1-gromero@linux.ibm.com
When support for EEH on PowerNV was added a lot of pseries specific code
was made "generic" and some of the quirks of pseries EEH came along for the
ride. One of the stranger quirks is eeh_pe containing two types of PE
address: pe->addr and pe->config_addr. There reason for this appears to be
historical baggage rather than any real requirements.
On pseries EEH PEs are manipulated using RTAS calls. Each EEH RTAS call
takes a "PE configuration address" as an input which is used to identify
which EEH PE is being manipulated by the call. When initialising the EEH
state for a device the first thing we need to do is determine the
configuration address for the PE which contains the device so we can enable
EEH on that PE. This process is outlined in PAPR which is the modern
(i.e post-2003) FW specification for pseries. However, EEH support was
first described in the pSeries RISC Platform Architecture (RPA) and
although they are mostly compatible EEH is one of the areas where they are
not.
The major difference is that RPA doesn't actually have the concept of a PE.
On RPA systems the EEH RTAS calls are done on a per-device basis using the
same config_addr that would be passed to the RTAS functions to access PCI
config space (e.g. ibm,read-pci-config). The config_addr is not identical
since the function and config register offsets of the config_addr must be
set to zero. EEH operations being done on a per-device basis doesn't make a
whole lot of sense when you consider how EEH was implemented on legacy PCI
systems.
For legacy PCI(-X) systems EEH was implemented using special PCI-PCI
bridges which contained logic to detect errors and freeze the secondary
bus when one occurred. This means that the EEH enabled state is shared
among all devices behind that EEH bridge. As a result there's no way to
implement the per-device control required for the semantics specified by
RPA. It can be made to work if we assume that a separate EEH bridge exists
for each EEH capable PCI slot and there are no bridges behind those slots.
However, RPA also specifies the ibm,configure-bridge RTAS call for
re-initalising bridges behind EEH capable slots after they are reset due
to an EEH event so that is probably not a valid assumption. This
incoherence was fixed in later PAPR, which succeeded RPA. Unfortunately,
since Linux EEH support seems to have been implemented based on the RPA
spec some of the legacy assumptions were carried over (probably for POWER4
compatibility).
The fix made in PAPR was the introduction of the "PE" concept and
redefining the EEH RTAS calls (set-eeh-option, reset-slot, etc) to operate
on a per-PE basis so all devices behind an EEH bride would share the same
EEH state. The "config_addr" argument to the EEH RTAS calls became the
"PE_config_addr" and the OS was required to use the
ibm,get-config-addr-info RTAS call to find the correct PE address for the
device. When support for the new interfaces was added to Linux it was
implemented using something like:
At probe time:
pdn->eeh_config_addr = rtas_config_addr(pdn);
pdn->eeh_pe_config_addr = rtas_get_config_addr_info(pdn);
When performing an RTAS call:
config_addr = pdn->eeh_config_addr;
if (pdn->eeh_pe_config_addr)
config_addr = pdn->eeh_pe_config_addr;
rtas_call(..., config_addr, ...);
In other words, if the ibm,get-config-addr-info RTAS call is implemented
and returned a valid result we'd use that as the argument to the EEH
RTAS calls. If not, Linux would fall back to using the device's
config_addr. Over time these addresses have moved around going from pci_dn
to eeh_dev and finally into eeh_pe. Today the users look like this:
config_addr = pe->config_addr;
if (pe->addr)
config_addr = pe->addr;
rtas_call(..., config_addr, ...);
However, considering the EEH core always operates on a per-PE basis and
even on pseries the only per-device operation is the initial call to
ibm,set-eeh-option I'm not sure if any of this actually works on an RPA
system today. It doesn't make much sense to have the fallback address in
a generic structure either since the bulk of the code which reference it
is in pseries anyway.
The EEH core makes a token effort to support looking up a PE using the
config_addr by having two arguments to eeh_pe_get(). However, a survey of
all the callers to eeh_pe_get() shows that all bar one have the config_addr
argument hard-coded to zero.The only caller that doesn't is in
eeh_pe_tree_insert() which has:
if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr)
return -EINVAL;
pe = eeh_pe_get(hose, edev->pe_config_addr, edev->bdfn);
The third argument (config_addr) is only used if the second (pe->addr)
argument is invalid. The preceding check ensures that the call to
eeh_pe_get() will never happen if edev->pe_config_addr is invalid so there
is no situation where eeh_pe_get() will search for a PE based on the 3rd
argument. The check also means that we'll never insert a PE into the tree
where pe_config_addr is zero since EEH_VALID_PE_ZERO is never set on
pseries. All the users of the fallback address on pseries never actually
use the fallback and all the only caller that supplies something for the
config_addr argument to eeh_pe_get() never use it either. It's all dead
code.
This patch removes the fallback address from eeh_pe since nothing uses it.
Specificly, we do this by:
1) Removing pe->config_addr
2) Removing the EEH_VALID_PE_ZERO flag
3) Removing the fallback address argument to eeh_pe_get().
4) Removing all the checks for pe->addr being zero in the pseries EEH code.
This leaves us with PE's only being identified by what's in their pe->addr
field and the EEH core relying on the platform to ensure that eeh_dev's are
only inserted into the EEH tree if they're actually inside a PE.
No functional changes, I hope.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-9-oohall@gmail.com
No longer used since the platforms perform their EEH initialisation before
calling eeh_init().
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-4-oohall@gmail.com
Drop the EEH register / unregister ops thing and have the platform pass the
ops structure into eeh_init() directly. This takes one initcall out of the
EEH setup path and it means we're only doing EEH setup on the platforms
which actually support it. It's also less code and generally easier to
follow.
No functional changes.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-1-oohall@gmail.com
The hypervisor interface has defined branch prediction security bits for
handling the link stack. Wire them up.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200825075612.224656-1-npiggin@gmail.com
The copy buffer is implemented as a real address in the nest which is
translated from EA by copy, and used for memory access by paste. This
requires that it be invalidated by TLB invalidation.
TLBIE does invalidate the copy buffer, but TLBIEL does not. Add
cp_abort to the tlbiel sequence.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Fixup whitespace and comment formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200916030234.4110379-2-npiggin@gmail.com
Having cputable.h include mce.h means it pulls in a bunch of low level
headers (e.g., synch.h) which then can't use CPU_FTR_ definitions.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200916030234.4110379-1-npiggin@gmail.com
In reaction to a proposal to introduce a memcpy_mcsafe_fast()
implementation Linus points out that memcpy_mcsafe() is poorly named
relative to communicating the scope of the interface. Specifically what
addresses are valid to pass as source, destination, and what faults /
exceptions are handled.
Of particular concern is that even though x86 might be able to handle
the semantics of copy_mc_to_user() with its common copy_user_generic()
implementation other archs likely need / want an explicit path for this
case:
On Fri, May 1, 2020 at 11:28 AM Linus Torvalds <torvalds@linux-foundation.org> wrote:
>
> On Thu, Apr 30, 2020 at 6:21 PM Dan Williams <dan.j.williams@intel.com> wrote:
> >
> > However now I see that copy_user_generic() works for the wrong reason.
> > It works because the exception on the source address due to poison
> > looks no different than a write fault on the user address to the
> > caller, it's still just a short copy. So it makes copy_to_user() work
> > for the wrong reason relative to the name.
>
> Right.
>
> And it won't work that way on other architectures. On x86, we have a
> generic function that can take faults on either side, and we use it
> for both cases (and for the "in_user" case too), but that's an
> artifact of the architecture oddity.
>
> In fact, it's probably wrong even on x86 - because it can hide bugs -
> but writing those things is painful enough that everybody prefers
> having just one function.
Replace a single top-level memcpy_mcsafe() with either
copy_mc_to_user(), or copy_mc_to_kernel().
Introduce an x86 copy_mc_fragile() name as the rename for the
low-level x86 implementation formerly named memcpy_mcsafe(). It is used
as the slow / careful backend that is supplanted by a fast
copy_mc_generic() in a follow-on patch.
One side-effect of this reorganization is that separating copy_mc_64.S
to its own file means that perf no longer needs to track dependencies
for its memcpy_64.S benchmarks.
[ bp: Massage a bit. ]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: <stable@vger.kernel.org>
Link: http://lore.kernel.org/r/CAHk-=wjSqtXAqfUJxFtWNwmguFASTgB0dz1dT3V-78Quiezqbg@mail.gmail.com
Link: https://lkml.kernel.org/r/160195561680.2163339.11574962055305783722.stgit@dwillia2-desk3.amr.corp.intel.com
Split out all the bits that are purely for dma_map_ops implementations
and related code into a new <linux/dma-map-ops.h> header so that they
don't get pulled into all the drivers. That also means the architecture
specific <asm/dma-mapping.h> is not pulled in by <linux/dma-mapping.h>
any more, which leads to a missing includes that were pulled in by the
x86 or arm versions in a few not overly portable drivers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
There was a request to preprocess the module linker script like we
do for the vmlinux one. (https://lkml.org/lkml/2020/8/21/512)
The difference between vmlinux.lds and module.lds is that the latter
is needed for external module builds, thus must be cleaned up by
'make mrproper' instead of 'make clean'. Also, it must be created
by 'make modules_prepare'.
You cannot put it in arch/$(SRCARCH)/kernel/, which is cleaned up by
'make clean'. I moved arch/$(SRCARCH)/kernel/module.lds to
arch/$(SRCARCH)/include/asm/module.lds.h, which is included from
scripts/module.lds.S.
scripts/module.lds is fine because 'make clean' keeps all the
build artifacts under scripts/.
You can add arch-specific sections in <asm/module.lds.h>.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Tested-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Opt us out of the DEBUG_VM_PGTABLE support for now as it's causing crashes.
Fix a long standing bug in our DMA mask handling that was hidden until recently,
and which caused problems with some drivers.
Fix a boot failure on systems with large amounts of RAM, and no hugepage support
and using Radix MMU, only seen in the lab.
A few other minor fixes.
Thanks to:
Alexey Kardashevskiy, Aneesh Kumar K.V, Gautham R. Shenoy, Hari Bathini, Ira
Weiny, Nick Desaulniers, Shirisha Ganta, Vaibhav Jain, Vaidyanathan
Srinivasan.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl9kk4UTHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgLM5D/42Wuuq6hOpGEfE2XjBjsOxCR07SCw9
CQ/c72jw/1tDLe0YclPVYAZc8BmT8uLo6tE2Ot+0vI+1Y06rRvC5g5uQBwp1zD/t
MOwC0d4zf8a7WzBCcVaBv9HMHVOaKaTBwQc2R4k6NzYtARIf5m0evMPOWINioRsv
/x4+Np8aeQd1WiVn6PBdqL8w1yRhk8LsVDvX35lFzQlgZvH09umXSGjw9K442xdE
lr1PrV9GKd4DeudwLHPkMNs8Ul1QTxmY5vKIAklsJ5g3dBySfM7+GMrTzYOHYkWr
aqGfGH6ojdFSQZRo7QwFhO52Kni7JN7AIoUPEBDqLb1fR10w8wesdjCs8JQMXIMc
8Eo210EbiSsq6kG/LzqZuStLUAup3rQd20+wWua7jo8HbcZOLDH7pPGwNtJInPTr
gwH7sALYhTzFUAO4LzqVVE+yA8wndFPHoz+QSkO6LZJKuszON2LJ0r+IEx1l9Wmr
ClZYujK36/N+ih42xBFcBZi2lL0VKzlkn7u7NDeZQBONgoJMCoWkGDkEHnMI9zdT
1iYcVZyY+IpJLcwxH+NP8weJKHIZbP4kvuFXR/QIpHdrDWKaTT95BvBhAK1KMYBo
lLo81zMTzJCz2wWDg/+3sLuEzHdGr//uxcVXxjqE2vyEckeuZjiCyz0dRNEY4Sw3
vB2p3Zl7L0J4pQ==
=cj6B
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.9-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"Some more powerpc fixes for 5.9:
- Opt us out of the DEBUG_VM_PGTABLE support for now as it's causing
crashes.
- Fix a long standing bug in our DMA mask handling that was hidden
until recently, and which caused problems with some drivers.
- Fix a boot failure on systems with large amounts of RAM, and no
hugepage support and using Radix MMU, only seen in the lab.
- A few other minor fixes.
Thanks to Alexey Kardashevskiy, Aneesh Kumar K.V, Gautham R. Shenoy,
Hari Bathini, Ira Weiny, Nick Desaulniers, Shirisha Ganta, Vaibhav
Jain, and Vaidyanathan Srinivasan"
* tag 'powerpc-5.9-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/papr_scm: Limit the readability of 'perf_stats' sysfs attribute
cpuidle: pseries: Fix CEDE latency conversion from tb to us
powerpc/dma: Fix dma_map_ops::get_required_mask
Revert "powerpc/build: vdso linker warning for orphan sections"
powerpc/mm: Remove DEBUG_VM_PGTABLE support on powerpc
selftests/powerpc: Skip PROT_SAO test in guests/LPARS
powerpc/book3s64/radix: Fix boot failure with large amount of guest memory
This fixes a compile error with W=1.
CC arch/powerpc/kernel/traps.o
../arch/powerpc/kernel/traps.c:1663:6: error: no previous prototype for ‘stack_overflow_exception’ [-Werror=missing-prototypes]
void stack_overflow_exception(struct pt_regs *regs)
^~~~~~~~~~~~~~~~~~~~~~~~
Fixes: 3978eb7851 ("powerpc/32: Add early stack overflow detection with VMAP stack.")
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200914211007.2285999-8-clg@kaod.org
We have smp_ops->cpu_die() and ppc_md.cpu_die(). One of them offlines
the current CPU and one offlines another CPU, can you guess which is
which? Also one is in smp_ops and one is in ppc_md?
So rename ppc_md.cpu_die(), to cpu_offline_self(), because that's what
it does. And move it into smp_ops where it belongs.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200819015634.1974478-3-mpe@ellerman.id.au
lift the compat_s64 and compat_u64 definitions into common code using the
COMPAT_FOR_U64_ALIGNMENT symbol for the x86 special case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add percpu coregroup maps and masks to create coregroup domain.
If a coregroup doesn't exist, the coregroup domain will be degenerated
in favour of SMT/CACHE domain. Do note this patch is only creating stubs
for cpu_to_coregroup_id. The actual cpu_to_coregroup_id implementation
would be in a subsequent patch.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200810071834.92514-10-srikar@linux.vnet.ibm.com
Add support for grouping cores based on the device-tree classification.
- The last domain in the associativity domains always refers to the
core.
- If primary reference domain happens to be the penultimate domain in
the associativity domains device-tree property, then there are no
coregroups. However if its not a penultimate domain, then there are
coregroups. There can be more than one coregroup. For now we would be
interested in the last or the smallest coregroups, i.e one sub-group
per DIE.
Currently there are no firmwares that are exposing this grouping. Hence
allow the basis for grouping to be abstract. Once the firmware starts
using this grouping, code would be added to detect the type of grouping
and adjust the sd domain flags accordingly.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200810071834.92514-8-srikar@linux.vnet.ibm.com
Commit 0cef77c779 ("powerpc/64s/radix: flush remote CPUs out of
single-threaded mm_cpumask") added a mechanism to trim the mm_cpumask of
a process under certain conditions. One of the assumptions is that
mm_users would not be incremented via a reference outside the process
context with mmget_not_zero() then go on to kthread_use_mm() via that
reference.
That invariant was broken by io_uring code (see previous sparc64 fix),
but I'll point Fixes: to the original powerpc commit because we are
changing that assumption going forward, so this will make backports
match up.
Fix this by no longer relying on that assumption, but by having each CPU
check the mm is not being used, and clearing their own bit from the mask
only if it hasn't been switched-to by the time the IPI is processed.
This relies on commit 38cf307c1f ("mm: fix kthread_use_mm() vs TLB
invalidate") and ARCH_WANT_IRQS_OFF_ACTIVATE_MM to disable irqs over mm
switch sequences.
Fixes: 0cef77c779 ("powerpc/64s/radix: flush remote CPUs out of single-threaded mm_cpumask")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
Depends-on: 38cf307c1f ("mm: fix kthread_use_mm() vs TLB invalidate")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200914045219.3736466-5-npiggin@gmail.com
powerpc uses IPIs in some situations to switch a kernel thread away
from a lazy tlb mm, which is subject to the TLB flushing race
described in the changelog introducing ARCH_WANT_IRQS_OFF_ACTIVATE_MM.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200914045219.3736466-3-npiggin@gmail.com
When a passthrough IO adapter is removed from a pseries machine using
hash MMU and the XIVE interrupt mode, the POWER hypervisor expects the
guest OS to clear all page table entries related to the adapter. If
some are still present, the RTAS call which isolates the PCI slot
returns error 9001 "valid outstanding translations" and the removal of
the IO adapter fails. This is because when the PHBs are scanned, Linux
maps automatically the INTx interrupts in the Linux interrupt number
space but these are never removed.
To solve this problem, we introduce a PPC platform specific
pcibios_remove_bus() routine which clears all interrupt mappings when
the bus is removed. This also clears the associated page table entries
of the ESB pages when using XIVE.
For this purpose, we record the logical interrupt numbers of the
mapped interrupt under the PHB structure and let pcibios_remove_bus()
do the clean up.
Since some PCI adapters, like GPUs, use the "interrupt-map" property
to describe interrupt mappings other than the legacy INTx interrupts,
we can not restrict the size of the mapping array to PCI_NUM_INTX. The
number of interrupt mappings is computed from the "interrupt-map"
property and the mapping array is allocated accordingly.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200807101854.844619-1-clg@kaod.org
This driver does not restore stop > 3 state, so it limits itself
to states which do not lose full state or TB.
The POWER10 SPRs are sufficiently different from P9 that it seems
easier to split out the P10 code. The POWER10 deep sleep code
(e.g., the BHRB restore) has been taken out, but it can be re-added
when stop > 3 support is added.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Tested-by: Pratik Rajesh Sampat<psampat@linux.ibm.com>
Tested-by: Vaidyanathan Srinivasan <svaidy@linux.ibm.com>
Reviewed-by: Pratik Rajesh Sampat<psampat@linux.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200819094700.493399-1-npiggin@gmail.com
cpu_has_feature(CPU_FTR_SPE) returns false when CONFIG_SPE is
not set.
There is no need to enclose the test in an #ifdef CONFIG_SPE.
Remove it.
CPU_FTR_SPE only exists on 32 bits. Define it as 0 on 64 bits.
We have a couple of places like:
#ifdef CONFIG_SPE
if (cpu_has_feature(CPU_FTR_SPE)) {
do_something_that_requires_CONFIG_SPE
} else {
return -EINVAL;
}
#else
return -EINVAL;
#endif
Replace them by a cleaner version:
if (cpu_has_feature(CPU_FTR_SPE)) {
#ifdef CONFIG_SPE
do_something_that_requires_CONFIG_SPE
#endif
} else {
return -EINVAL;
}
When CONFIG_SPE is not set, this resolves to an unconditional
return of -EINVAL
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/698df8387555765b70ea42e4a7fa48141c309c1f.1597643221.git.christophe.leroy@csgroup.eu