linux/tools/testing/selftests/bpf/verifier/dead_code.c

173 lines
3.9 KiB
C
Raw Permalink Normal View History

{
"dead code: start",
.insns = {
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
bpf: Fall back to nospec for Spectre v1 This implements the core of the series and causes the verifier to fall back to mitigating Spectre v1 using speculation barriers. The approach was presented at LPC'24 [1] and RAID'24 [2]. If we find any forbidden behavior on a speculative path, we insert a nospec (e.g., lfence speculation barrier on x86) before the instruction and stop verifying the path. While verifying a speculative path, we can furthermore stop verification of that path whenever we encounter a nospec instruction. A minimal example program would look as follows: A = true B = true if A goto e f() if B goto e unsafe() e: exit There are the following speculative and non-speculative paths (`cur->speculative` and `speculative` referring to the value of the push_stack() parameters): - A = true - B = true - if A goto e - A && !cur->speculative && !speculative - exit - !A && !cur->speculative && speculative - f() - if B goto e - B && cur->speculative && !speculative - exit - !B && cur->speculative && speculative - unsafe() If f() contains any unsafe behavior under Spectre v1 and the unsafe behavior matches `state->speculative && error_recoverable_with_nospec(err)`, do_check() will now add a nospec before f() instead of rejecting the program: A = true B = true if A goto e nospec f() if B goto e unsafe() e: exit Alternatively, the algorithm also takes advantage of nospec instructions inserted for other reasons (e.g., Spectre v4). Taking the program above as an example, speculative path exploration can stop before f() if a nospec was inserted there because of Spectre v4 sanitization. In this example, all instructions after the nospec are dead code (and with the nospec they are also dead code speculatively). For this, it relies on the fact that speculation barriers generally prevent all later instructions from executing if the speculation was not correct: * On Intel x86_64, lfence acts as full speculation barrier, not only as a load fence [3]: An LFENCE instruction or a serializing instruction will ensure that no later instructions execute, even speculatively, until all prior instructions complete locally. [...] Inserting an LFENCE instruction after a bounds check prevents later operations from executing before the bound check completes. This was experimentally confirmed in [4]. * On AMD x86_64, lfence is dispatch-serializing [5] (requires MSR C001_1029[1] to be set if the MSR is supported, this happens in init_amd()). AMD further specifies "A dispatch serializing instruction forces the processor to retire the serializing instruction and all previous instructions before the next instruction is executed" [8]. As dispatch is not specific to memory loads or branches, lfence therefore also affects all instructions there. Also, if retiring a branch means it's PC change becomes architectural (should be), this means any "wrong" speculation is aborted as required for this series. * ARM's SB speculation barrier instruction also affects "any instruction that appears later in the program order than the barrier" [6]. * PowerPC's barrier also affects all subsequent instructions [7]: [...] executing an ori R31,R31,0 instruction ensures that all instructions preceding the ori R31,R31,0 instruction have completed before the ori R31,R31,0 instruction completes, and that no subsequent instructions are initiated, even out-of-order, until after the ori R31,R31,0 instruction completes. The ori R31,R31,0 instruction may complete before storage accesses associated with instructions preceding the ori R31,R31,0 instruction have been performed Regarding the example, this implies that `if B goto e` will not execute before `if A goto e` completes. Once `if A goto e` completes, the CPU should find that the speculation was wrong and continue with `exit`. If there is any other path that leads to `if B goto e` (and therefore `unsafe()`) without going through `if A goto e`, then a nospec will still be needed there. However, this patch assumes this other path will be explored separately and therefore be discovered by the verifier even if the exploration discussed here stops at the nospec. This patch furthermore has the unfortunate consequence that Spectre v1 mitigations now only support architectures which implement BPF_NOSPEC. Before this commit, Spectre v1 mitigations prevented exploits by rejecting the programs on all architectures. Because some JITs do not implement BPF_NOSPEC, this patch therefore may regress unpriv BPF's security to a limited extent: * The regression is limited to systems vulnerable to Spectre v1, have unprivileged BPF enabled, and do NOT emit insns for BPF_NOSPEC. The latter is not the case for x86 64- and 32-bit, arm64, and powerpc 64-bit and they are therefore not affected by the regression. According to commit a6f6a95f2580 ("LoongArch, bpf: Fix jit to skip speculation barrier opcode"), LoongArch is not vulnerable to Spectre v1 and therefore also not affected by the regression. * To the best of my knowledge this regression may therefore only affect MIPS. This is deemed acceptable because unpriv BPF is still disabled there by default. As stated in a previous commit, BPF_NOSPEC could be implemented for MIPS based on GCC's speculation_barrier implementation. * It is unclear which other architectures (besides x86 64- and 32-bit, ARM64, PowerPC 64-bit, LoongArch, and MIPS) supported by the kernel are vulnerable to Spectre v1. Also, it is not clear if barriers are available on these architectures. Implementing BPF_NOSPEC on these architectures therefore is non-trivial. Searching GCC and the kernel for speculation barrier implementations for these architectures yielded no result. * If any of those regressed systems is also vulnerable to Spectre v4, the system was already vulnerable to Spectre v4 attacks based on unpriv BPF before this patch and the impact is therefore further limited. As an alternative to regressing security, one could still reject programs if the architecture does not emit BPF_NOSPEC (e.g., by removing the empty BPF_NOSPEC-case from all JITs except for LoongArch where it appears justified). However, this will cause rejections on these archs that are likely unfounded in the vast majority of cases. In the tests, some are now successful where we previously had a false-positive (i.e., rejection). Change them to reflect where the nospec should be inserted (using __xlated_unpriv) and modify the error message if the nospec is able to mitigate a problem that previously shadowed another problem (in that case __xlated_unpriv does not work, therefore just add a comment). Define SPEC_V1 to avoid duplicating this ifdef whenever we check for nospec insns using __xlated_unpriv, define it here once. This also improves readability. PowerPC can probably also be added here. However, omit it for now because the BPF CI currently does not include a test. Limit it to EPERM, EACCES, and EINVAL (and not everything except for EFAULT and ENOMEM) as it already has the desired effect for most real-world programs. Briefly went through all the occurrences of EPERM, EINVAL, and EACCESS in verifier.c to validate that catching them like this makes sense. Thanks to Dustin for their help in checking the vendor documentation. [1] https://lpc.events/event/18/contributions/1954/ ("Mitigating Spectre-PHT using Speculation Barriers in Linux eBPF") [2] https://arxiv.org/pdf/2405.00078 ("VeriFence: Lightweight and Precise Spectre Defenses for Untrusted Linux Kernel Extensions") [3] https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/runtime-speculative-side-channel-mitigations.html ("Managed Runtime Speculative Execution Side Channel Mitigations") [4] https://dl.acm.org/doi/pdf/10.1145/3359789.3359837 ("Speculator: a tool to analyze speculative execution attacks and mitigations" - Section 4.6 "Stopping Speculative Execution") [5] https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/software-techniques-for-managing-speculation.pdf ("White Paper - SOFTWARE TECHNIQUES FOR MANAGING SPECULATION ON AMD PROCESSORS - REVISION 5.09.23") [6] https://developer.arm.com/documentation/ddi0597/2020-12/Base-Instructions/SB--Speculation-Barrier- ("SB - Speculation Barrier - Arm Armv8-A A32/T32 Instruction Set Architecture (2020-12)") [7] https://wiki.raptorcs.com/w/images/5/5f/OPF_PowerISA_v3.1C.pdf ("Power ISA™ - Version 3.1C - May 26, 2024 - Section 9.2.1 of Book III") [8] https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/40332.pdf ("AMD64 Architecture Programmer’s Manual Volumes 1–5 - Revision 4.08 - April 2024 - 7.6.4 Serializing Instructions") Signed-off-by: Luis Gerhorst <luis.gerhorst@fau.de> Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Acked-by: Henriette Herzog <henriette.herzog@rub.de> Cc: Dustin Nguyen <nguyen@cs.fau.de> Cc: Maximilian Ott <ott@cs.fau.de> Cc: Milan Stephan <milan.stephan@fau.de> Link: https://lore.kernel.org/r/20250603212428.338473-1-luis.gerhorst@fau.de Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2025-06-03 23:24:28 +02:00
/* unpriv: nospec (inserted to prevent "R9 !read_ok") */
BPF_LDX_MEM(BPF_B, BPF_REG_8, BPF_REG_9, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 7),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 10, -4),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 7,
},
{
"dead code: mid 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 7),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 10, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 7,
},
{
"dead code: mid 2",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_prandom_u32),
BPF_JMP_IMM(BPF_JSET, BPF_REG_0, 1, 4),
BPF_JMP_IMM(BPF_JSET, BPF_REG_0, 1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 7),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 1,
},
{
"dead code: end 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 7),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 10, 1),
BPF_EXIT_INSN(),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 7,
},
{
"dead code: end 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 7),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 10, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 12),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 7,
},
{
"dead code: end 3",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 7),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 8, 1),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 10, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_MOV64_IMM(BPF_REG_0, 12),
BPF_JMP_IMM(BPF_JA, 0, 0, -5),
},
.result = ACCEPT,
.retval = 7,
},
{
"dead code: tail of main + func",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 7),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 8, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 12),
BPF_EXIT_INSN(),
},
bpf: Support bpf program calling kernel function This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
2021-03-24 18:51:42 -07:00
.errstr_unpriv = "loading/calling other bpf or kernel functions are allowed for",
.result_unpriv = REJECT,
.result = ACCEPT,
.retval = 7,
},
{
"dead code: tail of main + two functions",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 7),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 8, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 12),
BPF_EXIT_INSN(),
},
bpf: Support bpf program calling kernel function This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
2021-03-24 18:51:42 -07:00
.errstr_unpriv = "loading/calling other bpf or kernel functions are allowed for",
.result_unpriv = REJECT,
.result = ACCEPT,
.retval = 7,
},
{
"dead code: function in the middle and mid of another func",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 7),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 12),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 7),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 7, 1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -5),
BPF_EXIT_INSN(),
},
bpf: Support bpf program calling kernel function This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
2021-03-24 18:51:42 -07:00
.errstr_unpriv = "loading/calling other bpf or kernel functions are allowed for",
.result_unpriv = REJECT,
.result = ACCEPT,
.retval = 7,
},
{
"dead code: middle of main before call",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 2),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 2, 1),
BPF_MOV64_IMM(BPF_REG_1, 5),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
bpf: Support bpf program calling kernel function This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
2021-03-24 18:51:42 -07:00
.errstr_unpriv = "loading/calling other bpf or kernel functions are allowed for",
.result_unpriv = REJECT,
.result = ACCEPT,
.retval = 2,
},
{
"dead code: start of a function",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
bpf: Support bpf program calling kernel function This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
2021-03-24 18:51:42 -07:00
.errstr_unpriv = "loading/calling other bpf or kernel functions are allowed for",
.result_unpriv = REJECT,
.result = ACCEPT,
.retval = 2,
},
{
"dead code: zero extension",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -4),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_10, -4),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 0,
},