mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00
6 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
d6f1c85f22 |
bpf: Fall back to nospec for Spectre v1
This implements the core of the series and causes the verifier to fall
back to mitigating Spectre v1 using speculation barriers. The approach
was presented at LPC'24 [1] and RAID'24 [2].
If we find any forbidden behavior on a speculative path, we insert a
nospec (e.g., lfence speculation barrier on x86) before the instruction
and stop verifying the path. While verifying a speculative path, we can
furthermore stop verification of that path whenever we encounter a
nospec instruction.
A minimal example program would look as follows:
A = true
B = true
if A goto e
f()
if B goto e
unsafe()
e: exit
There are the following speculative and non-speculative paths
(`cur->speculative` and `speculative` referring to the value of the
push_stack() parameters):
- A = true
- B = true
- if A goto e
- A && !cur->speculative && !speculative
- exit
- !A && !cur->speculative && speculative
- f()
- if B goto e
- B && cur->speculative && !speculative
- exit
- !B && cur->speculative && speculative
- unsafe()
If f() contains any unsafe behavior under Spectre v1 and the unsafe
behavior matches `state->speculative &&
error_recoverable_with_nospec(err)`, do_check() will now add a nospec
before f() instead of rejecting the program:
A = true
B = true
if A goto e
nospec
f()
if B goto e
unsafe()
e: exit
Alternatively, the algorithm also takes advantage of nospec instructions
inserted for other reasons (e.g., Spectre v4). Taking the program above
as an example, speculative path exploration can stop before f() if a
nospec was inserted there because of Spectre v4 sanitization.
In this example, all instructions after the nospec are dead code (and
with the nospec they are also dead code speculatively).
For this, it relies on the fact that speculation barriers generally
prevent all later instructions from executing if the speculation was not
correct:
* On Intel x86_64, lfence acts as full speculation barrier, not only as
a load fence [3]:
An LFENCE instruction or a serializing instruction will ensure that
no later instructions execute, even speculatively, until all prior
instructions complete locally. [...] Inserting an LFENCE instruction
after a bounds check prevents later operations from executing before
the bound check completes.
This was experimentally confirmed in [4].
* On AMD x86_64, lfence is dispatch-serializing [5] (requires MSR
C001_1029[1] to be set if the MSR is supported, this happens in
init_amd()). AMD further specifies "A dispatch serializing instruction
forces the processor to retire the serializing instruction and all
previous instructions before the next instruction is executed" [8]. As
dispatch is not specific to memory loads or branches, lfence therefore
also affects all instructions there. Also, if retiring a branch means
it's PC change becomes architectural (should be), this means any
"wrong" speculation is aborted as required for this series.
* ARM's SB speculation barrier instruction also affects "any instruction
that appears later in the program order than the barrier" [6].
* PowerPC's barrier also affects all subsequent instructions [7]:
[...] executing an ori R31,R31,0 instruction ensures that all
instructions preceding the ori R31,R31,0 instruction have completed
before the ori R31,R31,0 instruction completes, and that no
subsequent instructions are initiated, even out-of-order, until
after the ori R31,R31,0 instruction completes. The ori R31,R31,0
instruction may complete before storage accesses associated with
instructions preceding the ori R31,R31,0 instruction have been
performed
Regarding the example, this implies that `if B goto e` will not execute
before `if A goto e` completes. Once `if A goto e` completes, the CPU
should find that the speculation was wrong and continue with `exit`.
If there is any other path that leads to `if B goto e` (and therefore
`unsafe()`) without going through `if A goto e`, then a nospec will
still be needed there. However, this patch assumes this other path will
be explored separately and therefore be discovered by the verifier even
if the exploration discussed here stops at the nospec.
This patch furthermore has the unfortunate consequence that Spectre v1
mitigations now only support architectures which implement BPF_NOSPEC.
Before this commit, Spectre v1 mitigations prevented exploits by
rejecting the programs on all architectures. Because some JITs do not
implement BPF_NOSPEC, this patch therefore may regress unpriv BPF's
security to a limited extent:
* The regression is limited to systems vulnerable to Spectre v1, have
unprivileged BPF enabled, and do NOT emit insns for BPF_NOSPEC. The
latter is not the case for x86 64- and 32-bit, arm64, and powerpc
64-bit and they are therefore not affected by the regression.
According to commit
|
||
![]() |
3776f3517e |
selftests, bpf: Test that dead ldx_w insns are accepted
Prevent regressions related to zero-extension metadata handling during dead code sanitization. Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210812151811.184086-3-iii@linux.ibm.com |
||
![]() |
973377ffe8 |
bpf, selftests: Adjust few selftest outcomes wrt unreachable code
In almost all cases from test_verifier that have been changed in here, we've had an unreachable path with a load from a register which has an invalid address on purpose. This was basically to make sure that we never walk this path and to have the verifier complain if it would otherwise. Change it to match on the right error for unprivileged given we now test these paths under speculative execution. There's one case where we match on exact # of insns_processed. Due to the extra path, this will of course mismatch on unprivileged. Thus, restrict the test->insn_processed check to privileged-only. In one other case, we result in a 'pointer comparison prohibited' error. This is similarly due to verifying an 'invalid' branch where we end up with a value pointer on one side of the comparison. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> |
||
![]() |
e6ac2450d6 |
bpf: Support bpf program calling kernel function
This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com |
||
![]() |
8162600118 |
selftests/bpf: Use CAP_BPF and CAP_PERFMON in tests
Make all test_verifier test exercise CAP_BPF and CAP_PERFMON Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200513230355.7858-4-alexei.starovoitov@gmail.com |
||
![]() |
4872922623 |
selftests: bpf: break up the rest of test_verifier
Break up the rest of test_verifier tests into separate files. Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Acked-by: Jiong Wang <jiong.wang@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> |