linux/drivers/reset/reset-k230.c

372 lines
13 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2022-2024 Canaan Bright Sight Co., Ltd
* Copyright (C) 2024-2025 Junhui Liu <junhui.liu@pigmoral.tech>
*
* The reset management module in the K230 SoC provides reset time control
* registers. For RST_TYPE_CPU0, RST_TYPE_CPU1 and RST_TYPE_SW_DONE, the period
* during which reset is applied or removed while the clock is stopped can be
* set up to 15 * 0.25 = 3.75 µs. For RST_TYPE_HW_DONE, that period can be set
* up to 255 * 0.25 = 63.75 µs. For RST_TYPE_FLUSH, the reset bit is
* automatically cleared by hardware when flush completes.
*
* Although this driver does not configure the reset time registers, delays have
* been added to the assert, deassert, and reset operations to cover the maximum
* reset time. Some reset types include done bits whose toggle does not
* unambiguously signal whether hardware reset removal or clock-stop period
* expiration occurred first. Delays are therefore retained for types with done
* bits to ensure safe timing.
*
* Reference: K230 Technical Reference Manual V0.3.1
* https://kendryte-download.canaan-creative.com/developer/k230/HDK/K230%E7%A1%AC%E4%BB%B6%E6%96%87%E6%A1%A3/K230_Technical_Reference_Manual_V0.3.1_20241118.pdf
*/
#include <linux/cleanup.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset-controller.h>
#include <linux/spinlock.h>
#include <dt-bindings/reset/canaan,k230-rst.h>
/**
* enum k230_rst_type - K230 reset types
* @RST_TYPE_CPU0: Reset type for CPU0
* Automatically clears, has write enable and done bit, active high
* @RST_TYPE_CPU1: Reset type for CPU1
* Manually clears, has write enable and done bit, active high
* @RST_TYPE_FLUSH: Reset type for CPU L2 cache flush
* Automatically clears, has write enable, no done bit, active high
* @RST_TYPE_HW_DONE: Reset type for hardware auto clear
* Automatically clears, no write enable, has done bit, active high
* @RST_TYPE_SW_DONE: Reset type for software manual clear
* Manually clears, no write enable and done bit,
* active high if ID is RST_SPI2AXI, otherwise active low
*/
enum k230_rst_type {
RST_TYPE_CPU0,
RST_TYPE_CPU1,
RST_TYPE_FLUSH,
RST_TYPE_HW_DONE,
RST_TYPE_SW_DONE,
};
struct k230_rst_map {
u32 offset;
enum k230_rst_type type;
u32 done;
u32 reset;
};
struct k230_rst {
struct reset_controller_dev rcdev;
void __iomem *base;
/* protect register read-modify-write */
spinlock_t lock;
};
static const struct k230_rst_map k230_resets[] = {
[RST_CPU0] = { 0x4, RST_TYPE_CPU0, BIT(12), BIT(0) },
[RST_CPU1] = { 0xc, RST_TYPE_CPU1, BIT(12), BIT(0) },
[RST_CPU0_FLUSH] = { 0x4, RST_TYPE_FLUSH, 0, BIT(4) },
[RST_CPU1_FLUSH] = { 0xc, RST_TYPE_FLUSH, 0, BIT(4) },
[RST_AI] = { 0x14, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_VPU] = { 0x1c, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_HISYS] = { 0x2c, RST_TYPE_HW_DONE, BIT(4), BIT(0) },
[RST_HISYS_AHB] = { 0x2c, RST_TYPE_HW_DONE, BIT(5), BIT(1) },
[RST_SDIO0] = { 0x34, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_SDIO1] = { 0x34, RST_TYPE_HW_DONE, BIT(29), BIT(1) },
[RST_SDIO_AXI] = { 0x34, RST_TYPE_HW_DONE, BIT(30), BIT(2) },
[RST_USB0] = { 0x3c, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_USB1] = { 0x3c, RST_TYPE_HW_DONE, BIT(29), BIT(1) },
[RST_USB0_AHB] = { 0x3c, RST_TYPE_HW_DONE, BIT(30), BIT(0) },
[RST_USB1_AHB] = { 0x3c, RST_TYPE_HW_DONE, BIT(31), BIT(1) },
[RST_SPI0] = { 0x44, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_SPI1] = { 0x44, RST_TYPE_HW_DONE, BIT(29), BIT(1) },
[RST_SPI2] = { 0x44, RST_TYPE_HW_DONE, BIT(30), BIT(2) },
[RST_SEC] = { 0x4c, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_PDMA] = { 0x54, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_SDMA] = { 0x54, RST_TYPE_HW_DONE, BIT(29), BIT(1) },
[RST_DECOMPRESS] = { 0x5c, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_SRAM] = { 0x64, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_SHRM_AXIM] = { 0x64, RST_TYPE_HW_DONE, BIT(30), BIT(2) },
[RST_SHRM_AXIS] = { 0x64, RST_TYPE_HW_DONE, BIT(31), BIT(3) },
[RST_NONAI2D] = { 0x6c, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_MCTL] = { 0x74, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_ISP] = { 0x80, RST_TYPE_HW_DONE, BIT(29), BIT(6) },
[RST_ISP_DW] = { 0x80, RST_TYPE_HW_DONE, BIT(28), BIT(5) },
[RST_DPU] = { 0x88, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_DISP] = { 0x90, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_GPU] = { 0x98, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_AUDIO] = { 0xa4, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_TIMER0] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(0) },
[RST_TIMER1] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(1) },
[RST_TIMER2] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(2) },
[RST_TIMER3] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(3) },
[RST_TIMER4] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(4) },
[RST_TIMER5] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(5) },
[RST_TIMER_APB] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(6) },
[RST_HDI] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(7) },
[RST_WDT0] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(12) },
[RST_WDT1] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(13) },
[RST_WDT0_APB] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(14) },
[RST_WDT1_APB] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(15) },
[RST_TS_APB] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(16) },
[RST_MAILBOX] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(17) },
[RST_STC] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(18) },
[RST_PMU] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(19) },
[RST_LOSYS_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(0) },
[RST_UART0] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(1) },
[RST_UART1] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(2) },
[RST_UART2] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(3) },
[RST_UART3] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(4) },
[RST_UART4] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(5) },
[RST_I2C0] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(6) },
[RST_I2C1] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(7) },
[RST_I2C2] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(8) },
[RST_I2C3] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(9) },
[RST_I2C4] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(10) },
[RST_JAMLINK0_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(11) },
[RST_JAMLINK1_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(12) },
[RST_JAMLINK2_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(13) },
[RST_JAMLINK3_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(14) },
[RST_CODEC_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(17) },
[RST_GPIO_DB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(18) },
[RST_GPIO_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(19) },
[RST_ADC] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(20) },
[RST_ADC_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(21) },
[RST_PWM_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(22) },
[RST_SHRM_APB] = { 0x64, RST_TYPE_SW_DONE, 0, BIT(1) },
[RST_CSI0] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(0) },
[RST_CSI1] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(1) },
[RST_CSI2] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(2) },
[RST_CSI_DPHY] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(3) },
[RST_ISP_AHB] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(4) },
[RST_M0] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(7) },
[RST_M1] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(8) },
[RST_M2] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(9) },
[RST_SPI2AXI] = { 0xa8, RST_TYPE_SW_DONE, 0, BIT(0) }
};
static inline struct k230_rst *to_k230_rst(struct reset_controller_dev *rcdev)
{
return container_of(rcdev, struct k230_rst, rcdev);
}
static void k230_rst_clear_done(struct k230_rst *rstc, unsigned long id,
bool write_en)
{
const struct k230_rst_map *rmap = &k230_resets[id];
u32 reg;
guard(spinlock_irqsave)(&rstc->lock);
reg = readl(rstc->base + rmap->offset);
reg |= rmap->done; /* write 1 to clear */
if (write_en)
reg |= rmap->done << 16;
writel(reg, rstc->base + rmap->offset);
}
static int k230_rst_wait_and_clear_done(struct k230_rst *rstc, unsigned long id,
bool write_en)
{
const struct k230_rst_map *rmap = &k230_resets[id];
u32 reg;
int ret;
ret = readl_poll_timeout(rstc->base + rmap->offset, reg,
reg & rmap->done, 10, 1000);
if (ret) {
dev_err(rstc->rcdev.dev, "Wait for reset done timeout\n");
return ret;
}
k230_rst_clear_done(rstc, id, write_en);
return 0;
}
static void k230_rst_update(struct k230_rst *rstc, unsigned long id,
bool assert, bool write_en, bool active_low)
{
const struct k230_rst_map *rmap = &k230_resets[id];
u32 reg;
guard(spinlock_irqsave)(&rstc->lock);
reg = readl(rstc->base + rmap->offset);
if (assert ^ active_low)
reg |= rmap->reset;
else
reg &= ~rmap->reset;
if (write_en)
reg |= rmap->reset << 16;
writel(reg, rstc->base + rmap->offset);
}
static int k230_rst_assert(struct reset_controller_dev *rcdev, unsigned long id)
{
struct k230_rst *rstc = to_k230_rst(rcdev);
switch (k230_resets[id].type) {
case RST_TYPE_CPU1:
k230_rst_update(rstc, id, true, true, false);
break;
case RST_TYPE_SW_DONE:
k230_rst_update(rstc, id, true, false,
id == RST_SPI2AXI ? false : true);
break;
case RST_TYPE_CPU0:
case RST_TYPE_FLUSH:
case RST_TYPE_HW_DONE:
return -EOPNOTSUPP;
}
/*
* The time period when reset is applied but the clock is stopped for
* RST_TYPE_CPU1 and RST_TYPE_SW_DONE can be set up to 3.75us. Delay
* 10us to ensure proper reset timing.
*/
udelay(10);
return 0;
}
static int k230_rst_deassert(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct k230_rst *rstc = to_k230_rst(rcdev);
int ret = 0;
switch (k230_resets[id].type) {
case RST_TYPE_CPU1:
k230_rst_update(rstc, id, false, true, false);
ret = k230_rst_wait_and_clear_done(rstc, id, true);
break;
case RST_TYPE_SW_DONE:
k230_rst_update(rstc, id, false, false,
id == RST_SPI2AXI ? false : true);
break;
case RST_TYPE_CPU0:
case RST_TYPE_FLUSH:
case RST_TYPE_HW_DONE:
return -EOPNOTSUPP;
}
/*
* The time period when reset is removed but the clock is stopped for
* RST_TYPE_CPU1 and RST_TYPE_SW_DONE can be set up to 3.75us. Delay
* 10us to ensure proper reset timing.
*/
udelay(10);
return ret;
}
static int k230_rst_reset(struct reset_controller_dev *rcdev, unsigned long id)
{
struct k230_rst *rstc = to_k230_rst(rcdev);
const struct k230_rst_map *rmap = &k230_resets[id];
u32 reg;
int ret = 0;
switch (rmap->type) {
case RST_TYPE_CPU0:
k230_rst_clear_done(rstc, id, true);
k230_rst_update(rstc, id, true, true, false);
ret = k230_rst_wait_and_clear_done(rstc, id, true);
/*
* The time period when reset is applied and removed but the
* clock is stopped for RST_TYPE_CPU0 can be set up to 7.5us.
* Delay 10us to ensure proper reset timing.
*/
udelay(10);
break;
case RST_TYPE_FLUSH:
k230_rst_update(rstc, id, true, true, false);
/* Wait flush request bit auto cleared by hardware */
ret = readl_poll_timeout(rstc->base + rmap->offset, reg,
!(reg & rmap->reset), 10, 1000);
if (ret)
dev_err(rcdev->dev, "Wait for flush done timeout\n");
break;
case RST_TYPE_HW_DONE:
k230_rst_clear_done(rstc, id, false);
k230_rst_update(rstc, id, true, false, false);
ret = k230_rst_wait_and_clear_done(rstc, id, false);
/*
* The time period when reset is applied and removed but the
* clock is stopped for RST_TYPE_HW_DONE can be set up to
* 127.5us. Delay 200us to ensure proper reset timing.
*/
fsleep(200);
break;
case RST_TYPE_CPU1:
case RST_TYPE_SW_DONE:
k230_rst_assert(rcdev, id);
ret = k230_rst_deassert(rcdev, id);
break;
}
return ret;
}
static const struct reset_control_ops k230_rst_ops = {
.reset = k230_rst_reset,
.assert = k230_rst_assert,
.deassert = k230_rst_deassert,
};
static int k230_rst_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct k230_rst *rstc;
rstc = devm_kzalloc(dev, sizeof(*rstc), GFP_KERNEL);
if (!rstc)
return -ENOMEM;
rstc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(rstc->base))
return PTR_ERR(rstc->base);
spin_lock_init(&rstc->lock);
rstc->rcdev.dev = dev;
rstc->rcdev.owner = THIS_MODULE;
rstc->rcdev.ops = &k230_rst_ops;
rstc->rcdev.nr_resets = ARRAY_SIZE(k230_resets);
rstc->rcdev.of_node = dev->of_node;
return devm_reset_controller_register(dev, &rstc->rcdev);
}
static const struct of_device_id k230_rst_match[] = {
{ .compatible = "canaan,k230-rst", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, k230_rst_match);
static struct platform_driver k230_rst_driver = {
.probe = k230_rst_probe,
.driver = {
.name = "k230-rst",
.of_match_table = k230_rst_match,
}
};
module_platform_driver(k230_rst_driver);
MODULE_AUTHOR("Junhui Liu <junhui.liu@pigmoral.tech>");
MODULE_DESCRIPTION("Canaan K230 reset driver");
MODULE_LICENSE("GPL");