linux/drivers/infiniband/hw/bnxt_re/ib_verbs.c

4804 lines
131 KiB
C
Raw Permalink Normal View History

/*
* Broadcom NetXtreme-E RoCE driver.
*
* Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term
* Broadcom refers to Broadcom Limited and/or its subsidiaries.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* BSD license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Description: IB Verbs interpreter
*/
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/if_ether.h>
#include <net/addrconf.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_user_verbs.h>
#include <rdma/ib_umem.h>
#include <rdma/ib_addr.h>
#include <rdma/ib_mad.h>
#include <rdma/ib_cache.h>
#include <rdma/ib_pma.h>
#include <rdma/uverbs_ioctl.h>
#include <linux/hashtable.h>
#include "roce_hsi.h"
#include "qplib_res.h"
#include "qplib_sp.h"
#include "qplib_fp.h"
#include "qplib_rcfw.h"
#include "bnxt_re.h"
#include "ib_verbs.h"
#include "debugfs.h"
#include <rdma/uverbs_types.h>
#include <rdma/uverbs_std_types.h>
#include <rdma/ib_user_ioctl_cmds.h>
#define UVERBS_MODULE_NAME bnxt_re
#include <rdma/uverbs_named_ioctl.h>
#include <rdma/bnxt_re-abi.h>
static int __from_ib_access_flags(int iflags)
{
int qflags = 0;
if (iflags & IB_ACCESS_LOCAL_WRITE)
qflags |= BNXT_QPLIB_ACCESS_LOCAL_WRITE;
if (iflags & IB_ACCESS_REMOTE_READ)
qflags |= BNXT_QPLIB_ACCESS_REMOTE_READ;
if (iflags & IB_ACCESS_REMOTE_WRITE)
qflags |= BNXT_QPLIB_ACCESS_REMOTE_WRITE;
if (iflags & IB_ACCESS_REMOTE_ATOMIC)
qflags |= BNXT_QPLIB_ACCESS_REMOTE_ATOMIC;
if (iflags & IB_ACCESS_MW_BIND)
qflags |= BNXT_QPLIB_ACCESS_MW_BIND;
if (iflags & IB_ZERO_BASED)
qflags |= BNXT_QPLIB_ACCESS_ZERO_BASED;
if (iflags & IB_ACCESS_ON_DEMAND)
qflags |= BNXT_QPLIB_ACCESS_ON_DEMAND;
return qflags;
};
static int __to_ib_access_flags(int qflags)
{
int iflags = 0;
if (qflags & BNXT_QPLIB_ACCESS_LOCAL_WRITE)
iflags |= IB_ACCESS_LOCAL_WRITE;
if (qflags & BNXT_QPLIB_ACCESS_REMOTE_WRITE)
iflags |= IB_ACCESS_REMOTE_WRITE;
if (qflags & BNXT_QPLIB_ACCESS_REMOTE_READ)
iflags |= IB_ACCESS_REMOTE_READ;
if (qflags & BNXT_QPLIB_ACCESS_REMOTE_ATOMIC)
iflags |= IB_ACCESS_REMOTE_ATOMIC;
if (qflags & BNXT_QPLIB_ACCESS_MW_BIND)
iflags |= IB_ACCESS_MW_BIND;
if (qflags & BNXT_QPLIB_ACCESS_ZERO_BASED)
iflags |= IB_ZERO_BASED;
if (qflags & BNXT_QPLIB_ACCESS_ON_DEMAND)
iflags |= IB_ACCESS_ON_DEMAND;
return iflags;
}
static u8 __qp_access_flags_from_ib(struct bnxt_qplib_chip_ctx *cctx, int iflags)
{
u8 qflags = 0;
if (!bnxt_qplib_is_chip_gen_p5_p7(cctx))
/* For Wh+ */
return (u8)__from_ib_access_flags(iflags);
/* For P5, P7 and later chips */
if (iflags & IB_ACCESS_LOCAL_WRITE)
qflags |= CMDQ_MODIFY_QP_ACCESS_LOCAL_WRITE;
if (iflags & IB_ACCESS_REMOTE_WRITE)
qflags |= CMDQ_MODIFY_QP_ACCESS_REMOTE_WRITE;
if (iflags & IB_ACCESS_REMOTE_READ)
qflags |= CMDQ_MODIFY_QP_ACCESS_REMOTE_READ;
if (iflags & IB_ACCESS_REMOTE_ATOMIC)
qflags |= CMDQ_MODIFY_QP_ACCESS_REMOTE_ATOMIC;
return qflags;
}
static int __qp_access_flags_to_ib(struct bnxt_qplib_chip_ctx *cctx, u8 qflags)
{
int iflags = 0;
if (!bnxt_qplib_is_chip_gen_p5_p7(cctx))
/* For Wh+ */
return __to_ib_access_flags(qflags);
/* For P5, P7 and later chips */
if (qflags & CMDQ_MODIFY_QP_ACCESS_LOCAL_WRITE)
iflags |= IB_ACCESS_LOCAL_WRITE;
if (qflags & CMDQ_MODIFY_QP_ACCESS_REMOTE_WRITE)
iflags |= IB_ACCESS_REMOTE_WRITE;
if (qflags & CMDQ_MODIFY_QP_ACCESS_REMOTE_READ)
iflags |= IB_ACCESS_REMOTE_READ;
if (qflags & CMDQ_MODIFY_QP_ACCESS_REMOTE_ATOMIC)
iflags |= IB_ACCESS_REMOTE_ATOMIC;
return iflags;
}
static void bnxt_re_check_and_set_relaxed_ordering(struct bnxt_re_dev *rdev,
struct bnxt_qplib_mrw *qplib_mr)
{
if (_is_relaxed_ordering_supported(rdev->dev_attr->dev_cap_flags2) &&
pcie_relaxed_ordering_enabled(rdev->en_dev->pdev))
qplib_mr->flags |= CMDQ_REGISTER_MR_FLAGS_ENABLE_RO;
}
static int bnxt_re_build_sgl(struct ib_sge *ib_sg_list,
struct bnxt_qplib_sge *sg_list, int num)
{
int i, total = 0;
for (i = 0; i < num; i++) {
sg_list[i].addr = ib_sg_list[i].addr;
sg_list[i].lkey = ib_sg_list[i].lkey;
sg_list[i].size = ib_sg_list[i].length;
total += sg_list[i].size;
}
return total;
}
/* Device */
int bnxt_re_query_device(struct ib_device *ibdev,
struct ib_device_attr *ib_attr,
struct ib_udata *udata)
{
struct bnxt_re_dev *rdev = to_bnxt_re_dev(ibdev, ibdev);
struct bnxt_qplib_dev_attr *dev_attr = rdev->dev_attr;
memset(ib_attr, 0, sizeof(*ib_attr));
memcpy(&ib_attr->fw_ver, dev_attr->fw_ver,
min(sizeof(dev_attr->fw_ver),
sizeof(ib_attr->fw_ver)));
addrconf_addr_eui48((u8 *)&ib_attr->sys_image_guid,
rdev->netdev->dev_addr);
ib_attr->max_mr_size = BNXT_RE_MAX_MR_SIZE;
ib_attr->page_size_cap = BNXT_RE_PAGE_SIZE_SUPPORTED;
ib_attr->vendor_id = rdev->en_dev->pdev->vendor;
ib_attr->vendor_part_id = rdev->en_dev->pdev->device;
ib_attr->hw_ver = rdev->en_dev->pdev->revision;
ib_attr->max_qp = dev_attr->max_qp;
ib_attr->max_qp_wr = dev_attr->max_qp_wqes;
ib_attr->device_cap_flags =
IB_DEVICE_CURR_QP_STATE_MOD
| IB_DEVICE_RC_RNR_NAK_GEN
| IB_DEVICE_SHUTDOWN_PORT
| IB_DEVICE_SYS_IMAGE_GUID
| IB_DEVICE_RESIZE_MAX_WR
| IB_DEVICE_PORT_ACTIVE_EVENT
| IB_DEVICE_N_NOTIFY_CQ
| IB_DEVICE_MEM_WINDOW
| IB_DEVICE_MEM_WINDOW_TYPE_2B
| IB_DEVICE_MEM_MGT_EXTENSIONS;
ib_attr->kernel_cap_flags = IBK_LOCAL_DMA_LKEY;
ib_attr->max_send_sge = dev_attr->max_qp_sges;
ib_attr->max_recv_sge = dev_attr->max_qp_sges;
ib_attr->max_sge_rd = dev_attr->max_qp_sges;
ib_attr->max_cq = dev_attr->max_cq;
ib_attr->max_cqe = dev_attr->max_cq_wqes;
ib_attr->max_mr = dev_attr->max_mr;
ib_attr->max_pd = dev_attr->max_pd;
ib_attr->max_qp_rd_atom = dev_attr->max_qp_rd_atom;
ib_attr->max_qp_init_rd_atom = dev_attr->max_qp_init_rd_atom;
ib_attr->atomic_cap = IB_ATOMIC_NONE;
ib_attr->masked_atomic_cap = IB_ATOMIC_NONE;
if (dev_attr->is_atomic) {
ib_attr->atomic_cap = IB_ATOMIC_GLOB;
ib_attr->masked_atomic_cap = IB_ATOMIC_GLOB;
}
ib_attr->max_ee_rd_atom = 0;
ib_attr->max_res_rd_atom = 0;
ib_attr->max_ee_init_rd_atom = 0;
ib_attr->max_ee = 0;
ib_attr->max_rdd = 0;
ib_attr->max_mw = dev_attr->max_mw;
ib_attr->max_raw_ipv6_qp = 0;
ib_attr->max_raw_ethy_qp = dev_attr->max_raw_ethy_qp;
ib_attr->max_mcast_grp = 0;
ib_attr->max_mcast_qp_attach = 0;
ib_attr->max_total_mcast_qp_attach = 0;
ib_attr->max_ah = dev_attr->max_ah;
ib_attr->max_srq = dev_attr->max_srq;
ib_attr->max_srq_wr = dev_attr->max_srq_wqes;
ib_attr->max_srq_sge = dev_attr->max_srq_sges;
ib_attr->max_fast_reg_page_list_len = MAX_PBL_LVL_1_PGS;
ib_attr->max_pkeys = 1;
ib_attr->local_ca_ack_delay = BNXT_RE_DEFAULT_ACK_DELAY;
return 0;
}
int bnxt_re_modify_device(struct ib_device *ibdev,
int device_modify_mask,
struct ib_device_modify *device_modify)
{
ibdev_dbg(ibdev, "Modify device with mask 0x%x", device_modify_mask);
if (device_modify_mask & ~IB_DEVICE_MODIFY_NODE_DESC)
return -EOPNOTSUPP;
if (!(device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC))
return 0;
memcpy(ibdev->node_desc, device_modify->node_desc, IB_DEVICE_NODE_DESC_MAX);
return 0;
}
/* Port */
RDMA: Support more than 255 rdma ports Current code uses many different types when dealing with a port of a RDMA device: u8, unsigned int and u32. Switch to u32 to clean up the logic. This allows us to make (at least) the core view consistent and use the same type. Unfortunately not all places can be converted. Many uverbs functions expect port to be u8 so keep those places in order not to break UAPIs. HW/Spec defined values must also not be changed. With the switch to u32 we now can support devices with more than 255 ports. U32_MAX is reserved to make control logic a bit easier to deal with. As a device with U32_MAX ports probably isn't going to happen any time soon this seems like a non issue. When a device with more than 255 ports is created uverbs will report the RDMA device as having 255 ports as this is the max currently supported. The verbs interface is not changed yet because the IBTA spec limits the port size in too many places to be u8 and all applications that relies in verbs won't be able to cope with this change. At this stage, we are extending the interfaces that are using vendor channel solely Once the limitation is lifted mlx5 in switchdev mode will be able to have thousands of SFs created by the device. As the only instance of an RDMA device that reports more than 255 ports will be a representor device and it exposes itself as a RAW Ethernet only device CM/MAD/IPoIB and other ULPs aren't effected by this change and their sysfs/interfaces that are exposes to userspace can remain unchanged. While here cleanup some alignment issues and remove unneeded sanity checks (mainly in rdmavt), Link: https://lore.kernel.org/r/20210301070420.439400-1-leon@kernel.org Signed-off-by: Mark Bloch <mbloch@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2021-03-01 09:04:20 +02:00
int bnxt_re_query_port(struct ib_device *ibdev, u32 port_num,
struct ib_port_attr *port_attr)
{
struct bnxt_re_dev *rdev = to_bnxt_re_dev(ibdev, ibdev);
struct bnxt_qplib_dev_attr *dev_attr = rdev->dev_attr;
int rc;
memset(port_attr, 0, sizeof(*port_attr));
if (netif_running(rdev->netdev) && netif_carrier_ok(rdev->netdev)) {
port_attr->state = IB_PORT_ACTIVE;
port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
} else {
port_attr->state = IB_PORT_DOWN;
port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
}
port_attr->max_mtu = IB_MTU_4096;
port_attr->active_mtu = iboe_get_mtu(rdev->netdev->mtu);
port_attr->gid_tbl_len = dev_attr->max_sgid;
port_attr->port_cap_flags = IB_PORT_CM_SUP | IB_PORT_REINIT_SUP |
IB_PORT_DEVICE_MGMT_SUP |
IB_PORT_VENDOR_CLASS_SUP;
port_attr->ip_gids = true;
port_attr->max_msg_sz = (u32)BNXT_RE_MAX_MR_SIZE_LOW;
port_attr->bad_pkey_cntr = 0;
port_attr->qkey_viol_cntr = 0;
port_attr->pkey_tbl_len = dev_attr->max_pkey;
port_attr->lid = 0;
port_attr->sm_lid = 0;
port_attr->lmc = 0;
port_attr->max_vl_num = 4;
port_attr->sm_sl = 0;
port_attr->subnet_timeout = 0;
port_attr->init_type_reply = 0;
rc = ib_get_eth_speed(&rdev->ibdev, port_num, &port_attr->active_speed,
&port_attr->active_width);
return rc;
}
RDMA: Support more than 255 rdma ports Current code uses many different types when dealing with a port of a RDMA device: u8, unsigned int and u32. Switch to u32 to clean up the logic. This allows us to make (at least) the core view consistent and use the same type. Unfortunately not all places can be converted. Many uverbs functions expect port to be u8 so keep those places in order not to break UAPIs. HW/Spec defined values must also not be changed. With the switch to u32 we now can support devices with more than 255 ports. U32_MAX is reserved to make control logic a bit easier to deal with. As a device with U32_MAX ports probably isn't going to happen any time soon this seems like a non issue. When a device with more than 255 ports is created uverbs will report the RDMA device as having 255 ports as this is the max currently supported. The verbs interface is not changed yet because the IBTA spec limits the port size in too many places to be u8 and all applications that relies in verbs won't be able to cope with this change. At this stage, we are extending the interfaces that are using vendor channel solely Once the limitation is lifted mlx5 in switchdev mode will be able to have thousands of SFs created by the device. As the only instance of an RDMA device that reports more than 255 ports will be a representor device and it exposes itself as a RAW Ethernet only device CM/MAD/IPoIB and other ULPs aren't effected by this change and their sysfs/interfaces that are exposes to userspace can remain unchanged. While here cleanup some alignment issues and remove unneeded sanity checks (mainly in rdmavt), Link: https://lore.kernel.org/r/20210301070420.439400-1-leon@kernel.org Signed-off-by: Mark Bloch <mbloch@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2021-03-01 09:04:20 +02:00
int bnxt_re_get_port_immutable(struct ib_device *ibdev, u32 port_num,
struct ib_port_immutable *immutable)
{
struct ib_port_attr port_attr;
if (bnxt_re_query_port(ibdev, port_num, &port_attr))
return -EINVAL;
immutable->pkey_tbl_len = port_attr.pkey_tbl_len;
immutable->gid_tbl_len = port_attr.gid_tbl_len;
immutable->core_cap_flags = RDMA_CORE_PORT_IBA_ROCE;
immutable->core_cap_flags |= RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
immutable->max_mad_size = IB_MGMT_MAD_SIZE;
return 0;
}
void bnxt_re_query_fw_str(struct ib_device *ibdev, char *str)
{
struct bnxt_re_dev *rdev = to_bnxt_re_dev(ibdev, ibdev);
snprintf(str, IB_FW_VERSION_NAME_MAX, "%d.%d.%d.%d",
rdev->dev_attr->fw_ver[0], rdev->dev_attr->fw_ver[1],
rdev->dev_attr->fw_ver[2], rdev->dev_attr->fw_ver[3]);
}
RDMA: Support more than 255 rdma ports Current code uses many different types when dealing with a port of a RDMA device: u8, unsigned int and u32. Switch to u32 to clean up the logic. This allows us to make (at least) the core view consistent and use the same type. Unfortunately not all places can be converted. Many uverbs functions expect port to be u8 so keep those places in order not to break UAPIs. HW/Spec defined values must also not be changed. With the switch to u32 we now can support devices with more than 255 ports. U32_MAX is reserved to make control logic a bit easier to deal with. As a device with U32_MAX ports probably isn't going to happen any time soon this seems like a non issue. When a device with more than 255 ports is created uverbs will report the RDMA device as having 255 ports as this is the max currently supported. The verbs interface is not changed yet because the IBTA spec limits the port size in too many places to be u8 and all applications that relies in verbs won't be able to cope with this change. At this stage, we are extending the interfaces that are using vendor channel solely Once the limitation is lifted mlx5 in switchdev mode will be able to have thousands of SFs created by the device. As the only instance of an RDMA device that reports more than 255 ports will be a representor device and it exposes itself as a RAW Ethernet only device CM/MAD/IPoIB and other ULPs aren't effected by this change and their sysfs/interfaces that are exposes to userspace can remain unchanged. While here cleanup some alignment issues and remove unneeded sanity checks (mainly in rdmavt), Link: https://lore.kernel.org/r/20210301070420.439400-1-leon@kernel.org Signed-off-by: Mark Bloch <mbloch@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2021-03-01 09:04:20 +02:00
int bnxt_re_query_pkey(struct ib_device *ibdev, u32 port_num,
u16 index, u16 *pkey)
{
if (index > 0)
return -EINVAL;
*pkey = IB_DEFAULT_PKEY_FULL;
return 0;
}
RDMA: Support more than 255 rdma ports Current code uses many different types when dealing with a port of a RDMA device: u8, unsigned int and u32. Switch to u32 to clean up the logic. This allows us to make (at least) the core view consistent and use the same type. Unfortunately not all places can be converted. Many uverbs functions expect port to be u8 so keep those places in order not to break UAPIs. HW/Spec defined values must also not be changed. With the switch to u32 we now can support devices with more than 255 ports. U32_MAX is reserved to make control logic a bit easier to deal with. As a device with U32_MAX ports probably isn't going to happen any time soon this seems like a non issue. When a device with more than 255 ports is created uverbs will report the RDMA device as having 255 ports as this is the max currently supported. The verbs interface is not changed yet because the IBTA spec limits the port size in too many places to be u8 and all applications that relies in verbs won't be able to cope with this change. At this stage, we are extending the interfaces that are using vendor channel solely Once the limitation is lifted mlx5 in switchdev mode will be able to have thousands of SFs created by the device. As the only instance of an RDMA device that reports more than 255 ports will be a representor device and it exposes itself as a RAW Ethernet only device CM/MAD/IPoIB and other ULPs aren't effected by this change and their sysfs/interfaces that are exposes to userspace can remain unchanged. While here cleanup some alignment issues and remove unneeded sanity checks (mainly in rdmavt), Link: https://lore.kernel.org/r/20210301070420.439400-1-leon@kernel.org Signed-off-by: Mark Bloch <mbloch@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2021-03-01 09:04:20 +02:00
int bnxt_re_query_gid(struct ib_device *ibdev, u32 port_num,
int index, union ib_gid *gid)
{
struct bnxt_re_dev *rdev = to_bnxt_re_dev(ibdev, ibdev);
int rc;
/* Ignore port_num */
memset(gid, 0, sizeof(*gid));
rc = bnxt_qplib_get_sgid(&rdev->qplib_res,
&rdev->qplib_res.sgid_tbl, index,
(struct bnxt_qplib_gid *)gid);
return rc;
}
int bnxt_re_del_gid(const struct ib_gid_attr *attr, void **context)
{
int rc = 0;
struct bnxt_re_gid_ctx *ctx, **ctx_tbl;
struct bnxt_re_dev *rdev = to_bnxt_re_dev(attr->device, ibdev);
struct bnxt_qplib_sgid_tbl *sgid_tbl = &rdev->qplib_res.sgid_tbl;
struct bnxt_qplib_gid *gid_to_del;
u16 vlan_id = 0xFFFF;
/* Delete the entry from the hardware */
ctx = *context;
if (!ctx)
return -EINVAL;
if (sgid_tbl && sgid_tbl->active) {
if (ctx->idx >= sgid_tbl->max)
return -EINVAL;
gid_to_del = &sgid_tbl->tbl[ctx->idx].gid;
vlan_id = sgid_tbl->tbl[ctx->idx].vlan_id;
/* DEL_GID is called in WQ context(netdevice_event_work_handler)
* or via the ib_unregister_device path. In the former case QP1
* may not be destroyed yet, in which case just return as FW
* needs that entry to be present and will fail it's deletion.
* We could get invoked again after QP1 is destroyed OR get an
* ADD_GID call with a different GID value for the same index
* where we issue MODIFY_GID cmd to update the GID entry -- TBD
*/
if (ctx->idx == 0 &&
rdma_link_local_addr((struct in6_addr *)gid_to_del) &&
ctx->refcnt == 1 && rdev->gsi_ctx.gsi_sqp) {
ibdev_dbg(&rdev->ibdev,
"Trying to delete GID0 while QP1 is alive\n");
return -EFAULT;
}
ctx->refcnt--;
if (!ctx->refcnt) {
rc = bnxt_qplib_del_sgid(sgid_tbl, gid_to_del,
vlan_id, true);
if (rc) {
ibdev_err(&rdev->ibdev,
"Failed to remove GID: %#x", rc);
} else {
ctx_tbl = sgid_tbl->ctx;
ctx_tbl[ctx->idx] = NULL;
kfree(ctx);
}
}
} else {
return -EINVAL;
}
return rc;
}
int bnxt_re_add_gid(const struct ib_gid_attr *attr, void **context)
{
int rc;
u32 tbl_idx = 0;
u16 vlan_id = 0xFFFF;
struct bnxt_re_gid_ctx *ctx, **ctx_tbl;
struct bnxt_re_dev *rdev = to_bnxt_re_dev(attr->device, ibdev);
struct bnxt_qplib_sgid_tbl *sgid_tbl = &rdev->qplib_res.sgid_tbl;
rc = rdma_read_gid_l2_fields(attr, &vlan_id, NULL);
if (rc)
return rc;
rc = bnxt_qplib_add_sgid(sgid_tbl, (struct bnxt_qplib_gid *)&attr->gid,
rdev->qplib_res.netdev->dev_addr,
vlan_id, true, &tbl_idx);
if (rc == -EALREADY) {
ctx_tbl = sgid_tbl->ctx;
ctx_tbl[tbl_idx]->refcnt++;
*context = ctx_tbl[tbl_idx];
return 0;
}
if (rc < 0) {
ibdev_err(&rdev->ibdev, "Failed to add GID: %#x", rc);
return rc;
}
ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx_tbl = sgid_tbl->ctx;
ctx->idx = tbl_idx;
ctx->refcnt = 1;
ctx_tbl[tbl_idx] = ctx;
*context = ctx;
return rc;
}
enum rdma_link_layer bnxt_re_get_link_layer(struct ib_device *ibdev,
RDMA: Support more than 255 rdma ports Current code uses many different types when dealing with a port of a RDMA device: u8, unsigned int and u32. Switch to u32 to clean up the logic. This allows us to make (at least) the core view consistent and use the same type. Unfortunately not all places can be converted. Many uverbs functions expect port to be u8 so keep those places in order not to break UAPIs. HW/Spec defined values must also not be changed. With the switch to u32 we now can support devices with more than 255 ports. U32_MAX is reserved to make control logic a bit easier to deal with. As a device with U32_MAX ports probably isn't going to happen any time soon this seems like a non issue. When a device with more than 255 ports is created uverbs will report the RDMA device as having 255 ports as this is the max currently supported. The verbs interface is not changed yet because the IBTA spec limits the port size in too many places to be u8 and all applications that relies in verbs won't be able to cope with this change. At this stage, we are extending the interfaces that are using vendor channel solely Once the limitation is lifted mlx5 in switchdev mode will be able to have thousands of SFs created by the device. As the only instance of an RDMA device that reports more than 255 ports will be a representor device and it exposes itself as a RAW Ethernet only device CM/MAD/IPoIB and other ULPs aren't effected by this change and their sysfs/interfaces that are exposes to userspace can remain unchanged. While here cleanup some alignment issues and remove unneeded sanity checks (mainly in rdmavt), Link: https://lore.kernel.org/r/20210301070420.439400-1-leon@kernel.org Signed-off-by: Mark Bloch <mbloch@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2021-03-01 09:04:20 +02:00
u32 port_num)
{
return IB_LINK_LAYER_ETHERNET;
}
#define BNXT_RE_FENCE_PBL_SIZE DIV_ROUND_UP(BNXT_RE_FENCE_BYTES, PAGE_SIZE)
static void bnxt_re_create_fence_wqe(struct bnxt_re_pd *pd)
{
struct bnxt_re_fence_data *fence = &pd->fence;
struct ib_mr *ib_mr = &fence->mr->ib_mr;
struct bnxt_qplib_swqe *wqe = &fence->bind_wqe;
struct bnxt_re_dev *rdev = pd->rdev;
if (bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx))
return;
memset(wqe, 0, sizeof(*wqe));
wqe->type = BNXT_QPLIB_SWQE_TYPE_BIND_MW;
wqe->wr_id = BNXT_QPLIB_FENCE_WRID;
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_SIGNAL_COMP;
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_UC_FENCE;
wqe->bind.zero_based = false;
wqe->bind.parent_l_key = ib_mr->lkey;
wqe->bind.va = (u64)(unsigned long)fence->va;
wqe->bind.length = fence->size;
wqe->bind.access_cntl = __from_ib_access_flags(IB_ACCESS_REMOTE_READ);
wqe->bind.mw_type = SQ_BIND_MW_TYPE_TYPE1;
/* Save the initial rkey in fence structure for now;
* wqe->bind.r_key will be set at (re)bind time.
*/
fence->bind_rkey = ib_inc_rkey(fence->mw->rkey);
}
static int bnxt_re_bind_fence_mw(struct bnxt_qplib_qp *qplib_qp)
{
struct bnxt_re_qp *qp = container_of(qplib_qp, struct bnxt_re_qp,
qplib_qp);
struct ib_pd *ib_pd = qp->ib_qp.pd;
struct bnxt_re_pd *pd = container_of(ib_pd, struct bnxt_re_pd, ib_pd);
struct bnxt_re_fence_data *fence = &pd->fence;
struct bnxt_qplib_swqe *fence_wqe = &fence->bind_wqe;
struct bnxt_qplib_swqe wqe;
int rc;
memcpy(&wqe, fence_wqe, sizeof(wqe));
wqe.bind.r_key = fence->bind_rkey;
fence->bind_rkey = ib_inc_rkey(fence->bind_rkey);
ibdev_dbg(&qp->rdev->ibdev,
"Posting bind fence-WQE: rkey: %#x QP: %d PD: %p\n",
wqe.bind.r_key, qp->qplib_qp.id, pd);
rc = bnxt_qplib_post_send(&qp->qplib_qp, &wqe);
if (rc) {
ibdev_err(&qp->rdev->ibdev, "Failed to bind fence-WQE\n");
return rc;
}
bnxt_qplib_post_send_db(&qp->qplib_qp);
return rc;
}
static void bnxt_re_destroy_fence_mr(struct bnxt_re_pd *pd)
{
struct bnxt_re_fence_data *fence = &pd->fence;
struct bnxt_re_dev *rdev = pd->rdev;
struct device *dev = &rdev->en_dev->pdev->dev;
struct bnxt_re_mr *mr = fence->mr;
if (bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx))
return;
if (fence->mw) {
bnxt_re_dealloc_mw(fence->mw);
fence->mw = NULL;
}
if (mr) {
if (mr->ib_mr.rkey)
bnxt_qplib_dereg_mrw(&rdev->qplib_res, &mr->qplib_mr,
true);
if (mr->ib_mr.lkey)
bnxt_qplib_free_mrw(&rdev->qplib_res, &mr->qplib_mr);
kfree(mr);
fence->mr = NULL;
}
if (fence->dma_addr) {
dma_unmap_single(dev, fence->dma_addr, BNXT_RE_FENCE_BYTES,
DMA_BIDIRECTIONAL);
fence->dma_addr = 0;
}
}
static int bnxt_re_create_fence_mr(struct bnxt_re_pd *pd)
{
int mr_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_MW_BIND;
struct bnxt_re_fence_data *fence = &pd->fence;
struct bnxt_re_dev *rdev = pd->rdev;
struct device *dev = &rdev->en_dev->pdev->dev;
struct bnxt_re_mr *mr = NULL;
dma_addr_t dma_addr = 0;
struct ib_mw *mw;
int rc;
if (bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx))
return 0;
dma_addr = dma_map_single(dev, fence->va, BNXT_RE_FENCE_BYTES,
DMA_BIDIRECTIONAL);
rc = dma_mapping_error(dev, dma_addr);
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to dma-map fence-MR-mem\n");
rc = -EIO;
fence->dma_addr = 0;
goto fail;
}
fence->dma_addr = dma_addr;
/* Allocate a MR */
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr) {
rc = -ENOMEM;
goto fail;
}
fence->mr = mr;
mr->rdev = rdev;
mr->qplib_mr.pd = &pd->qplib_pd;
mr->qplib_mr.type = CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR;
mr->qplib_mr.access_flags = __from_ib_access_flags(mr_access_flags);
if (!_is_alloc_mr_unified(rdev->dev_attr->dev_cap_flags)) {
rc = bnxt_qplib_alloc_mrw(&rdev->qplib_res, &mr->qplib_mr);
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to alloc fence-HW-MR\n");
goto fail;
}
/* Register MR */
mr->ib_mr.lkey = mr->qplib_mr.lkey;
} else {
mr->qplib_mr.flags = CMDQ_REGISTER_MR_FLAGS_ALLOC_MR;
}
mr->qplib_mr.va = (u64)(unsigned long)fence->va;
mr->qplib_mr.total_size = BNXT_RE_FENCE_BYTES;
rc = bnxt_qplib_reg_mr(&rdev->qplib_res, &mr->qplib_mr, NULL,
BNXT_RE_FENCE_PBL_SIZE, PAGE_SIZE);
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to register fence-MR\n");
goto fail;
}
mr->ib_mr.rkey = mr->qplib_mr.rkey;
/* Create a fence MW only for kernel consumers */
mw = bnxt_re_alloc_mw(&pd->ib_pd, IB_MW_TYPE_1, NULL);
if (IS_ERR(mw)) {
ibdev_err(&rdev->ibdev,
"Failed to create fence-MW for PD: %p\n", pd);
rc = PTR_ERR(mw);
goto fail;
}
fence->mw = mw;
bnxt_re_create_fence_wqe(pd);
return 0;
fail:
bnxt_re_destroy_fence_mr(pd);
return rc;
}
static struct bnxt_re_user_mmap_entry*
bnxt_re_mmap_entry_insert(struct bnxt_re_ucontext *uctx, u64 mem_offset,
enum bnxt_re_mmap_flag mmap_flag, u64 *offset)
{
struct bnxt_re_user_mmap_entry *entry;
int ret;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return NULL;
entry->mem_offset = mem_offset;
entry->mmap_flag = mmap_flag;
entry->uctx = uctx;
switch (mmap_flag) {
case BNXT_RE_MMAP_SH_PAGE:
ret = rdma_user_mmap_entry_insert_exact(&uctx->ib_uctx,
&entry->rdma_entry, PAGE_SIZE, 0);
break;
case BNXT_RE_MMAP_UC_DB:
case BNXT_RE_MMAP_WC_DB:
case BNXT_RE_MMAP_DBR_BAR:
case BNXT_RE_MMAP_DBR_PAGE:
case BNXT_RE_MMAP_TOGGLE_PAGE:
ret = rdma_user_mmap_entry_insert(&uctx->ib_uctx,
&entry->rdma_entry, PAGE_SIZE);
break;
default:
ret = -EINVAL;
break;
}
if (ret) {
kfree(entry);
return NULL;
}
if (offset)
*offset = rdma_user_mmap_get_offset(&entry->rdma_entry);
return entry;
}
/* Protection Domains */
int bnxt_re_dealloc_pd(struct ib_pd *ib_pd, struct ib_udata *udata)
{
struct bnxt_re_pd *pd = container_of(ib_pd, struct bnxt_re_pd, ib_pd);
struct bnxt_re_dev *rdev = pd->rdev;
if (udata) {
rdma_user_mmap_entry_remove(pd->pd_db_mmap);
pd->pd_db_mmap = NULL;
}
bnxt_re_destroy_fence_mr(pd);
if (pd->qplib_pd.id) {
if (!bnxt_qplib_dealloc_pd(&rdev->qplib_res,
&rdev->qplib_res.pd_tbl,
&pd->qplib_pd))
atomic_dec(&rdev->stats.res.pd_count);
}
return 0;
}
int bnxt_re_alloc_pd(struct ib_pd *ibpd, struct ib_udata *udata)
{
struct ib_device *ibdev = ibpd->device;
struct bnxt_re_dev *rdev = to_bnxt_re_dev(ibdev, ibdev);
struct bnxt_re_ucontext *ucntx = rdma_udata_to_drv_context(
udata, struct bnxt_re_ucontext, ib_uctx);
struct bnxt_re_pd *pd = container_of(ibpd, struct bnxt_re_pd, ib_pd);
struct bnxt_re_user_mmap_entry *entry = NULL;
u32 active_pds;
int rc = 0;
pd->rdev = rdev;
if (bnxt_qplib_alloc_pd(&rdev->qplib_res, &pd->qplib_pd)) {
ibdev_err(&rdev->ibdev, "Failed to allocate HW PD");
rc = -ENOMEM;
goto fail;
}
if (udata) {
struct bnxt_re_pd_resp resp = {};
if (!ucntx->dpi.dbr) {
/* Allocate DPI in alloc_pd to avoid failing of
* ibv_devinfo and family of application when DPIs
* are depleted.
*/
if (bnxt_qplib_alloc_dpi(&rdev->qplib_res,
&ucntx->dpi, ucntx, BNXT_QPLIB_DPI_TYPE_UC)) {
rc = -ENOMEM;
goto dbfail;
}
}
resp.pdid = pd->qplib_pd.id;
/* Still allow mapping this DBR to the new user PD. */
resp.dpi = ucntx->dpi.dpi;
entry = bnxt_re_mmap_entry_insert(ucntx, (u64)ucntx->dpi.umdbr,
BNXT_RE_MMAP_UC_DB, &resp.dbr);
if (!entry) {
rc = -ENOMEM;
goto dbfail;
}
pd->pd_db_mmap = &entry->rdma_entry;
rc = ib_copy_to_udata(udata, &resp, min(sizeof(resp), udata->outlen));
if (rc) {
rdma_user_mmap_entry_remove(pd->pd_db_mmap);
rc = -EFAULT;
goto dbfail;
}
}
if (!udata)
if (bnxt_re_create_fence_mr(pd))
ibdev_warn(&rdev->ibdev,
"Failed to create Fence-MR\n");
active_pds = atomic_inc_return(&rdev->stats.res.pd_count);
if (active_pds > rdev->stats.res.pd_watermark)
rdev->stats.res.pd_watermark = active_pds;
return 0;
dbfail:
bnxt_qplib_dealloc_pd(&rdev->qplib_res, &rdev->qplib_res.pd_tbl,
&pd->qplib_pd);
fail:
return rc;
}
/* Address Handles */
int bnxt_re_destroy_ah(struct ib_ah *ib_ah, u32 flags)
{
struct bnxt_re_ah *ah = container_of(ib_ah, struct bnxt_re_ah, ib_ah);
struct bnxt_re_dev *rdev = ah->rdev;
bool block = true;
int rc;
block = !(flags & RDMA_DESTROY_AH_SLEEPABLE);
rc = bnxt_qplib_destroy_ah(&rdev->qplib_res, &ah->qplib_ah, block);
if (BNXT_RE_CHECK_RC(rc)) {
if (rc == -ETIMEDOUT)
rc = 0;
else
goto fail;
}
atomic_dec(&rdev->stats.res.ah_count);
fail:
return rc;
}
static u8 bnxt_re_stack_to_dev_nw_type(enum rdma_network_type ntype)
{
u8 nw_type;
switch (ntype) {
case RDMA_NETWORK_IPV4:
nw_type = CMDQ_CREATE_AH_TYPE_V2IPV4;
break;
case RDMA_NETWORK_IPV6:
nw_type = CMDQ_CREATE_AH_TYPE_V2IPV6;
break;
default:
nw_type = CMDQ_CREATE_AH_TYPE_V1;
break;
}
return nw_type;
}
int bnxt_re_create_ah(struct ib_ah *ib_ah, struct rdma_ah_init_attr *init_attr,
struct ib_udata *udata)
{
struct ib_pd *ib_pd = ib_ah->pd;
struct bnxt_re_pd *pd = container_of(ib_pd, struct bnxt_re_pd, ib_pd);
struct rdma_ah_attr *ah_attr = init_attr->ah_attr;
const struct ib_global_route *grh = rdma_ah_read_grh(ah_attr);
struct bnxt_re_dev *rdev = pd->rdev;
const struct ib_gid_attr *sgid_attr;
struct bnxt_re_gid_ctx *ctx;
struct bnxt_re_ah *ah = container_of(ib_ah, struct bnxt_re_ah, ib_ah);
u32 active_ahs;
u8 nw_type;
int rc;
if (!(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH)) {
ibdev_err(&rdev->ibdev, "Failed to alloc AH: GRH not set");
return -EINVAL;
}
ah->rdev = rdev;
ah->qplib_ah.pd = &pd->qplib_pd;
/* Supply the configuration for the HW */
memcpy(ah->qplib_ah.dgid.data, grh->dgid.raw,
sizeof(union ib_gid));
sgid_attr = grh->sgid_attr;
/* Get the HW context of the GID. The reference
* of GID table entry is already taken by the caller.
*/
ctx = rdma_read_gid_hw_context(sgid_attr);
ah->qplib_ah.sgid_index = ctx->idx;
ah->qplib_ah.host_sgid_index = grh->sgid_index;
ah->qplib_ah.traffic_class = grh->traffic_class;
ah->qplib_ah.flow_label = grh->flow_label;
ah->qplib_ah.hop_limit = grh->hop_limit;
ah->qplib_ah.sl = rdma_ah_get_sl(ah_attr);
/* Get network header type for this GID */
nw_type = rdma_gid_attr_network_type(sgid_attr);
ah->qplib_ah.nw_type = bnxt_re_stack_to_dev_nw_type(nw_type);
memcpy(ah->qplib_ah.dmac, ah_attr->roce.dmac, ETH_ALEN);
rc = bnxt_qplib_create_ah(&rdev->qplib_res, &ah->qplib_ah,
!(init_attr->flags &
RDMA_CREATE_AH_SLEEPABLE));
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to allocate HW AH");
return rc;
}
/* Write AVID to shared page. */
if (udata) {
struct bnxt_re_ucontext *uctx = rdma_udata_to_drv_context(
udata, struct bnxt_re_ucontext, ib_uctx);
unsigned long flag;
u32 *wrptr;
spin_lock_irqsave(&uctx->sh_lock, flag);
wrptr = (u32 *)(uctx->shpg + BNXT_RE_AVID_OFFT);
*wrptr = ah->qplib_ah.id;
wmb(); /* make sure cache is updated. */
spin_unlock_irqrestore(&uctx->sh_lock, flag);
}
active_ahs = atomic_inc_return(&rdev->stats.res.ah_count);
if (active_ahs > rdev->stats.res.ah_watermark)
rdev->stats.res.ah_watermark = active_ahs;
return 0;
}
int bnxt_re_query_ah(struct ib_ah *ib_ah, struct rdma_ah_attr *ah_attr)
{
struct bnxt_re_ah *ah = container_of(ib_ah, struct bnxt_re_ah, ib_ah);
ah_attr->type = ib_ah->type;
rdma_ah_set_sl(ah_attr, ah->qplib_ah.sl);
memcpy(ah_attr->roce.dmac, ah->qplib_ah.dmac, ETH_ALEN);
rdma_ah_set_grh(ah_attr, NULL, 0,
ah->qplib_ah.host_sgid_index,
0, ah->qplib_ah.traffic_class);
rdma_ah_set_dgid_raw(ah_attr, ah->qplib_ah.dgid.data);
rdma_ah_set_port_num(ah_attr, 1);
rdma_ah_set_static_rate(ah_attr, 0);
return 0;
}
RDMA/bnxt_re: Avoid Hard lockup during error CQE processing Hitting the following hardlockup due to a race condition in error CQE processing. [26146.879798] bnxt_en 0000:04:00.0: QPLIB: FP: CQ Processed Req [26146.886346] bnxt_en 0000:04:00.0: QPLIB: wr_id[1251] = 0x0 with status 0xa [26156.350935] NMI watchdog: Watchdog detected hard LOCKUP on cpu 4 [26156.357470] Modules linked in: nfsd auth_rpcgss nfs_acl lockd grace [26156.447957] CPU: 4 PID: 3413 Comm: kworker/4:1H Kdump: loaded [26156.457994] Hardware name: Dell Inc. PowerEdge R430/0CN7X8, [26156.466390] Workqueue: ib-comp-wq ib_cq_poll_work [ib_core] [26156.472639] Call Trace: [26156.475379] <NMI> [<ffffffff98d0d722>] dump_stack+0x19/0x1b [26156.481833] [<ffffffff9873f775>] watchdog_overflow_callback+0x135/0x140 [26156.489341] [<ffffffff9877f237>] __perf_event_overflow+0x57/0x100 [26156.496256] [<ffffffff98787c24>] perf_event_overflow+0x14/0x20 [26156.502887] [<ffffffff9860a580>] intel_pmu_handle_irq+0x220/0x510 [26156.509813] [<ffffffff98d16031>] perf_event_nmi_handler+0x31/0x50 [26156.516738] [<ffffffff98d1790c>] nmi_handle.isra.0+0x8c/0x150 [26156.523273] [<ffffffff98d17be8>] do_nmi+0x218/0x460 [26156.528834] [<ffffffff98d16d79>] end_repeat_nmi+0x1e/0x7e [26156.534980] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.543268] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.551556] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.559842] <EOE> [<ffffffff98d083e4>] queued_spin_lock_slowpath+0xb/0xf [26156.567555] [<ffffffff98d15690>] _raw_spin_lock+0x20/0x30 [26156.573696] [<ffffffffc08381a1>] bnxt_qplib_lock_buddy_cq+0x31/0x40 [bnxt_re] [26156.581789] [<ffffffffc083bbaa>] bnxt_qplib_poll_cq+0x43a/0xf10 [bnxt_re] [26156.589493] [<ffffffffc083239b>] bnxt_re_poll_cq+0x9b/0x760 [bnxt_re] The issue happens if RQ poll_cq or SQ poll_cq or Async error event tries to put the error QP in flush list. Since SQ and RQ of each error qp are added to two different flush list, we need to protect it using locks of corresponding CQs. Difference in order of acquiring the lock in SQ poll_cq and RQ poll_cq can cause a hard lockup. Revisits the locking strategy and removes the usage of qplib_cq.hwq.lock. Instead of this lock, introduces qplib_cq.flush_lock to handle addition/deletion of QPs in flush list. Also, always invoke the flush_lock in order (SQ CQ lock first and then RQ CQ lock) to avoid any potential deadlock. Other than the poll_cq context, the movement of QP to/from flush list can be done in modify_qp context or from an async error event from HW. Synchronize these operations using the bnxt_re verbs layer CQ locks. To achieve this, adds a call back to the HW abstraction layer(qplib) to bnxt_re ib_verbs layer in case of async error event. Also, removes the buddy cq functions as it is no longer required. Signed-off-by: Sriharsha Basavapatna <sriharsha.basavapatna@broadcom.com> Signed-off-by: Somnath Kotur <somnath.kotur@broadcom.com> Signed-off-by: Devesh Sharma <devesh.sharma@broadcom.com> Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2018-03-05 21:49:28 -08:00
unsigned long bnxt_re_lock_cqs(struct bnxt_re_qp *qp)
__acquires(&qp->scq->cq_lock) __acquires(&qp->rcq->cq_lock)
{
unsigned long flags;
spin_lock_irqsave(&qp->scq->cq_lock, flags);
if (qp->rcq != qp->scq)
spin_lock(&qp->rcq->cq_lock);
else
__acquire(&qp->rcq->cq_lock);
return flags;
}
RDMA/bnxt_re: Avoid Hard lockup during error CQE processing Hitting the following hardlockup due to a race condition in error CQE processing. [26146.879798] bnxt_en 0000:04:00.0: QPLIB: FP: CQ Processed Req [26146.886346] bnxt_en 0000:04:00.0: QPLIB: wr_id[1251] = 0x0 with status 0xa [26156.350935] NMI watchdog: Watchdog detected hard LOCKUP on cpu 4 [26156.357470] Modules linked in: nfsd auth_rpcgss nfs_acl lockd grace [26156.447957] CPU: 4 PID: 3413 Comm: kworker/4:1H Kdump: loaded [26156.457994] Hardware name: Dell Inc. PowerEdge R430/0CN7X8, [26156.466390] Workqueue: ib-comp-wq ib_cq_poll_work [ib_core] [26156.472639] Call Trace: [26156.475379] <NMI> [<ffffffff98d0d722>] dump_stack+0x19/0x1b [26156.481833] [<ffffffff9873f775>] watchdog_overflow_callback+0x135/0x140 [26156.489341] [<ffffffff9877f237>] __perf_event_overflow+0x57/0x100 [26156.496256] [<ffffffff98787c24>] perf_event_overflow+0x14/0x20 [26156.502887] [<ffffffff9860a580>] intel_pmu_handle_irq+0x220/0x510 [26156.509813] [<ffffffff98d16031>] perf_event_nmi_handler+0x31/0x50 [26156.516738] [<ffffffff98d1790c>] nmi_handle.isra.0+0x8c/0x150 [26156.523273] [<ffffffff98d17be8>] do_nmi+0x218/0x460 [26156.528834] [<ffffffff98d16d79>] end_repeat_nmi+0x1e/0x7e [26156.534980] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.543268] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.551556] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.559842] <EOE> [<ffffffff98d083e4>] queued_spin_lock_slowpath+0xb/0xf [26156.567555] [<ffffffff98d15690>] _raw_spin_lock+0x20/0x30 [26156.573696] [<ffffffffc08381a1>] bnxt_qplib_lock_buddy_cq+0x31/0x40 [bnxt_re] [26156.581789] [<ffffffffc083bbaa>] bnxt_qplib_poll_cq+0x43a/0xf10 [bnxt_re] [26156.589493] [<ffffffffc083239b>] bnxt_re_poll_cq+0x9b/0x760 [bnxt_re] The issue happens if RQ poll_cq or SQ poll_cq or Async error event tries to put the error QP in flush list. Since SQ and RQ of each error qp are added to two different flush list, we need to protect it using locks of corresponding CQs. Difference in order of acquiring the lock in SQ poll_cq and RQ poll_cq can cause a hard lockup. Revisits the locking strategy and removes the usage of qplib_cq.hwq.lock. Instead of this lock, introduces qplib_cq.flush_lock to handle addition/deletion of QPs in flush list. Also, always invoke the flush_lock in order (SQ CQ lock first and then RQ CQ lock) to avoid any potential deadlock. Other than the poll_cq context, the movement of QP to/from flush list can be done in modify_qp context or from an async error event from HW. Synchronize these operations using the bnxt_re verbs layer CQ locks. To achieve this, adds a call back to the HW abstraction layer(qplib) to bnxt_re ib_verbs layer in case of async error event. Also, removes the buddy cq functions as it is no longer required. Signed-off-by: Sriharsha Basavapatna <sriharsha.basavapatna@broadcom.com> Signed-off-by: Somnath Kotur <somnath.kotur@broadcom.com> Signed-off-by: Devesh Sharma <devesh.sharma@broadcom.com> Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2018-03-05 21:49:28 -08:00
void bnxt_re_unlock_cqs(struct bnxt_re_qp *qp,
unsigned long flags)
__releases(&qp->scq->cq_lock) __releases(&qp->rcq->cq_lock)
{
if (qp->rcq != qp->scq)
spin_unlock(&qp->rcq->cq_lock);
else
__release(&qp->rcq->cq_lock);
spin_unlock_irqrestore(&qp->scq->cq_lock, flags);
}
static int bnxt_re_destroy_gsi_sqp(struct bnxt_re_qp *qp)
{
struct bnxt_re_qp *gsi_sqp;
struct bnxt_re_ah *gsi_sah;
struct bnxt_re_dev *rdev;
int rc;
rdev = qp->rdev;
gsi_sqp = rdev->gsi_ctx.gsi_sqp;
gsi_sah = rdev->gsi_ctx.gsi_sah;
ibdev_dbg(&rdev->ibdev, "Destroy the shadow AH\n");
bnxt_qplib_destroy_ah(&rdev->qplib_res,
&gsi_sah->qplib_ah,
true);
atomic_dec(&rdev->stats.res.ah_count);
bnxt_qplib_clean_qp(&qp->qplib_qp);
ibdev_dbg(&rdev->ibdev, "Destroy the shadow QP\n");
rc = bnxt_qplib_destroy_qp(&rdev->qplib_res, &gsi_sqp->qplib_qp);
if (rc) {
ibdev_err(&rdev->ibdev, "Destroy Shadow QP failed");
goto fail;
}
bnxt_qplib_free_qp_res(&rdev->qplib_res, &gsi_sqp->qplib_qp);
/* remove from active qp list */
mutex_lock(&rdev->qp_lock);
list_del(&gsi_sqp->list);
mutex_unlock(&rdev->qp_lock);
atomic_dec(&rdev->stats.res.qp_count);
kfree(rdev->gsi_ctx.sqp_tbl);
kfree(gsi_sah);
kfree(gsi_sqp);
rdev->gsi_ctx.gsi_sqp = NULL;
rdev->gsi_ctx.gsi_sah = NULL;
rdev->gsi_ctx.sqp_tbl = NULL;
return 0;
fail:
return rc;
}
/* Queue Pairs */
int bnxt_re_destroy_qp(struct ib_qp *ib_qp, struct ib_udata *udata)
{
struct bnxt_re_qp *qp = container_of(ib_qp, struct bnxt_re_qp, ib_qp);
RDMA/bnxt_re: Prevent handling any completions after qp destroy HW may generate completions that indicates QP is destroyed. Driver should not be scheduling any more completion handlers for this QP, after the QP is destroyed. Since CQs are active during the QP destroy, driver may still schedule completion handlers. This can cause a race where the destroy_cq and poll_cq running simultaneously. Snippet of kernel panic while doing bnxt_re driver load unload in loop. This indicates a poll after the CQ is freed.  [77786.481636] Call Trace: [77786.481640]  <TASK> [77786.481644]  bnxt_re_poll_cq+0x14a/0x620 [bnxt_re] [77786.481658]  ? kvm_clock_read+0x14/0x30 [77786.481693]  __ib_process_cq+0x57/0x190 [ib_core] [77786.481728]  ib_cq_poll_work+0x26/0x80 [ib_core] [77786.481761]  process_one_work+0x1e5/0x3f0 [77786.481768]  worker_thread+0x50/0x3a0 [77786.481785]  ? __pfx_worker_thread+0x10/0x10 [77786.481790]  kthread+0xe2/0x110 [77786.481794]  ? __pfx_kthread+0x10/0x10 [77786.481797]  ret_from_fork+0x2c/0x50 To avoid this, complete all completion handlers before returning the destroy QP. If free_cq is called soon after destroy_qp, IB stack will cancel the CQ work before invoking the destroy_cq verb and this will prevent any race mentioned. Fixes: 1ac5a4047975 ("RDMA/bnxt_re: Add bnxt_re RoCE driver") Signed-off-by: Kashyap Desai <kashyap.desai@broadcom.com> Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com> Link: https://lore.kernel.org/r/1689322969-25402-2-git-send-email-selvin.xavier@broadcom.com Signed-off-by: Leon Romanovsky <leon@kernel.org>
2023-07-14 01:22:48 -07:00
struct bnxt_qplib_qp *qplib_qp = &qp->qplib_qp;
struct bnxt_re_dev *rdev = qp->rdev;
RDMA/bnxt_re: Prevent handling any completions after qp destroy HW may generate completions that indicates QP is destroyed. Driver should not be scheduling any more completion handlers for this QP, after the QP is destroyed. Since CQs are active during the QP destroy, driver may still schedule completion handlers. This can cause a race where the destroy_cq and poll_cq running simultaneously. Snippet of kernel panic while doing bnxt_re driver load unload in loop. This indicates a poll after the CQ is freed.  [77786.481636] Call Trace: [77786.481640]  <TASK> [77786.481644]  bnxt_re_poll_cq+0x14a/0x620 [bnxt_re] [77786.481658]  ? kvm_clock_read+0x14/0x30 [77786.481693]  __ib_process_cq+0x57/0x190 [ib_core] [77786.481728]  ib_cq_poll_work+0x26/0x80 [ib_core] [77786.481761]  process_one_work+0x1e5/0x3f0 [77786.481768]  worker_thread+0x50/0x3a0 [77786.481785]  ? __pfx_worker_thread+0x10/0x10 [77786.481790]  kthread+0xe2/0x110 [77786.481794]  ? __pfx_kthread+0x10/0x10 [77786.481797]  ret_from_fork+0x2c/0x50 To avoid this, complete all completion handlers before returning the destroy QP. If free_cq is called soon after destroy_qp, IB stack will cancel the CQ work before invoking the destroy_cq verb and this will prevent any race mentioned. Fixes: 1ac5a4047975 ("RDMA/bnxt_re: Add bnxt_re RoCE driver") Signed-off-by: Kashyap Desai <kashyap.desai@broadcom.com> Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com> Link: https://lore.kernel.org/r/1689322969-25402-2-git-send-email-selvin.xavier@broadcom.com Signed-off-by: Leon Romanovsky <leon@kernel.org>
2023-07-14 01:22:48 -07:00
struct bnxt_qplib_nq *scq_nq = NULL;
struct bnxt_qplib_nq *rcq_nq = NULL;
unsigned int flags;
int rc;
bnxt_re_debug_rem_qpinfo(rdev, qp);
bnxt_qplib_flush_cqn_wq(&qp->qplib_qp);
rc = bnxt_qplib_destroy_qp(&rdev->qplib_res, &qp->qplib_qp);
if (rc)
ibdev_err(&rdev->ibdev, "Failed to destroy HW QP");
if (rdma_is_kernel_res(&qp->ib_qp.res)) {
flags = bnxt_re_lock_cqs(qp);
bnxt_qplib_clean_qp(&qp->qplib_qp);
bnxt_re_unlock_cqs(qp, flags);
}
bnxt_qplib_free_qp_res(&rdev->qplib_res, &qp->qplib_qp);
if (ib_qp->qp_type == IB_QPT_GSI && rdev->gsi_ctx.gsi_sqp)
bnxt_re_destroy_gsi_sqp(qp);
mutex_lock(&rdev->qp_lock);
list_del(&qp->list);
mutex_unlock(&rdev->qp_lock);
atomic_dec(&rdev->stats.res.qp_count);
if (qp->qplib_qp.type == CMDQ_CREATE_QP_TYPE_RC)
atomic_dec(&rdev->stats.res.rc_qp_count);
else if (qp->qplib_qp.type == CMDQ_CREATE_QP_TYPE_UD)
atomic_dec(&rdev->stats.res.ud_qp_count);
ib_umem_release(qp->rumem);
ib_umem_release(qp->sumem);
RDMA/bnxt_re: Prevent handling any completions after qp destroy HW may generate completions that indicates QP is destroyed. Driver should not be scheduling any more completion handlers for this QP, after the QP is destroyed. Since CQs are active during the QP destroy, driver may still schedule completion handlers. This can cause a race where the destroy_cq and poll_cq running simultaneously. Snippet of kernel panic while doing bnxt_re driver load unload in loop. This indicates a poll after the CQ is freed.  [77786.481636] Call Trace: [77786.481640]  <TASK> [77786.481644]  bnxt_re_poll_cq+0x14a/0x620 [bnxt_re] [77786.481658]  ? kvm_clock_read+0x14/0x30 [77786.481693]  __ib_process_cq+0x57/0x190 [ib_core] [77786.481728]  ib_cq_poll_work+0x26/0x80 [ib_core] [77786.481761]  process_one_work+0x1e5/0x3f0 [77786.481768]  worker_thread+0x50/0x3a0 [77786.481785]  ? __pfx_worker_thread+0x10/0x10 [77786.481790]  kthread+0xe2/0x110 [77786.481794]  ? __pfx_kthread+0x10/0x10 [77786.481797]  ret_from_fork+0x2c/0x50 To avoid this, complete all completion handlers before returning the destroy QP. If free_cq is called soon after destroy_qp, IB stack will cancel the CQ work before invoking the destroy_cq verb and this will prevent any race mentioned. Fixes: 1ac5a4047975 ("RDMA/bnxt_re: Add bnxt_re RoCE driver") Signed-off-by: Kashyap Desai <kashyap.desai@broadcom.com> Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com> Link: https://lore.kernel.org/r/1689322969-25402-2-git-send-email-selvin.xavier@broadcom.com Signed-off-by: Leon Romanovsky <leon@kernel.org>
2023-07-14 01:22:48 -07:00
/* Flush all the entries of notification queue associated with
* given qp.
*/
scq_nq = qplib_qp->scq->nq;
rcq_nq = qplib_qp->rcq->nq;
bnxt_re_synchronize_nq(scq_nq);
if (scq_nq != rcq_nq)
bnxt_re_synchronize_nq(rcq_nq);
return 0;
}
static u8 __from_ib_qp_type(enum ib_qp_type type)
{
switch (type) {
case IB_QPT_GSI:
return CMDQ_CREATE_QP1_TYPE_GSI;
case IB_QPT_RC:
return CMDQ_CREATE_QP_TYPE_RC;
case IB_QPT_UD:
return CMDQ_CREATE_QP_TYPE_UD;
default:
return IB_QPT_MAX;
}
}
static u16 bnxt_re_setup_rwqe_size(struct bnxt_qplib_qp *qplqp,
int rsge, int max)
{
if (qplqp->wqe_mode == BNXT_QPLIB_WQE_MODE_STATIC)
rsge = max;
return bnxt_re_get_rwqe_size(rsge);
}
static u16 bnxt_re_get_wqe_size(int ilsize, int nsge)
{
u16 wqe_size, calc_ils;
wqe_size = bnxt_re_get_swqe_size(nsge);
if (ilsize) {
calc_ils = sizeof(struct sq_send_hdr) + ilsize;
wqe_size = max_t(u16, calc_ils, wqe_size);
wqe_size = ALIGN(wqe_size, sizeof(struct sq_send_hdr));
}
return wqe_size;
}
static int bnxt_re_setup_swqe_size(struct bnxt_re_qp *qp,
struct ib_qp_init_attr *init_attr)
{
struct bnxt_qplib_dev_attr *dev_attr;
struct bnxt_qplib_qp *qplqp;
struct bnxt_re_dev *rdev;
struct bnxt_qplib_q *sq;
int align, ilsize;
rdev = qp->rdev;
qplqp = &qp->qplib_qp;
sq = &qplqp->sq;
dev_attr = rdev->dev_attr;
align = sizeof(struct sq_send_hdr);
ilsize = ALIGN(init_attr->cap.max_inline_data, align);
/* For gen p4 and gen p5 fixed wqe compatibility mode
* wqe size is fixed to 128 bytes - ie 6 SGEs
*/
if (qplqp->wqe_mode == BNXT_QPLIB_WQE_MODE_STATIC) {
sq->wqe_size = bnxt_re_get_swqe_size(BNXT_STATIC_MAX_SGE);
sq->max_sge = BNXT_STATIC_MAX_SGE;
} else {
sq->wqe_size = bnxt_re_get_wqe_size(ilsize, sq->max_sge);
if (sq->wqe_size > bnxt_re_get_swqe_size(dev_attr->max_qp_sges))
return -EINVAL;
}
if (init_attr->cap.max_inline_data) {
qplqp->max_inline_data = sq->wqe_size -
sizeof(struct sq_send_hdr);
init_attr->cap.max_inline_data = qplqp->max_inline_data;
}
return 0;
}
static int bnxt_re_init_user_qp(struct bnxt_re_dev *rdev, struct bnxt_re_pd *pd,
struct bnxt_re_qp *qp, struct bnxt_re_ucontext *cntx,
struct bnxt_re_qp_req *ureq)
{
struct bnxt_qplib_qp *qplib_qp;
int bytes = 0, psn_sz;
struct ib_umem *umem;
int psn_nume;
qplib_qp = &qp->qplib_qp;
bytes = (qplib_qp->sq.max_wqe * qplib_qp->sq.wqe_size);
/* Consider mapping PSN search memory only for RC QPs. */
if (qplib_qp->type == CMDQ_CREATE_QP_TYPE_RC) {
psn_sz = bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx) ?
sizeof(struct sq_psn_search_ext) :
sizeof(struct sq_psn_search);
if (cntx && bnxt_re_is_var_size_supported(rdev, cntx)) {
psn_nume = ureq->sq_slots;
} else {
psn_nume = (qplib_qp->wqe_mode == BNXT_QPLIB_WQE_MODE_STATIC) ?
qplib_qp->sq.max_wqe : ((qplib_qp->sq.max_wqe * qplib_qp->sq.wqe_size) /
sizeof(struct bnxt_qplib_sge));
}
if (_is_host_msn_table(rdev->qplib_res.dattr->dev_cap_flags2))
psn_nume = roundup_pow_of_two(psn_nume);
bytes += (psn_nume * psn_sz);
}
bytes = PAGE_ALIGN(bytes);
umem = ib_umem_get(&rdev->ibdev, ureq->qpsva, bytes,
IB_ACCESS_LOCAL_WRITE);
if (IS_ERR(umem))
return PTR_ERR(umem);
qp->sumem = umem;
qplib_qp->sq.sg_info.umem = umem;
qplib_qp->sq.sg_info.pgsize = PAGE_SIZE;
qplib_qp->sq.sg_info.pgshft = PAGE_SHIFT;
qplib_qp->qp_handle = ureq->qp_handle;
if (!qp->qplib_qp.srq) {
bytes = (qplib_qp->rq.max_wqe * qplib_qp->rq.wqe_size);
bytes = PAGE_ALIGN(bytes);
umem = ib_umem_get(&rdev->ibdev, ureq->qprva, bytes,
IB_ACCESS_LOCAL_WRITE);
if (IS_ERR(umem))
goto rqfail;
qp->rumem = umem;
qplib_qp->rq.sg_info.umem = umem;
qplib_qp->rq.sg_info.pgsize = PAGE_SIZE;
qplib_qp->rq.sg_info.pgshft = PAGE_SHIFT;
}
qplib_qp->dpi = &cntx->dpi;
return 0;
rqfail:
ib_umem_release(qp->sumem);
qp->sumem = NULL;
memset(&qplib_qp->sq.sg_info, 0, sizeof(qplib_qp->sq.sg_info));
return PTR_ERR(umem);
}
static struct bnxt_re_ah *bnxt_re_create_shadow_qp_ah
(struct bnxt_re_pd *pd,
struct bnxt_qplib_res *qp1_res,
struct bnxt_qplib_qp *qp1_qp)
{
struct bnxt_re_dev *rdev = pd->rdev;
struct bnxt_re_ah *ah;
union ib_gid sgid;
int rc;
ah = kzalloc(sizeof(*ah), GFP_KERNEL);
if (!ah)
return NULL;
ah->rdev = rdev;
ah->qplib_ah.pd = &pd->qplib_pd;
rc = bnxt_re_query_gid(&rdev->ibdev, 1, 0, &sgid);
if (rc)
goto fail;
/* supply the dgid data same as sgid */
memcpy(ah->qplib_ah.dgid.data, &sgid.raw,
sizeof(union ib_gid));
ah->qplib_ah.sgid_index = 0;
ah->qplib_ah.traffic_class = 0;
ah->qplib_ah.flow_label = 0;
ah->qplib_ah.hop_limit = 1;
ah->qplib_ah.sl = 0;
/* Have DMAC same as SMAC */
ether_addr_copy(ah->qplib_ah.dmac, rdev->netdev->dev_addr);
rc = bnxt_qplib_create_ah(&rdev->qplib_res, &ah->qplib_ah, false);
if (rc) {
ibdev_err(&rdev->ibdev,
"Failed to allocate HW AH for Shadow QP");
goto fail;
}
atomic_inc(&rdev->stats.res.ah_count);
return ah;
fail:
kfree(ah);
return NULL;
}
static struct bnxt_re_qp *bnxt_re_create_shadow_qp
(struct bnxt_re_pd *pd,
struct bnxt_qplib_res *qp1_res,
struct bnxt_qplib_qp *qp1_qp)
{
struct bnxt_re_dev *rdev = pd->rdev;
struct bnxt_re_qp *qp;
int rc;
qp = kzalloc(sizeof(*qp), GFP_KERNEL);
if (!qp)
return NULL;
qp->rdev = rdev;
/* Initialize the shadow QP structure from the QP1 values */
ether_addr_copy(qp->qplib_qp.smac, rdev->netdev->dev_addr);
qp->qplib_qp.pd = &pd->qplib_pd;
qp->qplib_qp.qp_handle = (u64)(unsigned long)(&qp->qplib_qp);
qp->qplib_qp.type = IB_QPT_UD;
qp->qplib_qp.max_inline_data = 0;
qp->qplib_qp.sig_type = true;
/* Shadow QP SQ depth should be same as QP1 RQ depth */
qp->qplib_qp.sq.wqe_size = bnxt_re_get_wqe_size(0, 6);
qp->qplib_qp.sq.max_wqe = qp1_qp->rq.max_wqe;
qp->qplib_qp.sq.max_sw_wqe = qp1_qp->rq.max_wqe;
qp->qplib_qp.sq.max_sge = 2;
/* Q full delta can be 1 since it is internal QP */
qp->qplib_qp.sq.q_full_delta = 1;
qp->qplib_qp.sq.sg_info.pgsize = PAGE_SIZE;
qp->qplib_qp.sq.sg_info.pgshft = PAGE_SHIFT;
qp->qplib_qp.scq = qp1_qp->scq;
qp->qplib_qp.rcq = qp1_qp->rcq;
qp->qplib_qp.rq.wqe_size = bnxt_re_get_rwqe_size(6);
qp->qplib_qp.rq.max_wqe = qp1_qp->rq.max_wqe;
qp->qplib_qp.rq.max_sw_wqe = qp1_qp->rq.max_wqe;
qp->qplib_qp.rq.max_sge = qp1_qp->rq.max_sge;
/* Q full delta can be 1 since it is internal QP */
qp->qplib_qp.rq.q_full_delta = 1;
qp->qplib_qp.rq.sg_info.pgsize = PAGE_SIZE;
qp->qplib_qp.rq.sg_info.pgshft = PAGE_SHIFT;
qp->qplib_qp.mtu = qp1_qp->mtu;
qp->qplib_qp.sq_hdr_buf_size = 0;
qp->qplib_qp.rq_hdr_buf_size = BNXT_QPLIB_MAX_GRH_HDR_SIZE_IPV6;
qp->qplib_qp.dpi = &rdev->dpi_privileged;
rc = bnxt_qplib_create_qp(qp1_res, &qp->qplib_qp);
if (rc)
goto fail;
spin_lock_init(&qp->sq_lock);
INIT_LIST_HEAD(&qp->list);
mutex_lock(&rdev->qp_lock);
list_add_tail(&qp->list, &rdev->qp_list);
atomic_inc(&rdev->stats.res.qp_count);
mutex_unlock(&rdev->qp_lock);
return qp;
fail:
kfree(qp);
return NULL;
}
static int bnxt_re_init_rq_attr(struct bnxt_re_qp *qp,
struct ib_qp_init_attr *init_attr,
struct bnxt_re_ucontext *uctx)
{
struct bnxt_qplib_dev_attr *dev_attr;
struct bnxt_qplib_qp *qplqp;
struct bnxt_re_dev *rdev;
struct bnxt_qplib_q *rq;
int entries;
rdev = qp->rdev;
qplqp = &qp->qplib_qp;
rq = &qplqp->rq;
dev_attr = rdev->dev_attr;
if (init_attr->srq) {
struct bnxt_re_srq *srq;
srq = container_of(init_attr->srq, struct bnxt_re_srq, ib_srq);
qplqp->srq = &srq->qplib_srq;
rq->max_wqe = 0;
} else {
rq->max_sge = init_attr->cap.max_recv_sge;
if (rq->max_sge > dev_attr->max_qp_sges)
rq->max_sge = dev_attr->max_qp_sges;
init_attr->cap.max_recv_sge = rq->max_sge;
rq->wqe_size = bnxt_re_setup_rwqe_size(qplqp, rq->max_sge,
dev_attr->max_qp_sges);
/* Allocate 1 more than what's provided so posting max doesn't
* mean empty.
*/
entries = bnxt_re_init_depth(init_attr->cap.max_recv_wr + 1, uctx);
rq->max_wqe = min_t(u32, entries, dev_attr->max_qp_wqes + 1);
rq->max_sw_wqe = rq->max_wqe;
rq->q_full_delta = 0;
rq->sg_info.pgsize = PAGE_SIZE;
rq->sg_info.pgshft = PAGE_SHIFT;
}
return 0;
}
static void bnxt_re_adjust_gsi_rq_attr(struct bnxt_re_qp *qp)
{
struct bnxt_qplib_dev_attr *dev_attr;
struct bnxt_qplib_qp *qplqp;
struct bnxt_re_dev *rdev;
rdev = qp->rdev;
qplqp = &qp->qplib_qp;
dev_attr = rdev->dev_attr;
if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)) {
qplqp->rq.max_sge = dev_attr->max_qp_sges;
if (qplqp->rq.max_sge > dev_attr->max_qp_sges)
qplqp->rq.max_sge = dev_attr->max_qp_sges;
qplqp->rq.max_sge = 6;
}
}
static int bnxt_re_init_sq_attr(struct bnxt_re_qp *qp,
struct ib_qp_init_attr *init_attr,
struct bnxt_re_ucontext *uctx,
struct bnxt_re_qp_req *ureq)
{
struct bnxt_qplib_dev_attr *dev_attr;
struct bnxt_qplib_qp *qplqp;
struct bnxt_re_dev *rdev;
struct bnxt_qplib_q *sq;
int diff = 0;
int entries;
int rc;
rdev = qp->rdev;
qplqp = &qp->qplib_qp;
sq = &qplqp->sq;
dev_attr = rdev->dev_attr;
sq->max_sge = init_attr->cap.max_send_sge;
entries = init_attr->cap.max_send_wr;
if (uctx && qplqp->wqe_mode == BNXT_QPLIB_WQE_MODE_VARIABLE) {
sq->max_wqe = ureq->sq_slots;
sq->max_sw_wqe = ureq->sq_slots;
sq->wqe_size = sizeof(struct sq_sge);
} else {
if (sq->max_sge > dev_attr->max_qp_sges) {
sq->max_sge = dev_attr->max_qp_sges;
init_attr->cap.max_send_sge = sq->max_sge;
}
rc = bnxt_re_setup_swqe_size(qp, init_attr);
if (rc)
return rc;
/* Allocate 128 + 1 more than what's provided */
diff = (qplqp->wqe_mode == BNXT_QPLIB_WQE_MODE_VARIABLE) ?
0 : BNXT_QPLIB_RESERVED_QP_WRS;
entries = bnxt_re_init_depth(entries + diff + 1, uctx);
sq->max_wqe = min_t(u32, entries, dev_attr->max_qp_wqes + diff + 1);
if (qplqp->wqe_mode == BNXT_QPLIB_WQE_MODE_VARIABLE)
sq->max_sw_wqe = bnxt_qplib_get_depth(sq, qplqp->wqe_mode, true);
else
sq->max_sw_wqe = sq->max_wqe;
}
sq->q_full_delta = diff + 1;
/*
* Reserving one slot for Phantom WQE. Application can
* post one extra entry in this case. But allowing this to avoid
* unexpected Queue full condition
*/
qplqp->sq.q_full_delta -= 1;
qplqp->sq.sg_info.pgsize = PAGE_SIZE;
qplqp->sq.sg_info.pgshft = PAGE_SHIFT;
return 0;
}
static void bnxt_re_adjust_gsi_sq_attr(struct bnxt_re_qp *qp,
struct ib_qp_init_attr *init_attr,
struct bnxt_re_ucontext *uctx)
{
struct bnxt_qplib_dev_attr *dev_attr;
struct bnxt_qplib_qp *qplqp;
struct bnxt_re_dev *rdev;
int entries;
rdev = qp->rdev;
qplqp = &qp->qplib_qp;
dev_attr = rdev->dev_attr;
if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)) {
entries = bnxt_re_init_depth(init_attr->cap.max_send_wr + 1, uctx);
qplqp->sq.max_wqe = min_t(u32, entries,
dev_attr->max_qp_wqes + 1);
qplqp->sq.q_full_delta = qplqp->sq.max_wqe -
init_attr->cap.max_send_wr;
qplqp->sq.max_sge++; /* Need one extra sge to put UD header */
if (qplqp->sq.max_sge > dev_attr->max_qp_sges)
qplqp->sq.max_sge = dev_attr->max_qp_sges;
}
}
static int bnxt_re_init_qp_type(struct bnxt_re_dev *rdev,
struct ib_qp_init_attr *init_attr)
{
struct bnxt_qplib_chip_ctx *chip_ctx;
int qptype;
chip_ctx = rdev->chip_ctx;
qptype = __from_ib_qp_type(init_attr->qp_type);
if (qptype == IB_QPT_MAX) {
ibdev_err(&rdev->ibdev, "QP type 0x%x not supported", qptype);
qptype = -EOPNOTSUPP;
goto out;
}
if (bnxt_qplib_is_chip_gen_p5_p7(chip_ctx) &&
init_attr->qp_type == IB_QPT_GSI)
qptype = CMDQ_CREATE_QP_TYPE_GSI;
out:
return qptype;
}
static int bnxt_re_init_qp_attr(struct bnxt_re_qp *qp, struct bnxt_re_pd *pd,
struct ib_qp_init_attr *init_attr,
struct bnxt_re_ucontext *uctx,
struct bnxt_re_qp_req *ureq)
{
struct bnxt_qplib_dev_attr *dev_attr;
struct bnxt_qplib_qp *qplqp;
struct bnxt_re_dev *rdev;
struct bnxt_re_cq *cq;
int rc = 0, qptype;
rdev = qp->rdev;
qplqp = &qp->qplib_qp;
dev_attr = rdev->dev_attr;
/* Setup misc params */
ether_addr_copy(qplqp->smac, rdev->netdev->dev_addr);
qplqp->pd = &pd->qplib_pd;
qplqp->qp_handle = (u64)qplqp;
qplqp->max_inline_data = init_attr->cap.max_inline_data;
qplqp->sig_type = init_attr->sq_sig_type == IB_SIGNAL_ALL_WR;
qptype = bnxt_re_init_qp_type(rdev, init_attr);
if (qptype < 0) {
rc = qptype;
goto out;
}
qplqp->type = (u8)qptype;
qplqp->wqe_mode = bnxt_re_is_var_size_supported(rdev, uctx);
if (init_attr->qp_type == IB_QPT_RC) {
qplqp->max_rd_atomic = dev_attr->max_qp_rd_atom;
qplqp->max_dest_rd_atomic = dev_attr->max_qp_init_rd_atom;
}
qplqp->mtu = ib_mtu_enum_to_int(iboe_get_mtu(rdev->netdev->mtu));
qplqp->dpi = &rdev->dpi_privileged; /* Doorbell page */
if (init_attr->create_flags) {
ibdev_dbg(&rdev->ibdev,
"QP create flags 0x%x not supported",
init_attr->create_flags);
return -EOPNOTSUPP;
}
/* Setup CQs */
if (init_attr->send_cq) {
cq = container_of(init_attr->send_cq, struct bnxt_re_cq, ib_cq);
qplqp->scq = &cq->qplib_cq;
qp->scq = cq;
}
if (init_attr->recv_cq) {
cq = container_of(init_attr->recv_cq, struct bnxt_re_cq, ib_cq);
qplqp->rcq = &cq->qplib_cq;
qp->rcq = cq;
}
/* Setup RQ/SRQ */
rc = bnxt_re_init_rq_attr(qp, init_attr, uctx);
if (rc)
goto out;
if (init_attr->qp_type == IB_QPT_GSI)
bnxt_re_adjust_gsi_rq_attr(qp);
/* Setup SQ */
rc = bnxt_re_init_sq_attr(qp, init_attr, uctx, ureq);
if (rc)
goto out;
if (init_attr->qp_type == IB_QPT_GSI)
bnxt_re_adjust_gsi_sq_attr(qp, init_attr, uctx);
if (uctx) /* This will update DPI and qp_handle */
rc = bnxt_re_init_user_qp(rdev, pd, qp, uctx, ureq);
out:
return rc;
}
static int bnxt_re_create_shadow_gsi(struct bnxt_re_qp *qp,
struct bnxt_re_pd *pd)
{
struct bnxt_re_sqp_entries *sqp_tbl;
struct bnxt_re_dev *rdev;
struct bnxt_re_qp *sqp;
struct bnxt_re_ah *sah;
int rc = 0;
rdev = qp->rdev;
/* Create a shadow QP to handle the QP1 traffic */
sqp_tbl = kcalloc(BNXT_RE_MAX_GSI_SQP_ENTRIES, sizeof(*sqp_tbl),
GFP_KERNEL);
if (!sqp_tbl)
return -ENOMEM;
rdev->gsi_ctx.sqp_tbl = sqp_tbl;
sqp = bnxt_re_create_shadow_qp(pd, &rdev->qplib_res, &qp->qplib_qp);
if (!sqp) {
rc = -ENODEV;
ibdev_err(&rdev->ibdev, "Failed to create Shadow QP for QP1");
goto out;
}
rdev->gsi_ctx.gsi_sqp = sqp;
sqp->rcq = qp->rcq;
sqp->scq = qp->scq;
sah = bnxt_re_create_shadow_qp_ah(pd, &rdev->qplib_res,
&qp->qplib_qp);
if (!sah) {
bnxt_qplib_destroy_qp(&rdev->qplib_res,
&sqp->qplib_qp);
rc = -ENODEV;
ibdev_err(&rdev->ibdev,
"Failed to create AH entry for ShadowQP");
goto out;
}
rdev->gsi_ctx.gsi_sah = sah;
return 0;
out:
kfree(sqp_tbl);
return rc;
}
static int bnxt_re_create_gsi_qp(struct bnxt_re_qp *qp, struct bnxt_re_pd *pd,
struct ib_qp_init_attr *init_attr)
{
struct bnxt_re_dev *rdev;
struct bnxt_qplib_qp *qplqp;
int rc;
rdev = qp->rdev;
qplqp = &qp->qplib_qp;
qplqp->rq_hdr_buf_size = BNXT_QPLIB_MAX_QP1_RQ_HDR_SIZE_V2;
qplqp->sq_hdr_buf_size = BNXT_QPLIB_MAX_QP1_SQ_HDR_SIZE_V2;
rc = bnxt_qplib_create_qp1(&rdev->qplib_res, qplqp);
if (rc) {
ibdev_err(&rdev->ibdev, "create HW QP1 failed!");
goto out;
}
rc = bnxt_re_create_shadow_gsi(qp, pd);
out:
return rc;
}
static bool bnxt_re_test_qp_limits(struct bnxt_re_dev *rdev,
struct ib_qp_init_attr *init_attr,
struct bnxt_qplib_dev_attr *dev_attr)
{
bool rc = true;
if (init_attr->cap.max_send_wr > dev_attr->max_qp_wqes ||
init_attr->cap.max_recv_wr > dev_attr->max_qp_wqes ||
init_attr->cap.max_send_sge > dev_attr->max_qp_sges ||
init_attr->cap.max_recv_sge > dev_attr->max_qp_sges ||
init_attr->cap.max_inline_data > dev_attr->max_inline_data) {
ibdev_err(&rdev->ibdev,
"Create QP failed - max exceeded! 0x%x/0x%x 0x%x/0x%x 0x%x/0x%x 0x%x/0x%x 0x%x/0x%x",
init_attr->cap.max_send_wr, dev_attr->max_qp_wqes,
init_attr->cap.max_recv_wr, dev_attr->max_qp_wqes,
init_attr->cap.max_send_sge, dev_attr->max_qp_sges,
init_attr->cap.max_recv_sge, dev_attr->max_qp_sges,
init_attr->cap.max_inline_data,
dev_attr->max_inline_data);
rc = false;
}
return rc;
}
int bnxt_re_create_qp(struct ib_qp *ib_qp, struct ib_qp_init_attr *qp_init_attr,
struct ib_udata *udata)
{
struct bnxt_qplib_dev_attr *dev_attr;
struct bnxt_re_ucontext *uctx;
struct bnxt_re_qp_req ureq;
struct bnxt_re_dev *rdev;
struct bnxt_re_pd *pd;
struct bnxt_re_qp *qp;
struct ib_pd *ib_pd;
u32 active_qps;
int rc;
ib_pd = ib_qp->pd;
pd = container_of(ib_pd, struct bnxt_re_pd, ib_pd);
rdev = pd->rdev;
dev_attr = rdev->dev_attr;
qp = container_of(ib_qp, struct bnxt_re_qp, ib_qp);
uctx = rdma_udata_to_drv_context(udata, struct bnxt_re_ucontext, ib_uctx);
if (udata)
if (ib_copy_from_udata(&ureq, udata, min(udata->inlen, sizeof(ureq))))
return -EFAULT;
rc = bnxt_re_test_qp_limits(rdev, qp_init_attr, dev_attr);
if (!rc) {
rc = -EINVAL;
goto fail;
}
qp->rdev = rdev;
rc = bnxt_re_init_qp_attr(qp, pd, qp_init_attr, uctx, &ureq);
if (rc)
goto fail;
if (qp_init_attr->qp_type == IB_QPT_GSI &&
!(bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx))) {
rc = bnxt_re_create_gsi_qp(qp, pd, qp_init_attr);
if (rc == -ENODEV)
goto qp_destroy;
if (rc)
goto fail;
} else {
rc = bnxt_qplib_create_qp(&rdev->qplib_res, &qp->qplib_qp);
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to create HW QP");
goto free_umem;
}
if (udata) {
struct bnxt_re_qp_resp resp;
resp.qpid = qp->qplib_qp.id;
resp.rsvd = 0;
rc = ib_copy_to_udata(udata, &resp, sizeof(resp));
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to copy QP udata");
goto qp_destroy;
}
}
}
qp->ib_qp.qp_num = qp->qplib_qp.id;
if (qp_init_attr->qp_type == IB_QPT_GSI)
rdev->gsi_ctx.gsi_qp = qp;
spin_lock_init(&qp->sq_lock);
spin_lock_init(&qp->rq_lock);
INIT_LIST_HEAD(&qp->list);
mutex_lock(&rdev->qp_lock);
list_add_tail(&qp->list, &rdev->qp_list);
mutex_unlock(&rdev->qp_lock);
active_qps = atomic_inc_return(&rdev->stats.res.qp_count);
if (active_qps > rdev->stats.res.qp_watermark)
rdev->stats.res.qp_watermark = active_qps;
if (qp_init_attr->qp_type == IB_QPT_RC) {
active_qps = atomic_inc_return(&rdev->stats.res.rc_qp_count);
if (active_qps > rdev->stats.res.rc_qp_watermark)
rdev->stats.res.rc_qp_watermark = active_qps;
} else if (qp_init_attr->qp_type == IB_QPT_UD) {
active_qps = atomic_inc_return(&rdev->stats.res.ud_qp_count);
if (active_qps > rdev->stats.res.ud_qp_watermark)
rdev->stats.res.ud_qp_watermark = active_qps;
}
bnxt_re_debug_add_qpinfo(rdev, qp);
return 0;
qp_destroy:
bnxt_qplib_destroy_qp(&rdev->qplib_res, &qp->qplib_qp);
free_umem:
ib_umem_release(qp->rumem);
ib_umem_release(qp->sumem);
fail:
return rc;
}
static u8 __from_ib_qp_state(enum ib_qp_state state)
{
switch (state) {
case IB_QPS_RESET:
return CMDQ_MODIFY_QP_NEW_STATE_RESET;
case IB_QPS_INIT:
return CMDQ_MODIFY_QP_NEW_STATE_INIT;
case IB_QPS_RTR:
return CMDQ_MODIFY_QP_NEW_STATE_RTR;
case IB_QPS_RTS:
return CMDQ_MODIFY_QP_NEW_STATE_RTS;
case IB_QPS_SQD:
return CMDQ_MODIFY_QP_NEW_STATE_SQD;
case IB_QPS_SQE:
return CMDQ_MODIFY_QP_NEW_STATE_SQE;
case IB_QPS_ERR:
default:
return CMDQ_MODIFY_QP_NEW_STATE_ERR;
}
}
static enum ib_qp_state __to_ib_qp_state(u8 state)
{
switch (state) {
case CMDQ_MODIFY_QP_NEW_STATE_RESET:
return IB_QPS_RESET;
case CMDQ_MODIFY_QP_NEW_STATE_INIT:
return IB_QPS_INIT;
case CMDQ_MODIFY_QP_NEW_STATE_RTR:
return IB_QPS_RTR;
case CMDQ_MODIFY_QP_NEW_STATE_RTS:
return IB_QPS_RTS;
case CMDQ_MODIFY_QP_NEW_STATE_SQD:
return IB_QPS_SQD;
case CMDQ_MODIFY_QP_NEW_STATE_SQE:
return IB_QPS_SQE;
case CMDQ_MODIFY_QP_NEW_STATE_ERR:
default:
return IB_QPS_ERR;
}
}
static u32 __from_ib_mtu(enum ib_mtu mtu)
{
switch (mtu) {
case IB_MTU_256:
return CMDQ_MODIFY_QP_PATH_MTU_MTU_256;
case IB_MTU_512:
return CMDQ_MODIFY_QP_PATH_MTU_MTU_512;
case IB_MTU_1024:
return CMDQ_MODIFY_QP_PATH_MTU_MTU_1024;
case IB_MTU_2048:
return CMDQ_MODIFY_QP_PATH_MTU_MTU_2048;
case IB_MTU_4096:
return CMDQ_MODIFY_QP_PATH_MTU_MTU_4096;
default:
return CMDQ_MODIFY_QP_PATH_MTU_MTU_2048;
}
}
static enum ib_mtu __to_ib_mtu(u32 mtu)
{
switch (mtu & CREQ_QUERY_QP_RESP_SB_PATH_MTU_MASK) {
case CMDQ_MODIFY_QP_PATH_MTU_MTU_256:
return IB_MTU_256;
case CMDQ_MODIFY_QP_PATH_MTU_MTU_512:
return IB_MTU_512;
case CMDQ_MODIFY_QP_PATH_MTU_MTU_1024:
return IB_MTU_1024;
case CMDQ_MODIFY_QP_PATH_MTU_MTU_2048:
return IB_MTU_2048;
case CMDQ_MODIFY_QP_PATH_MTU_MTU_4096:
return IB_MTU_4096;
default:
return IB_MTU_2048;
}
}
/* Shared Receive Queues */
int bnxt_re_destroy_srq(struct ib_srq *ib_srq, struct ib_udata *udata)
{
struct bnxt_re_srq *srq = container_of(ib_srq, struct bnxt_re_srq,
ib_srq);
struct bnxt_re_dev *rdev = srq->rdev;
struct bnxt_qplib_srq *qplib_srq = &srq->qplib_srq;
if (rdev->chip_ctx->modes.toggle_bits & BNXT_QPLIB_SRQ_TOGGLE_BIT) {
free_page((unsigned long)srq->uctx_srq_page);
hash_del(&srq->hash_entry);
}
bnxt_qplib_destroy_srq(&rdev->qplib_res, qplib_srq);
ib_umem_release(srq->umem);
atomic_dec(&rdev->stats.res.srq_count);
return 0;
}
static int bnxt_re_init_user_srq(struct bnxt_re_dev *rdev,
struct bnxt_re_pd *pd,
struct bnxt_re_srq *srq,
struct ib_udata *udata)
{
struct bnxt_re_srq_req ureq;
struct bnxt_qplib_srq *qplib_srq = &srq->qplib_srq;
struct ib_umem *umem;
int bytes = 0;
struct bnxt_re_ucontext *cntx = rdma_udata_to_drv_context(
udata, struct bnxt_re_ucontext, ib_uctx);
if (ib_copy_from_udata(&ureq, udata, sizeof(ureq)))
return -EFAULT;
bytes = (qplib_srq->max_wqe * qplib_srq->wqe_size);
bytes = PAGE_ALIGN(bytes);
umem = ib_umem_get(&rdev->ibdev, ureq.srqva, bytes,
IB_ACCESS_LOCAL_WRITE);
if (IS_ERR(umem))
return PTR_ERR(umem);
srq->umem = umem;
qplib_srq->sg_info.umem = umem;
qplib_srq->sg_info.pgsize = PAGE_SIZE;
qplib_srq->sg_info.pgshft = PAGE_SHIFT;
qplib_srq->srq_handle = ureq.srq_handle;
qplib_srq->dpi = &cntx->dpi;
return 0;
}
int bnxt_re_create_srq(struct ib_srq *ib_srq,
struct ib_srq_init_attr *srq_init_attr,
struct ib_udata *udata)
{
struct bnxt_qplib_dev_attr *dev_attr;
struct bnxt_re_ucontext *uctx;
struct bnxt_re_dev *rdev;
struct bnxt_re_srq *srq;
struct bnxt_re_pd *pd;
struct ib_pd *ib_pd;
u32 active_srqs;
int rc, entries;
ib_pd = ib_srq->pd;
pd = container_of(ib_pd, struct bnxt_re_pd, ib_pd);
rdev = pd->rdev;
dev_attr = rdev->dev_attr;
srq = container_of(ib_srq, struct bnxt_re_srq, ib_srq);
if (srq_init_attr->attr.max_wr >= dev_attr->max_srq_wqes) {
ibdev_err(&rdev->ibdev, "Create CQ failed - max exceeded");
rc = -EINVAL;
goto exit;
}
if (srq_init_attr->srq_type != IB_SRQT_BASIC) {
rc = -EOPNOTSUPP;
goto exit;
}
uctx = rdma_udata_to_drv_context(udata, struct bnxt_re_ucontext, ib_uctx);
srq->rdev = rdev;
srq->qplib_srq.pd = &pd->qplib_pd;
srq->qplib_srq.dpi = &rdev->dpi_privileged;
/* Allocate 1 more than what's provided so posting max doesn't
* mean empty
*/
entries = bnxt_re_init_depth(srq_init_attr->attr.max_wr + 1, uctx);
if (entries > dev_attr->max_srq_wqes + 1)
entries = dev_attr->max_srq_wqes + 1;
srq->qplib_srq.max_wqe = entries;
srq->qplib_srq.max_sge = srq_init_attr->attr.max_sge;
/* 128 byte wqe size for SRQ . So use max sges */
srq->qplib_srq.wqe_size = bnxt_re_get_rwqe_size(dev_attr->max_srq_sges);
srq->qplib_srq.threshold = srq_init_attr->attr.srq_limit;
srq->srq_limit = srq_init_attr->attr.srq_limit;
srq->qplib_srq.eventq_hw_ring_id = rdev->nqr->nq[0].ring_id;
RDMA/bnxt_re: Fix the page details for the srq created by kernel consumers While using nvme target with use_srq on, below kernel panic is noticed. [ 549.698111] bnxt_en 0000:41:00.0 enp65s0np0: FEC autoneg off encoding: Clause 91 RS(544,514) [ 566.393619] Oops: divide error: 0000 [#1] PREEMPT SMP NOPTI .. [ 566.393799] <TASK> [ 566.393807] ? __die_body+0x1a/0x60 [ 566.393823] ? die+0x38/0x60 [ 566.393835] ? do_trap+0xe4/0x110 [ 566.393847] ? bnxt_qplib_alloc_init_hwq+0x1d4/0x580 [bnxt_re] [ 566.393867] ? bnxt_qplib_alloc_init_hwq+0x1d4/0x580 [bnxt_re] [ 566.393881] ? do_error_trap+0x7c/0x120 [ 566.393890] ? bnxt_qplib_alloc_init_hwq+0x1d4/0x580 [bnxt_re] [ 566.393911] ? exc_divide_error+0x34/0x50 [ 566.393923] ? bnxt_qplib_alloc_init_hwq+0x1d4/0x580 [bnxt_re] [ 566.393939] ? asm_exc_divide_error+0x16/0x20 [ 566.393966] ? bnxt_qplib_alloc_init_hwq+0x1d4/0x580 [bnxt_re] [ 566.393997] bnxt_qplib_create_srq+0xc9/0x340 [bnxt_re] [ 566.394040] bnxt_re_create_srq+0x335/0x3b0 [bnxt_re] [ 566.394057] ? srso_return_thunk+0x5/0x5f [ 566.394068] ? __init_swait_queue_head+0x4a/0x60 [ 566.394090] ib_create_srq_user+0xa7/0x150 [ib_core] [ 566.394147] nvmet_rdma_queue_connect+0x7d0/0xbe0 [nvmet_rdma] [ 566.394174] ? lock_release+0x22c/0x3f0 [ 566.394187] ? srso_return_thunk+0x5/0x5f Page size and shift info is set only for the user space SRQs. Set page size and page shift for kernel space SRQs also. Fixes: 0c4dcd602817 ("RDMA/bnxt_re: Refactor hardware queue memory allocation") Signed-off-by: Kashyap Desai <kashyap.desai@broadcom.com> Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com> Link: https://patch.msgid.link/1740237621-29291-1-git-send-email-selvin.xavier@broadcom.com Signed-off-by: Leon Romanovsky <leon@kernel.org>
2025-02-22 07:20:21 -08:00
srq->qplib_srq.sg_info.pgsize = PAGE_SIZE;
srq->qplib_srq.sg_info.pgshft = PAGE_SHIFT;
if (udata) {
rc = bnxt_re_init_user_srq(rdev, pd, srq, udata);
if (rc)
goto fail;
}
rc = bnxt_qplib_create_srq(&rdev->qplib_res, &srq->qplib_srq);
if (rc) {
ibdev_err(&rdev->ibdev, "Create HW SRQ failed!");
goto fail;
}
if (udata) {
struct bnxt_re_srq_resp resp = {};
resp.srqid = srq->qplib_srq.id;
if (rdev->chip_ctx->modes.toggle_bits & BNXT_QPLIB_SRQ_TOGGLE_BIT) {
hash_add(rdev->srq_hash, &srq->hash_entry, srq->qplib_srq.id);
srq->uctx_srq_page = (void *)get_zeroed_page(GFP_KERNEL);
if (!srq->uctx_srq_page) {
rc = -ENOMEM;
goto fail;
}
resp.comp_mask |= BNXT_RE_SRQ_TOGGLE_PAGE_SUPPORT;
}
rc = ib_copy_to_udata(udata, &resp, sizeof(resp));
if (rc) {
ibdev_err(&rdev->ibdev, "SRQ copy to udata failed!");
bnxt_qplib_destroy_srq(&rdev->qplib_res,
&srq->qplib_srq);
goto fail;
}
}
active_srqs = atomic_inc_return(&rdev->stats.res.srq_count);
if (active_srqs > rdev->stats.res.srq_watermark)
rdev->stats.res.srq_watermark = active_srqs;
spin_lock_init(&srq->lock);
return 0;
fail:
ib_umem_release(srq->umem);
exit:
return rc;
}
int bnxt_re_modify_srq(struct ib_srq *ib_srq, struct ib_srq_attr *srq_attr,
enum ib_srq_attr_mask srq_attr_mask,
struct ib_udata *udata)
{
struct bnxt_re_srq *srq = container_of(ib_srq, struct bnxt_re_srq,
ib_srq);
struct bnxt_re_dev *rdev = srq->rdev;
int rc;
switch (srq_attr_mask) {
case IB_SRQ_MAX_WR:
/* SRQ resize is not supported */
return -EINVAL;
case IB_SRQ_LIMIT:
/* Change the SRQ threshold */
if (srq_attr->srq_limit > srq->qplib_srq.max_wqe)
return -EINVAL;
srq->qplib_srq.threshold = srq_attr->srq_limit;
rc = bnxt_qplib_modify_srq(&rdev->qplib_res, &srq->qplib_srq);
if (rc) {
ibdev_err(&rdev->ibdev, "Modify HW SRQ failed!");
return rc;
}
/* On success, update the shadow */
srq->srq_limit = srq_attr->srq_limit;
/* No need to Build and send response back to udata */
return 0;
default:
ibdev_err(&rdev->ibdev,
"Unsupported srq_attr_mask 0x%x", srq_attr_mask);
return -EINVAL;
}
}
int bnxt_re_query_srq(struct ib_srq *ib_srq, struct ib_srq_attr *srq_attr)
{
struct bnxt_re_srq *srq = container_of(ib_srq, struct bnxt_re_srq,
ib_srq);
struct bnxt_re_srq tsrq;
struct bnxt_re_dev *rdev = srq->rdev;
int rc;
/* Get live SRQ attr */
tsrq.qplib_srq.id = srq->qplib_srq.id;
rc = bnxt_qplib_query_srq(&rdev->qplib_res, &tsrq.qplib_srq);
if (rc) {
ibdev_err(&rdev->ibdev, "Query HW SRQ failed!");
return rc;
}
srq_attr->max_wr = srq->qplib_srq.max_wqe;
srq_attr->max_sge = srq->qplib_srq.max_sge;
srq_attr->srq_limit = tsrq.qplib_srq.threshold;
return 0;
}
int bnxt_re_post_srq_recv(struct ib_srq *ib_srq, const struct ib_recv_wr *wr,
const struct ib_recv_wr **bad_wr)
{
struct bnxt_re_srq *srq = container_of(ib_srq, struct bnxt_re_srq,
ib_srq);
struct bnxt_qplib_swqe wqe;
unsigned long flags;
int rc = 0;
spin_lock_irqsave(&srq->lock, flags);
while (wr) {
/* Transcribe each ib_recv_wr to qplib_swqe */
wqe.num_sge = wr->num_sge;
bnxt_re_build_sgl(wr->sg_list, wqe.sg_list, wr->num_sge);
wqe.wr_id = wr->wr_id;
wqe.type = BNXT_QPLIB_SWQE_TYPE_RECV;
rc = bnxt_qplib_post_srq_recv(&srq->qplib_srq, &wqe);
if (rc) {
*bad_wr = wr;
break;
}
wr = wr->next;
}
spin_unlock_irqrestore(&srq->lock, flags);
return rc;
}
static int bnxt_re_modify_shadow_qp(struct bnxt_re_dev *rdev,
struct bnxt_re_qp *qp1_qp,
int qp_attr_mask)
{
struct bnxt_re_qp *qp = rdev->gsi_ctx.gsi_sqp;
int rc;
if (qp_attr_mask & IB_QP_STATE) {
qp->qplib_qp.modify_flags |= CMDQ_MODIFY_QP_MODIFY_MASK_STATE;
qp->qplib_qp.state = qp1_qp->qplib_qp.state;
}
if (qp_attr_mask & IB_QP_PKEY_INDEX) {
qp->qplib_qp.modify_flags |= CMDQ_MODIFY_QP_MODIFY_MASK_PKEY;
qp->qplib_qp.pkey_index = qp1_qp->qplib_qp.pkey_index;
}
if (qp_attr_mask & IB_QP_QKEY) {
qp->qplib_qp.modify_flags |= CMDQ_MODIFY_QP_MODIFY_MASK_QKEY;
/* Using a Random QKEY */
qp->qplib_qp.qkey = 0x81818181;
}
if (qp_attr_mask & IB_QP_SQ_PSN) {
qp->qplib_qp.modify_flags |= CMDQ_MODIFY_QP_MODIFY_MASK_SQ_PSN;
qp->qplib_qp.sq.psn = qp1_qp->qplib_qp.sq.psn;
}
rc = bnxt_qplib_modify_qp(&rdev->qplib_res, &qp->qplib_qp);
if (rc)
ibdev_err(&rdev->ibdev, "Failed to modify Shadow QP for QP1");
return rc;
}
int bnxt_re_modify_qp(struct ib_qp *ib_qp, struct ib_qp_attr *qp_attr,
int qp_attr_mask, struct ib_udata *udata)
{
struct bnxt_re_qp *qp = container_of(ib_qp, struct bnxt_re_qp, ib_qp);
struct bnxt_re_dev *rdev = qp->rdev;
struct bnxt_qplib_dev_attr *dev_attr = rdev->dev_attr;
enum ib_qp_state curr_qp_state, new_qp_state;
int rc, entries;
RDMA/bnxt_re: Avoid Hard lockup during error CQE processing Hitting the following hardlockup due to a race condition in error CQE processing. [26146.879798] bnxt_en 0000:04:00.0: QPLIB: FP: CQ Processed Req [26146.886346] bnxt_en 0000:04:00.0: QPLIB: wr_id[1251] = 0x0 with status 0xa [26156.350935] NMI watchdog: Watchdog detected hard LOCKUP on cpu 4 [26156.357470] Modules linked in: nfsd auth_rpcgss nfs_acl lockd grace [26156.447957] CPU: 4 PID: 3413 Comm: kworker/4:1H Kdump: loaded [26156.457994] Hardware name: Dell Inc. PowerEdge R430/0CN7X8, [26156.466390] Workqueue: ib-comp-wq ib_cq_poll_work [ib_core] [26156.472639] Call Trace: [26156.475379] <NMI> [<ffffffff98d0d722>] dump_stack+0x19/0x1b [26156.481833] [<ffffffff9873f775>] watchdog_overflow_callback+0x135/0x140 [26156.489341] [<ffffffff9877f237>] __perf_event_overflow+0x57/0x100 [26156.496256] [<ffffffff98787c24>] perf_event_overflow+0x14/0x20 [26156.502887] [<ffffffff9860a580>] intel_pmu_handle_irq+0x220/0x510 [26156.509813] [<ffffffff98d16031>] perf_event_nmi_handler+0x31/0x50 [26156.516738] [<ffffffff98d1790c>] nmi_handle.isra.0+0x8c/0x150 [26156.523273] [<ffffffff98d17be8>] do_nmi+0x218/0x460 [26156.528834] [<ffffffff98d16d79>] end_repeat_nmi+0x1e/0x7e [26156.534980] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.543268] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.551556] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.559842] <EOE> [<ffffffff98d083e4>] queued_spin_lock_slowpath+0xb/0xf [26156.567555] [<ffffffff98d15690>] _raw_spin_lock+0x20/0x30 [26156.573696] [<ffffffffc08381a1>] bnxt_qplib_lock_buddy_cq+0x31/0x40 [bnxt_re] [26156.581789] [<ffffffffc083bbaa>] bnxt_qplib_poll_cq+0x43a/0xf10 [bnxt_re] [26156.589493] [<ffffffffc083239b>] bnxt_re_poll_cq+0x9b/0x760 [bnxt_re] The issue happens if RQ poll_cq or SQ poll_cq or Async error event tries to put the error QP in flush list. Since SQ and RQ of each error qp are added to two different flush list, we need to protect it using locks of corresponding CQs. Difference in order of acquiring the lock in SQ poll_cq and RQ poll_cq can cause a hard lockup. Revisits the locking strategy and removes the usage of qplib_cq.hwq.lock. Instead of this lock, introduces qplib_cq.flush_lock to handle addition/deletion of QPs in flush list. Also, always invoke the flush_lock in order (SQ CQ lock first and then RQ CQ lock) to avoid any potential deadlock. Other than the poll_cq context, the movement of QP to/from flush list can be done in modify_qp context or from an async error event from HW. Synchronize these operations using the bnxt_re verbs layer CQ locks. To achieve this, adds a call back to the HW abstraction layer(qplib) to bnxt_re ib_verbs layer in case of async error event. Also, removes the buddy cq functions as it is no longer required. Signed-off-by: Sriharsha Basavapatna <sriharsha.basavapatna@broadcom.com> Signed-off-by: Somnath Kotur <somnath.kotur@broadcom.com> Signed-off-by: Devesh Sharma <devesh.sharma@broadcom.com> Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2018-03-05 21:49:28 -08:00
unsigned int flags;
u8 nw_type;
if (qp_attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
return -EOPNOTSUPP;
qp->qplib_qp.modify_flags = 0;
if (qp_attr_mask & IB_QP_STATE) {
curr_qp_state = __to_ib_qp_state(qp->qplib_qp.cur_qp_state);
new_qp_state = qp_attr->qp_state;
if (!ib_modify_qp_is_ok(curr_qp_state, new_qp_state,
ib_qp->qp_type, qp_attr_mask)) {
ibdev_err(&rdev->ibdev,
"Invalid attribute mask: %#x specified ",
qp_attr_mask);
ibdev_err(&rdev->ibdev,
"for qpn: %#x type: %#x",
ib_qp->qp_num, ib_qp->qp_type);
ibdev_err(&rdev->ibdev,
"curr_qp_state=0x%x, new_qp_state=0x%x\n",
curr_qp_state, new_qp_state);
return -EINVAL;
}
qp->qplib_qp.modify_flags |= CMDQ_MODIFY_QP_MODIFY_MASK_STATE;
qp->qplib_qp.state = __from_ib_qp_state(qp_attr->qp_state);
if (!qp->sumem &&
qp->qplib_qp.state == CMDQ_MODIFY_QP_NEW_STATE_ERR) {
ibdev_dbg(&rdev->ibdev,
"Move QP = %p to flush list\n", qp);
RDMA/bnxt_re: Avoid Hard lockup during error CQE processing Hitting the following hardlockup due to a race condition in error CQE processing. [26146.879798] bnxt_en 0000:04:00.0: QPLIB: FP: CQ Processed Req [26146.886346] bnxt_en 0000:04:00.0: QPLIB: wr_id[1251] = 0x0 with status 0xa [26156.350935] NMI watchdog: Watchdog detected hard LOCKUP on cpu 4 [26156.357470] Modules linked in: nfsd auth_rpcgss nfs_acl lockd grace [26156.447957] CPU: 4 PID: 3413 Comm: kworker/4:1H Kdump: loaded [26156.457994] Hardware name: Dell Inc. PowerEdge R430/0CN7X8, [26156.466390] Workqueue: ib-comp-wq ib_cq_poll_work [ib_core] [26156.472639] Call Trace: [26156.475379] <NMI> [<ffffffff98d0d722>] dump_stack+0x19/0x1b [26156.481833] [<ffffffff9873f775>] watchdog_overflow_callback+0x135/0x140 [26156.489341] [<ffffffff9877f237>] __perf_event_overflow+0x57/0x100 [26156.496256] [<ffffffff98787c24>] perf_event_overflow+0x14/0x20 [26156.502887] [<ffffffff9860a580>] intel_pmu_handle_irq+0x220/0x510 [26156.509813] [<ffffffff98d16031>] perf_event_nmi_handler+0x31/0x50 [26156.516738] [<ffffffff98d1790c>] nmi_handle.isra.0+0x8c/0x150 [26156.523273] [<ffffffff98d17be8>] do_nmi+0x218/0x460 [26156.528834] [<ffffffff98d16d79>] end_repeat_nmi+0x1e/0x7e [26156.534980] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.543268] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.551556] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.559842] <EOE> [<ffffffff98d083e4>] queued_spin_lock_slowpath+0xb/0xf [26156.567555] [<ffffffff98d15690>] _raw_spin_lock+0x20/0x30 [26156.573696] [<ffffffffc08381a1>] bnxt_qplib_lock_buddy_cq+0x31/0x40 [bnxt_re] [26156.581789] [<ffffffffc083bbaa>] bnxt_qplib_poll_cq+0x43a/0xf10 [bnxt_re] [26156.589493] [<ffffffffc083239b>] bnxt_re_poll_cq+0x9b/0x760 [bnxt_re] The issue happens if RQ poll_cq or SQ poll_cq or Async error event tries to put the error QP in flush list. Since SQ and RQ of each error qp are added to two different flush list, we need to protect it using locks of corresponding CQs. Difference in order of acquiring the lock in SQ poll_cq and RQ poll_cq can cause a hard lockup. Revisits the locking strategy and removes the usage of qplib_cq.hwq.lock. Instead of this lock, introduces qplib_cq.flush_lock to handle addition/deletion of QPs in flush list. Also, always invoke the flush_lock in order (SQ CQ lock first and then RQ CQ lock) to avoid any potential deadlock. Other than the poll_cq context, the movement of QP to/from flush list can be done in modify_qp context or from an async error event from HW. Synchronize these operations using the bnxt_re verbs layer CQ locks. To achieve this, adds a call back to the HW abstraction layer(qplib) to bnxt_re ib_verbs layer in case of async error event. Also, removes the buddy cq functions as it is no longer required. Signed-off-by: Sriharsha Basavapatna <sriharsha.basavapatna@broadcom.com> Signed-off-by: Somnath Kotur <somnath.kotur@broadcom.com> Signed-off-by: Devesh Sharma <devesh.sharma@broadcom.com> Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2018-03-05 21:49:28 -08:00
flags = bnxt_re_lock_cqs(qp);
bnxt_qplib_add_flush_qp(&qp->qplib_qp);
RDMA/bnxt_re: Avoid Hard lockup during error CQE processing Hitting the following hardlockup due to a race condition in error CQE processing. [26146.879798] bnxt_en 0000:04:00.0: QPLIB: FP: CQ Processed Req [26146.886346] bnxt_en 0000:04:00.0: QPLIB: wr_id[1251] = 0x0 with status 0xa [26156.350935] NMI watchdog: Watchdog detected hard LOCKUP on cpu 4 [26156.357470] Modules linked in: nfsd auth_rpcgss nfs_acl lockd grace [26156.447957] CPU: 4 PID: 3413 Comm: kworker/4:1H Kdump: loaded [26156.457994] Hardware name: Dell Inc. PowerEdge R430/0CN7X8, [26156.466390] Workqueue: ib-comp-wq ib_cq_poll_work [ib_core] [26156.472639] Call Trace: [26156.475379] <NMI> [<ffffffff98d0d722>] dump_stack+0x19/0x1b [26156.481833] [<ffffffff9873f775>] watchdog_overflow_callback+0x135/0x140 [26156.489341] [<ffffffff9877f237>] __perf_event_overflow+0x57/0x100 [26156.496256] [<ffffffff98787c24>] perf_event_overflow+0x14/0x20 [26156.502887] [<ffffffff9860a580>] intel_pmu_handle_irq+0x220/0x510 [26156.509813] [<ffffffff98d16031>] perf_event_nmi_handler+0x31/0x50 [26156.516738] [<ffffffff98d1790c>] nmi_handle.isra.0+0x8c/0x150 [26156.523273] [<ffffffff98d17be8>] do_nmi+0x218/0x460 [26156.528834] [<ffffffff98d16d79>] end_repeat_nmi+0x1e/0x7e [26156.534980] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.543268] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.551556] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.559842] <EOE> [<ffffffff98d083e4>] queued_spin_lock_slowpath+0xb/0xf [26156.567555] [<ffffffff98d15690>] _raw_spin_lock+0x20/0x30 [26156.573696] [<ffffffffc08381a1>] bnxt_qplib_lock_buddy_cq+0x31/0x40 [bnxt_re] [26156.581789] [<ffffffffc083bbaa>] bnxt_qplib_poll_cq+0x43a/0xf10 [bnxt_re] [26156.589493] [<ffffffffc083239b>] bnxt_re_poll_cq+0x9b/0x760 [bnxt_re] The issue happens if RQ poll_cq or SQ poll_cq or Async error event tries to put the error QP in flush list. Since SQ and RQ of each error qp are added to two different flush list, we need to protect it using locks of corresponding CQs. Difference in order of acquiring the lock in SQ poll_cq and RQ poll_cq can cause a hard lockup. Revisits the locking strategy and removes the usage of qplib_cq.hwq.lock. Instead of this lock, introduces qplib_cq.flush_lock to handle addition/deletion of QPs in flush list. Also, always invoke the flush_lock in order (SQ CQ lock first and then RQ CQ lock) to avoid any potential deadlock. Other than the poll_cq context, the movement of QP to/from flush list can be done in modify_qp context or from an async error event from HW. Synchronize these operations using the bnxt_re verbs layer CQ locks. To achieve this, adds a call back to the HW abstraction layer(qplib) to bnxt_re ib_verbs layer in case of async error event. Also, removes the buddy cq functions as it is no longer required. Signed-off-by: Sriharsha Basavapatna <sriharsha.basavapatna@broadcom.com> Signed-off-by: Somnath Kotur <somnath.kotur@broadcom.com> Signed-off-by: Devesh Sharma <devesh.sharma@broadcom.com> Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2018-03-05 21:49:28 -08:00
bnxt_re_unlock_cqs(qp, flags);
}
if (!qp->sumem &&
qp->qplib_qp.state == CMDQ_MODIFY_QP_NEW_STATE_RESET) {
ibdev_dbg(&rdev->ibdev,
"Move QP = %p out of flush list\n", qp);
RDMA/bnxt_re: Avoid Hard lockup during error CQE processing Hitting the following hardlockup due to a race condition in error CQE processing. [26146.879798] bnxt_en 0000:04:00.0: QPLIB: FP: CQ Processed Req [26146.886346] bnxt_en 0000:04:00.0: QPLIB: wr_id[1251] = 0x0 with status 0xa [26156.350935] NMI watchdog: Watchdog detected hard LOCKUP on cpu 4 [26156.357470] Modules linked in: nfsd auth_rpcgss nfs_acl lockd grace [26156.447957] CPU: 4 PID: 3413 Comm: kworker/4:1H Kdump: loaded [26156.457994] Hardware name: Dell Inc. PowerEdge R430/0CN7X8, [26156.466390] Workqueue: ib-comp-wq ib_cq_poll_work [ib_core] [26156.472639] Call Trace: [26156.475379] <NMI> [<ffffffff98d0d722>] dump_stack+0x19/0x1b [26156.481833] [<ffffffff9873f775>] watchdog_overflow_callback+0x135/0x140 [26156.489341] [<ffffffff9877f237>] __perf_event_overflow+0x57/0x100 [26156.496256] [<ffffffff98787c24>] perf_event_overflow+0x14/0x20 [26156.502887] [<ffffffff9860a580>] intel_pmu_handle_irq+0x220/0x510 [26156.509813] [<ffffffff98d16031>] perf_event_nmi_handler+0x31/0x50 [26156.516738] [<ffffffff98d1790c>] nmi_handle.isra.0+0x8c/0x150 [26156.523273] [<ffffffff98d17be8>] do_nmi+0x218/0x460 [26156.528834] [<ffffffff98d16d79>] end_repeat_nmi+0x1e/0x7e [26156.534980] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.543268] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.551556] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.559842] <EOE> [<ffffffff98d083e4>] queued_spin_lock_slowpath+0xb/0xf [26156.567555] [<ffffffff98d15690>] _raw_spin_lock+0x20/0x30 [26156.573696] [<ffffffffc08381a1>] bnxt_qplib_lock_buddy_cq+0x31/0x40 [bnxt_re] [26156.581789] [<ffffffffc083bbaa>] bnxt_qplib_poll_cq+0x43a/0xf10 [bnxt_re] [26156.589493] [<ffffffffc083239b>] bnxt_re_poll_cq+0x9b/0x760 [bnxt_re] The issue happens if RQ poll_cq or SQ poll_cq or Async error event tries to put the error QP in flush list. Since SQ and RQ of each error qp are added to two different flush list, we need to protect it using locks of corresponding CQs. Difference in order of acquiring the lock in SQ poll_cq and RQ poll_cq can cause a hard lockup. Revisits the locking strategy and removes the usage of qplib_cq.hwq.lock. Instead of this lock, introduces qplib_cq.flush_lock to handle addition/deletion of QPs in flush list. Also, always invoke the flush_lock in order (SQ CQ lock first and then RQ CQ lock) to avoid any potential deadlock. Other than the poll_cq context, the movement of QP to/from flush list can be done in modify_qp context or from an async error event from HW. Synchronize these operations using the bnxt_re verbs layer CQ locks. To achieve this, adds a call back to the HW abstraction layer(qplib) to bnxt_re ib_verbs layer in case of async error event. Also, removes the buddy cq functions as it is no longer required. Signed-off-by: Sriharsha Basavapatna <sriharsha.basavapatna@broadcom.com> Signed-off-by: Somnath Kotur <somnath.kotur@broadcom.com> Signed-off-by: Devesh Sharma <devesh.sharma@broadcom.com> Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2018-03-05 21:49:28 -08:00
flags = bnxt_re_lock_cqs(qp);
bnxt_qplib_clean_qp(&qp->qplib_qp);
RDMA/bnxt_re: Avoid Hard lockup during error CQE processing Hitting the following hardlockup due to a race condition in error CQE processing. [26146.879798] bnxt_en 0000:04:00.0: QPLIB: FP: CQ Processed Req [26146.886346] bnxt_en 0000:04:00.0: QPLIB: wr_id[1251] = 0x0 with status 0xa [26156.350935] NMI watchdog: Watchdog detected hard LOCKUP on cpu 4 [26156.357470] Modules linked in: nfsd auth_rpcgss nfs_acl lockd grace [26156.447957] CPU: 4 PID: 3413 Comm: kworker/4:1H Kdump: loaded [26156.457994] Hardware name: Dell Inc. PowerEdge R430/0CN7X8, [26156.466390] Workqueue: ib-comp-wq ib_cq_poll_work [ib_core] [26156.472639] Call Trace: [26156.475379] <NMI> [<ffffffff98d0d722>] dump_stack+0x19/0x1b [26156.481833] [<ffffffff9873f775>] watchdog_overflow_callback+0x135/0x140 [26156.489341] [<ffffffff9877f237>] __perf_event_overflow+0x57/0x100 [26156.496256] [<ffffffff98787c24>] perf_event_overflow+0x14/0x20 [26156.502887] [<ffffffff9860a580>] intel_pmu_handle_irq+0x220/0x510 [26156.509813] [<ffffffff98d16031>] perf_event_nmi_handler+0x31/0x50 [26156.516738] [<ffffffff98d1790c>] nmi_handle.isra.0+0x8c/0x150 [26156.523273] [<ffffffff98d17be8>] do_nmi+0x218/0x460 [26156.528834] [<ffffffff98d16d79>] end_repeat_nmi+0x1e/0x7e [26156.534980] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.543268] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.551556] [<ffffffff987089c0>] ? native_queued_spin_lock_slowpath+0x1d0/0x200 [26156.559842] <EOE> [<ffffffff98d083e4>] queued_spin_lock_slowpath+0xb/0xf [26156.567555] [<ffffffff98d15690>] _raw_spin_lock+0x20/0x30 [26156.573696] [<ffffffffc08381a1>] bnxt_qplib_lock_buddy_cq+0x31/0x40 [bnxt_re] [26156.581789] [<ffffffffc083bbaa>] bnxt_qplib_poll_cq+0x43a/0xf10 [bnxt_re] [26156.589493] [<ffffffffc083239b>] bnxt_re_poll_cq+0x9b/0x760 [bnxt_re] The issue happens if RQ poll_cq or SQ poll_cq or Async error event tries to put the error QP in flush list. Since SQ and RQ of each error qp are added to two different flush list, we need to protect it using locks of corresponding CQs. Difference in order of acquiring the lock in SQ poll_cq and RQ poll_cq can cause a hard lockup. Revisits the locking strategy and removes the usage of qplib_cq.hwq.lock. Instead of this lock, introduces qplib_cq.flush_lock to handle addition/deletion of QPs in flush list. Also, always invoke the flush_lock in order (SQ CQ lock first and then RQ CQ lock) to avoid any potential deadlock. Other than the poll_cq context, the movement of QP to/from flush list can be done in modify_qp context or from an async error event from HW. Synchronize these operations using the bnxt_re verbs layer CQ locks. To achieve this, adds a call back to the HW abstraction layer(qplib) to bnxt_re ib_verbs layer in case of async error event. Also, removes the buddy cq functions as it is no longer required. Signed-off-by: Sriharsha Basavapatna <sriharsha.basavapatna@broadcom.com> Signed-off-by: Somnath Kotur <somnath.kotur@broadcom.com> Signed-off-by: Devesh Sharma <devesh.sharma@broadcom.com> Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2018-03-05 21:49:28 -08:00
bnxt_re_unlock_cqs(qp, flags);
}
}
if (qp_attr_mask & IB_QP_EN_SQD_ASYNC_NOTIFY) {
qp->qplib_qp.modify_flags |=
CMDQ_MODIFY_QP_MODIFY_MASK_EN_SQD_ASYNC_NOTIFY;
qp->qplib_qp.en_sqd_async_notify = true;
}
if (qp_attr_mask & IB_QP_ACCESS_FLAGS) {
qp->qplib_qp.modify_flags |= CMDQ_MODIFY_QP_MODIFY_MASK_ACCESS;
qp->qplib_qp.access =
__qp_access_flags_from_ib(qp->qplib_qp.cctx,
qp_attr->qp_access_flags);
/* LOCAL_WRITE access must be set to allow RC receive */
qp->qplib_qp.access |= CMDQ_MODIFY_QP_ACCESS_LOCAL_WRITE;
}
if (qp_attr_mask & IB_QP_PKEY_INDEX) {
qp->qplib_qp.modify_flags |= CMDQ_MODIFY_QP_MODIFY_MASK_PKEY;
qp->qplib_qp.pkey_index = qp_attr->pkey_index;
}
if (qp_attr_mask & IB_QP_QKEY) {
qp->qplib_qp.modify_flags |= CMDQ_MODIFY_QP_MODIFY_MASK_QKEY;
qp->qplib_qp.qkey = qp_attr->qkey;
}
if (qp_attr_mask & IB_QP_AV) {
const struct ib_global_route *grh =
rdma_ah_read_grh(&qp_attr->ah_attr);
const struct ib_gid_attr *sgid_attr;
struct bnxt_re_gid_ctx *ctx;
qp->qplib_qp.modify_flags |= CMDQ_MODIFY_QP_MODIFY_MASK_DGID |
CMDQ_MODIFY_QP_MODIFY_MASK_FLOW_LABEL |
CMDQ_MODIFY_QP_MODIFY_MASK_SGID_INDEX |
CMDQ_MODIFY_QP_MODIFY_MASK_HOP_LIMIT |
CMDQ_MODIFY_QP_MODIFY_MASK_TRAFFIC_CLASS |
CMDQ_MODIFY_QP_MODIFY_MASK_DEST_MAC |
CMDQ_MODIFY_QP_MODIFY_MASK_VLAN_ID;
memcpy(qp->qplib_qp.ah.dgid.data, grh->dgid.raw,
sizeof(qp->qplib_qp.ah.dgid.data));
qp->qplib_qp.ah.flow_label = grh->flow_label;
sgid_attr = grh->sgid_attr;
/* Get the HW context of the GID. The reference
* of GID table entry is already taken by the caller.
*/
ctx = rdma_read_gid_hw_context(sgid_attr);
qp->qplib_qp.ah.sgid_index = ctx->idx;
qp->qplib_qp.ah.host_sgid_index = grh->sgid_index;
qp->qplib_qp.ah.hop_limit = grh->hop_limit;
qp->qplib_qp.ah.traffic_class = grh->traffic_class >> 2;
qp->qplib_qp.ah.sl = rdma_ah_get_sl(&qp_attr->ah_attr);
ether_addr_copy(qp->qplib_qp.ah.dmac,
qp_attr->ah_attr.roce.dmac);
rc = rdma_read_gid_l2_fields(sgid_attr, NULL,
&qp->qplib_qp.smac[0]);
if (rc)
return rc;
nw_type = rdma_gid_attr_network_type(sgid_attr);
switch (nw_type) {
case RDMA_NETWORK_IPV4:
qp->qplib_qp.nw_type =
CMDQ_MODIFY_QP_NETWORK_TYPE_ROCEV2_IPV4;
break;
case RDMA_NETWORK_IPV6:
qp->qplib_qp.nw_type =
CMDQ_MODIFY_QP_NETWORK_TYPE_ROCEV2_IPV6;
break;
default:
qp->qplib_qp.nw_type =
CMDQ_MODIFY_QP_NETWORK_TYPE_ROCEV1;
break;
}
}
if (qp_attr->qp_state == IB_QPS_RTR) {
enum ib_mtu qpmtu;
qpmtu = iboe_get_mtu(rdev->netdev->mtu);
if (qp_attr_mask & IB_QP_PATH_MTU) {
if (ib_mtu_enum_to_int(qp_attr->path_mtu) >
ib_mtu_enum_to_int(qpmtu))
return -EINVAL;
qpmtu = qp_attr->path_mtu;
}
qp->qplib_qp.modify_flags |= CMDQ_MODIFY_QP_MODIFY_MASK_PATH_MTU;
qp->qplib_qp.path_mtu = __from_ib_mtu(qpmtu);
qp->qplib_qp.mtu = ib_mtu_enum_to_int(qpmtu);
}
if (qp_attr_mask & IB_QP_TIMEOUT) {
qp->qplib_qp.modify_flags |= CMDQ_MODIFY_QP_MODIFY_MASK_TIMEOUT;
qp->qplib_qp.timeout = qp_attr->timeout;
}
if (qp_attr_mask & IB_QP_RETRY_CNT) {
qp->qplib_qp.modify_flags |=
CMDQ_MODIFY_QP_MODIFY_MASK_RETRY_CNT;
qp->qplib_qp.retry_cnt = qp_attr->retry_cnt;
}
if (qp_attr_mask & IB_QP_RNR_RETRY) {
qp->qplib_qp.modify_flags |=
CMDQ_MODIFY_QP_MODIFY_MASK_RNR_RETRY;
qp->qplib_qp.rnr_retry = qp_attr->rnr_retry;
}
if (qp_attr_mask & IB_QP_MIN_RNR_TIMER) {
qp->qplib_qp.modify_flags |=
CMDQ_MODIFY_QP_MODIFY_MASK_MIN_RNR_TIMER;
qp->qplib_qp.min_rnr_timer = qp_attr->min_rnr_timer;
}
if (qp_attr_mask & IB_QP_RQ_PSN) {
qp->qplib_qp.modify_flags |= CMDQ_MODIFY_QP_MODIFY_MASK_RQ_PSN;
qp->qplib_qp.rq.psn = qp_attr->rq_psn;
}
if (qp_attr_mask & IB_QP_MAX_QP_RD_ATOMIC) {
qp->qplib_qp.modify_flags |=
CMDQ_MODIFY_QP_MODIFY_MASK_MAX_RD_ATOMIC;
/* Cap the max_rd_atomic to device max */
qp->qplib_qp.max_rd_atomic = min_t(u32, qp_attr->max_rd_atomic,
dev_attr->max_qp_rd_atom);
}
if (qp_attr_mask & IB_QP_SQ_PSN) {
qp->qplib_qp.modify_flags |= CMDQ_MODIFY_QP_MODIFY_MASK_SQ_PSN;
qp->qplib_qp.sq.psn = qp_attr->sq_psn;
}
if (qp_attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) {
if (qp_attr->max_dest_rd_atomic >
dev_attr->max_qp_init_rd_atom) {
ibdev_err(&rdev->ibdev,
"max_dest_rd_atomic requested%d is > dev_max%d",
qp_attr->max_dest_rd_atomic,
dev_attr->max_qp_init_rd_atom);
return -EINVAL;
}
qp->qplib_qp.modify_flags |=
CMDQ_MODIFY_QP_MODIFY_MASK_MAX_DEST_RD_ATOMIC;
qp->qplib_qp.max_dest_rd_atomic = qp_attr->max_dest_rd_atomic;
}
if (qp_attr_mask & IB_QP_CAP) {
struct bnxt_re_ucontext *uctx =
rdma_udata_to_drv_context(udata, struct bnxt_re_ucontext, ib_uctx);
qp->qplib_qp.modify_flags |=
CMDQ_MODIFY_QP_MODIFY_MASK_SQ_SIZE |
CMDQ_MODIFY_QP_MODIFY_MASK_RQ_SIZE |
CMDQ_MODIFY_QP_MODIFY_MASK_SQ_SGE |
CMDQ_MODIFY_QP_MODIFY_MASK_RQ_SGE |
CMDQ_MODIFY_QP_MODIFY_MASK_MAX_INLINE_DATA;
if ((qp_attr->cap.max_send_wr >= dev_attr->max_qp_wqes) ||
(qp_attr->cap.max_recv_wr >= dev_attr->max_qp_wqes) ||
(qp_attr->cap.max_send_sge >= dev_attr->max_qp_sges) ||
(qp_attr->cap.max_recv_sge >= dev_attr->max_qp_sges) ||
(qp_attr->cap.max_inline_data >=
dev_attr->max_inline_data)) {
ibdev_err(&rdev->ibdev,
"Create QP failed - max exceeded");
return -EINVAL;
}
entries = bnxt_re_init_depth(qp_attr->cap.max_send_wr, uctx);
qp->qplib_qp.sq.max_wqe = min_t(u32, entries,
dev_attr->max_qp_wqes + 1);
qp->qplib_qp.sq.q_full_delta = qp->qplib_qp.sq.max_wqe -
qp_attr->cap.max_send_wr;
/*
* Reserving one slot for Phantom WQE. Some application can
* post one extra entry in this case. Allowing this to avoid
* unexpected Queue full condition
*/
qp->qplib_qp.sq.q_full_delta -= 1;
qp->qplib_qp.sq.max_sge = qp_attr->cap.max_send_sge;
if (qp->qplib_qp.rq.max_wqe) {
entries = bnxt_re_init_depth(qp_attr->cap.max_recv_wr, uctx);
qp->qplib_qp.rq.max_wqe =
min_t(u32, entries, dev_attr->max_qp_wqes + 1);
qp->qplib_qp.rq.max_sw_wqe = qp->qplib_qp.rq.max_wqe;
qp->qplib_qp.rq.q_full_delta = qp->qplib_qp.rq.max_wqe -
qp_attr->cap.max_recv_wr;
qp->qplib_qp.rq.max_sge = qp_attr->cap.max_recv_sge;
} else {
/* SRQ was used prior, just ignore the RQ caps */
}
}
if (qp_attr_mask & IB_QP_DEST_QPN) {
qp->qplib_qp.modify_flags |=
CMDQ_MODIFY_QP_MODIFY_MASK_DEST_QP_ID;
qp->qplib_qp.dest_qpn = qp_attr->dest_qp_num;
}
rc = bnxt_qplib_modify_qp(&rdev->qplib_res, &qp->qplib_qp);
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to modify HW QP");
return rc;
}
if (ib_qp->qp_type == IB_QPT_GSI && rdev->gsi_ctx.gsi_sqp)
rc = bnxt_re_modify_shadow_qp(rdev, qp, qp_attr_mask);
return rc;
}
int bnxt_re_query_qp(struct ib_qp *ib_qp, struct ib_qp_attr *qp_attr,
int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr)
{
struct bnxt_re_qp *qp = container_of(ib_qp, struct bnxt_re_qp, ib_qp);
struct bnxt_re_dev *rdev = qp->rdev;
struct bnxt_qplib_qp *qplib_qp;
int rc;
qplib_qp = kzalloc(sizeof(*qplib_qp), GFP_KERNEL);
if (!qplib_qp)
return -ENOMEM;
qplib_qp->id = qp->qplib_qp.id;
qplib_qp->ah.host_sgid_index = qp->qplib_qp.ah.host_sgid_index;
rc = bnxt_qplib_query_qp(&rdev->qplib_res, qplib_qp);
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to query HW QP");
goto out;
}
qp_attr->qp_state = __to_ib_qp_state(qplib_qp->state);
qp_attr->cur_qp_state = __to_ib_qp_state(qplib_qp->cur_qp_state);
qp_attr->en_sqd_async_notify = qplib_qp->en_sqd_async_notify ? 1 : 0;
qp_attr->qp_access_flags = __qp_access_flags_to_ib(qp->qplib_qp.cctx,
qplib_qp->access);
qp_attr->pkey_index = qplib_qp->pkey_index;
qp_attr->qkey = qplib_qp->qkey;
qp_attr->ah_attr.type = RDMA_AH_ATTR_TYPE_ROCE;
rdma_ah_set_grh(&qp_attr->ah_attr, NULL, qplib_qp->ah.flow_label,
qplib_qp->ah.host_sgid_index,
qplib_qp->ah.hop_limit,
qplib_qp->ah.traffic_class);
rdma_ah_set_dgid_raw(&qp_attr->ah_attr, qplib_qp->ah.dgid.data);
rdma_ah_set_sl(&qp_attr->ah_attr, qplib_qp->ah.sl);
ether_addr_copy(qp_attr->ah_attr.roce.dmac, qplib_qp->ah.dmac);
qp_attr->path_mtu = __to_ib_mtu(qplib_qp->path_mtu);
qp_attr->timeout = qplib_qp->timeout;
qp_attr->retry_cnt = qplib_qp->retry_cnt;
qp_attr->rnr_retry = qplib_qp->rnr_retry;
qp_attr->min_rnr_timer = qplib_qp->min_rnr_timer;
qp_attr->port_num = __to_ib_port_num(qplib_qp->port_id);
qp_attr->rq_psn = qplib_qp->rq.psn;
qp_attr->max_rd_atomic = qplib_qp->max_rd_atomic;
qp_attr->sq_psn = qplib_qp->sq.psn;
qp_attr->max_dest_rd_atomic = qplib_qp->max_dest_rd_atomic;
qp_init_attr->sq_sig_type = qplib_qp->sig_type ? IB_SIGNAL_ALL_WR :
IB_SIGNAL_REQ_WR;
qp_attr->dest_qp_num = qplib_qp->dest_qpn;
qp_attr->cap.max_send_wr = qp->qplib_qp.sq.max_wqe;
qp_attr->cap.max_send_sge = qp->qplib_qp.sq.max_sge;
qp_attr->cap.max_recv_wr = qp->qplib_qp.rq.max_wqe;
qp_attr->cap.max_recv_sge = qp->qplib_qp.rq.max_sge;
qp_attr->cap.max_inline_data = qp->qplib_qp.max_inline_data;
qp_init_attr->cap = qp_attr->cap;
out:
kfree(qplib_qp);
return rc;
}
/* Routine for sending QP1 packets for RoCE V1 an V2
*/
static int bnxt_re_build_qp1_send_v2(struct bnxt_re_qp *qp,
const struct ib_send_wr *wr,
struct bnxt_qplib_swqe *wqe,
int payload_size)
{
struct bnxt_re_ah *ah = container_of(ud_wr(wr)->ah, struct bnxt_re_ah,
ib_ah);
struct bnxt_qplib_ah *qplib_ah = &ah->qplib_ah;
const struct ib_gid_attr *sgid_attr = ah->ib_ah.sgid_attr;
struct bnxt_qplib_sge sge;
u8 nw_type;
u16 ether_type;
union ib_gid dgid;
bool is_eth = false;
bool is_vlan = false;
bool is_grh = false;
bool is_udp = false;
u8 ip_version = 0;
u16 vlan_id = 0xFFFF;
void *buf;
int i, rc;
memset(&qp->qp1_hdr, 0, sizeof(qp->qp1_hdr));
rc = rdma_read_gid_l2_fields(sgid_attr, &vlan_id, NULL);
if (rc)
return rc;
/* Get network header type for this GID */
nw_type = rdma_gid_attr_network_type(sgid_attr);
switch (nw_type) {
case RDMA_NETWORK_IPV4:
nw_type = BNXT_RE_ROCEV2_IPV4_PACKET;
break;
case RDMA_NETWORK_IPV6:
nw_type = BNXT_RE_ROCEV2_IPV6_PACKET;
break;
default:
nw_type = BNXT_RE_ROCE_V1_PACKET;
break;
}
memcpy(&dgid.raw, &qplib_ah->dgid, 16);
is_udp = sgid_attr->gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP;
if (is_udp) {
if (ipv6_addr_v4mapped((struct in6_addr *)&sgid_attr->gid)) {
ip_version = 4;
ether_type = ETH_P_IP;
} else {
ip_version = 6;
ether_type = ETH_P_IPV6;
}
is_grh = false;
} else {
ether_type = ETH_P_IBOE;
is_grh = true;
}
is_eth = true;
is_vlan = vlan_id && (vlan_id < 0x1000);
ib_ud_header_init(payload_size, !is_eth, is_eth, is_vlan, is_grh,
ip_version, is_udp, 0, &qp->qp1_hdr);
/* ETH */
ether_addr_copy(qp->qp1_hdr.eth.dmac_h, ah->qplib_ah.dmac);
ether_addr_copy(qp->qp1_hdr.eth.smac_h, qp->qplib_qp.smac);
/* For vlan, check the sgid for vlan existence */
if (!is_vlan) {
qp->qp1_hdr.eth.type = cpu_to_be16(ether_type);
} else {
qp->qp1_hdr.vlan.type = cpu_to_be16(ether_type);
qp->qp1_hdr.vlan.tag = cpu_to_be16(vlan_id);
}
if (is_grh || (ip_version == 6)) {
memcpy(qp->qp1_hdr.grh.source_gid.raw, sgid_attr->gid.raw,
sizeof(sgid_attr->gid));
memcpy(qp->qp1_hdr.grh.destination_gid.raw, qplib_ah->dgid.data,
sizeof(sgid_attr->gid));
qp->qp1_hdr.grh.hop_limit = qplib_ah->hop_limit;
}
if (ip_version == 4) {
qp->qp1_hdr.ip4.tos = 0;
qp->qp1_hdr.ip4.id = 0;
qp->qp1_hdr.ip4.frag_off = htons(IP_DF);
qp->qp1_hdr.ip4.ttl = qplib_ah->hop_limit;
memcpy(&qp->qp1_hdr.ip4.saddr, sgid_attr->gid.raw + 12, 4);
memcpy(&qp->qp1_hdr.ip4.daddr, qplib_ah->dgid.data + 12, 4);
qp->qp1_hdr.ip4.check = ib_ud_ip4_csum(&qp->qp1_hdr);
}
if (is_udp) {
qp->qp1_hdr.udp.dport = htons(ROCE_V2_UDP_DPORT);
qp->qp1_hdr.udp.sport = htons(0x8CD1);
qp->qp1_hdr.udp.csum = 0;
}
/* BTH */
if (wr->opcode == IB_WR_SEND_WITH_IMM) {
qp->qp1_hdr.bth.opcode = IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE;
qp->qp1_hdr.immediate_present = 1;
} else {
qp->qp1_hdr.bth.opcode = IB_OPCODE_UD_SEND_ONLY;
}
if (wr->send_flags & IB_SEND_SOLICITED)
qp->qp1_hdr.bth.solicited_event = 1;
/* pad_count */
qp->qp1_hdr.bth.pad_count = (4 - payload_size) & 3;
/* P_key for QP1 is for all members */
qp->qp1_hdr.bth.pkey = cpu_to_be16(0xFFFF);
qp->qp1_hdr.bth.destination_qpn = IB_QP1;
qp->qp1_hdr.bth.ack_req = 0;
qp->send_psn++;
qp->send_psn &= BTH_PSN_MASK;
qp->qp1_hdr.bth.psn = cpu_to_be32(qp->send_psn);
/* DETH */
/* Use the priviledged Q_Key for QP1 */
qp->qp1_hdr.deth.qkey = cpu_to_be32(IB_QP1_QKEY);
qp->qp1_hdr.deth.source_qpn = IB_QP1;
/* Pack the QP1 to the transmit buffer */
buf = bnxt_qplib_get_qp1_sq_buf(&qp->qplib_qp, &sge);
if (buf) {
ib_ud_header_pack(&qp->qp1_hdr, buf);
for (i = wqe->num_sge; i; i--) {
wqe->sg_list[i].addr = wqe->sg_list[i - 1].addr;
wqe->sg_list[i].lkey = wqe->sg_list[i - 1].lkey;
wqe->sg_list[i].size = wqe->sg_list[i - 1].size;
}
/*
* Max Header buf size for IPV6 RoCE V2 is 86,
* which is same as the QP1 SQ header buffer.
* Header buf size for IPV4 RoCE V2 can be 66.
* ETH(14) + VLAN(4)+ IP(20) + UDP (8) + BTH(20).
* Subtract 20 bytes from QP1 SQ header buf size
*/
if (is_udp && ip_version == 4)
sge.size -= 20;
/*
* Max Header buf size for RoCE V1 is 78.
* ETH(14) + VLAN(4) + GRH(40) + BTH(20).
* Subtract 8 bytes from QP1 SQ header buf size
*/
if (!is_udp)
sge.size -= 8;
/* Subtract 4 bytes for non vlan packets */
if (!is_vlan)
sge.size -= 4;
wqe->sg_list[0].addr = sge.addr;
wqe->sg_list[0].lkey = sge.lkey;
wqe->sg_list[0].size = sge.size;
wqe->num_sge++;
} else {
ibdev_err(&qp->rdev->ibdev, "QP1 buffer is empty!");
rc = -ENOMEM;
}
return rc;
}
/* For the MAD layer, it only provides the recv SGE the size of
* ib_grh + MAD datagram. No Ethernet headers, Ethertype, BTH, DETH,
* nor RoCE iCRC. The Cu+ solution must provide buffer for the entire
* receive packet (334 bytes) with no VLAN and then copy the GRH
* and the MAD datagram out to the provided SGE.
*/
static int bnxt_re_build_qp1_shadow_qp_recv(struct bnxt_re_qp *qp,
const struct ib_recv_wr *wr,
struct bnxt_qplib_swqe *wqe,
int payload_size)
{
struct bnxt_re_sqp_entries *sqp_entry;
struct bnxt_qplib_sge ref, sge;
struct bnxt_re_dev *rdev;
u32 rq_prod_index;
rdev = qp->rdev;
rq_prod_index = bnxt_qplib_get_rq_prod_index(&qp->qplib_qp);
if (!bnxt_qplib_get_qp1_rq_buf(&qp->qplib_qp, &sge))
return -ENOMEM;
/* Create 1 SGE to receive the entire
* ethernet packet
*/
/* Save the reference from ULP */
ref.addr = wqe->sg_list[0].addr;
ref.lkey = wqe->sg_list[0].lkey;
ref.size = wqe->sg_list[0].size;
sqp_entry = &rdev->gsi_ctx.sqp_tbl[rq_prod_index];
/* SGE 1 */
wqe->sg_list[0].addr = sge.addr;
wqe->sg_list[0].lkey = sge.lkey;
wqe->sg_list[0].size = BNXT_QPLIB_MAX_QP1_RQ_HDR_SIZE_V2;
sge.size -= wqe->sg_list[0].size;
sqp_entry->sge.addr = ref.addr;
sqp_entry->sge.lkey = ref.lkey;
sqp_entry->sge.size = ref.size;
/* Store the wrid for reporting completion */
sqp_entry->wrid = wqe->wr_id;
/* change the wqe->wrid to table index */
wqe->wr_id = rq_prod_index;
return 0;
}
static int is_ud_qp(struct bnxt_re_qp *qp)
{
return (qp->qplib_qp.type == CMDQ_CREATE_QP_TYPE_UD ||
qp->qplib_qp.type == CMDQ_CREATE_QP_TYPE_GSI);
}
static int bnxt_re_build_send_wqe(struct bnxt_re_qp *qp,
const struct ib_send_wr *wr,
struct bnxt_qplib_swqe *wqe)
{
struct bnxt_re_ah *ah = NULL;
if (is_ud_qp(qp)) {
ah = container_of(ud_wr(wr)->ah, struct bnxt_re_ah, ib_ah);
wqe->send.q_key = ud_wr(wr)->remote_qkey;
wqe->send.dst_qp = ud_wr(wr)->remote_qpn;
wqe->send.avid = ah->qplib_ah.id;
}
switch (wr->opcode) {
case IB_WR_SEND:
wqe->type = BNXT_QPLIB_SWQE_TYPE_SEND;
break;
case IB_WR_SEND_WITH_IMM:
wqe->type = BNXT_QPLIB_SWQE_TYPE_SEND_WITH_IMM;
wqe->send.imm_data = be32_to_cpu(wr->ex.imm_data);
break;
case IB_WR_SEND_WITH_INV:
wqe->type = BNXT_QPLIB_SWQE_TYPE_SEND_WITH_INV;
wqe->send.inv_key = wr->ex.invalidate_rkey;
break;
default:
return -EINVAL;
}
if (wr->send_flags & IB_SEND_SIGNALED)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_SIGNAL_COMP;
if (wr->send_flags & IB_SEND_FENCE)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_UC_FENCE;
if (wr->send_flags & IB_SEND_SOLICITED)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_SOLICIT_EVENT;
if (wr->send_flags & IB_SEND_INLINE)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_INLINE;
return 0;
}
static int bnxt_re_build_rdma_wqe(const struct ib_send_wr *wr,
struct bnxt_qplib_swqe *wqe)
{
switch (wr->opcode) {
case IB_WR_RDMA_WRITE:
wqe->type = BNXT_QPLIB_SWQE_TYPE_RDMA_WRITE;
break;
case IB_WR_RDMA_WRITE_WITH_IMM:
wqe->type = BNXT_QPLIB_SWQE_TYPE_RDMA_WRITE_WITH_IMM;
wqe->rdma.imm_data = be32_to_cpu(wr->ex.imm_data);
break;
case IB_WR_RDMA_READ:
wqe->type = BNXT_QPLIB_SWQE_TYPE_RDMA_READ;
wqe->rdma.inv_key = wr->ex.invalidate_rkey;
break;
default:
return -EINVAL;
}
wqe->rdma.remote_va = rdma_wr(wr)->remote_addr;
wqe->rdma.r_key = rdma_wr(wr)->rkey;
if (wr->send_flags & IB_SEND_SIGNALED)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_SIGNAL_COMP;
if (wr->send_flags & IB_SEND_FENCE)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_UC_FENCE;
if (wr->send_flags & IB_SEND_SOLICITED)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_SOLICIT_EVENT;
if (wr->send_flags & IB_SEND_INLINE)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_INLINE;
return 0;
}
static int bnxt_re_build_atomic_wqe(const struct ib_send_wr *wr,
struct bnxt_qplib_swqe *wqe)
{
switch (wr->opcode) {
case IB_WR_ATOMIC_CMP_AND_SWP:
wqe->type = BNXT_QPLIB_SWQE_TYPE_ATOMIC_CMP_AND_SWP;
wqe->atomic.cmp_data = atomic_wr(wr)->compare_add;
wqe->atomic.swap_data = atomic_wr(wr)->swap;
break;
case IB_WR_ATOMIC_FETCH_AND_ADD:
wqe->type = BNXT_QPLIB_SWQE_TYPE_ATOMIC_FETCH_AND_ADD;
wqe->atomic.cmp_data = atomic_wr(wr)->compare_add;
break;
default:
return -EINVAL;
}
wqe->atomic.remote_va = atomic_wr(wr)->remote_addr;
wqe->atomic.r_key = atomic_wr(wr)->rkey;
if (wr->send_flags & IB_SEND_SIGNALED)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_SIGNAL_COMP;
if (wr->send_flags & IB_SEND_FENCE)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_UC_FENCE;
if (wr->send_flags & IB_SEND_SOLICITED)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_SOLICIT_EVENT;
return 0;
}
static int bnxt_re_build_inv_wqe(const struct ib_send_wr *wr,
struct bnxt_qplib_swqe *wqe)
{
wqe->type = BNXT_QPLIB_SWQE_TYPE_LOCAL_INV;
wqe->local_inv.inv_l_key = wr->ex.invalidate_rkey;
if (wr->send_flags & IB_SEND_SIGNALED)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_SIGNAL_COMP;
if (wr->send_flags & IB_SEND_SOLICITED)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_SOLICIT_EVENT;
return 0;
}
static int bnxt_re_build_reg_wqe(const struct ib_reg_wr *wr,
struct bnxt_qplib_swqe *wqe)
{
struct bnxt_re_mr *mr = container_of(wr->mr, struct bnxt_re_mr, ib_mr);
struct bnxt_qplib_frpl *qplib_frpl = &mr->qplib_frpl;
int access = wr->access;
wqe->frmr.pbl_ptr = (__le64 *)qplib_frpl->hwq.pbl_ptr[0];
wqe->frmr.pbl_dma_ptr = qplib_frpl->hwq.pbl_dma_ptr[0];
wqe->frmr.page_list = mr->pages;
wqe->frmr.page_list_len = mr->npages;
wqe->frmr.levels = qplib_frpl->hwq.level;
wqe->type = BNXT_QPLIB_SWQE_TYPE_REG_MR;
if (wr->wr.send_flags & IB_SEND_SIGNALED)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_SIGNAL_COMP;
if (access & IB_ACCESS_LOCAL_WRITE)
wqe->frmr.access_cntl |= SQ_FR_PMR_ACCESS_CNTL_LOCAL_WRITE;
if (access & IB_ACCESS_REMOTE_READ)
wqe->frmr.access_cntl |= SQ_FR_PMR_ACCESS_CNTL_REMOTE_READ;
if (access & IB_ACCESS_REMOTE_WRITE)
wqe->frmr.access_cntl |= SQ_FR_PMR_ACCESS_CNTL_REMOTE_WRITE;
if (access & IB_ACCESS_REMOTE_ATOMIC)
wqe->frmr.access_cntl |= SQ_FR_PMR_ACCESS_CNTL_REMOTE_ATOMIC;
if (access & IB_ACCESS_MW_BIND)
wqe->frmr.access_cntl |= SQ_FR_PMR_ACCESS_CNTL_WINDOW_BIND;
wqe->frmr.l_key = wr->key;
wqe->frmr.length = wr->mr->length;
wqe->frmr.pbl_pg_sz_log = ilog2(PAGE_SIZE >> PAGE_SHIFT_4K);
wqe->frmr.pg_sz_log = ilog2(wr->mr->page_size >> PAGE_SHIFT_4K);
wqe->frmr.va = wr->mr->iova;
return 0;
}
static int bnxt_re_copy_inline_data(struct bnxt_re_dev *rdev,
const struct ib_send_wr *wr,
struct bnxt_qplib_swqe *wqe)
{
/* Copy the inline data to the data field */
u8 *in_data;
u32 i, sge_len;
void *sge_addr;
in_data = wqe->inline_data;
for (i = 0; i < wr->num_sge; i++) {
sge_addr = (void *)(unsigned long)
wr->sg_list[i].addr;
sge_len = wr->sg_list[i].length;
if ((sge_len + wqe->inline_len) >
BNXT_QPLIB_SWQE_MAX_INLINE_LENGTH) {
ibdev_err(&rdev->ibdev,
"Inline data size requested > supported value");
return -EINVAL;
}
sge_len = wr->sg_list[i].length;
memcpy(in_data, sge_addr, sge_len);
in_data += wr->sg_list[i].length;
wqe->inline_len += wr->sg_list[i].length;
}
return wqe->inline_len;
}
static int bnxt_re_copy_wr_payload(struct bnxt_re_dev *rdev,
const struct ib_send_wr *wr,
struct bnxt_qplib_swqe *wqe)
{
int payload_sz = 0;
if (wr->send_flags & IB_SEND_INLINE)
payload_sz = bnxt_re_copy_inline_data(rdev, wr, wqe);
else
payload_sz = bnxt_re_build_sgl(wr->sg_list, wqe->sg_list,
wqe->num_sge);
return payload_sz;
}
static void bnxt_ud_qp_hw_stall_workaround(struct bnxt_re_qp *qp)
{
if ((qp->ib_qp.qp_type == IB_QPT_UD ||
qp->ib_qp.qp_type == IB_QPT_GSI ||
qp->ib_qp.qp_type == IB_QPT_RAW_ETHERTYPE) &&
qp->qplib_qp.wqe_cnt == BNXT_RE_UD_QP_HW_STALL) {
int qp_attr_mask;
struct ib_qp_attr qp_attr;
qp_attr_mask = IB_QP_STATE;
qp_attr.qp_state = IB_QPS_RTS;
bnxt_re_modify_qp(&qp->ib_qp, &qp_attr, qp_attr_mask, NULL);
qp->qplib_qp.wqe_cnt = 0;
}
}
static int bnxt_re_post_send_shadow_qp(struct bnxt_re_dev *rdev,
struct bnxt_re_qp *qp,
const struct ib_send_wr *wr)
{
int rc = 0, payload_sz = 0;
unsigned long flags;
spin_lock_irqsave(&qp->sq_lock, flags);
while (wr) {
struct bnxt_qplib_swqe wqe = {};
/* Common */
wqe.num_sge = wr->num_sge;
if (wr->num_sge > qp->qplib_qp.sq.max_sge) {
ibdev_err(&rdev->ibdev,
"Limit exceeded for Send SGEs");
rc = -EINVAL;
goto bad;
}
payload_sz = bnxt_re_copy_wr_payload(qp->rdev, wr, &wqe);
if (payload_sz < 0) {
rc = -EINVAL;
goto bad;
}
wqe.wr_id = wr->wr_id;
wqe.type = BNXT_QPLIB_SWQE_TYPE_SEND;
rc = bnxt_re_build_send_wqe(qp, wr, &wqe);
if (!rc)
rc = bnxt_qplib_post_send(&qp->qplib_qp, &wqe);
bad:
if (rc) {
ibdev_err(&rdev->ibdev,
"Post send failed opcode = %#x rc = %d",
wr->opcode, rc);
break;
}
wr = wr->next;
}
bnxt_qplib_post_send_db(&qp->qplib_qp);
if (!bnxt_qplib_is_chip_gen_p5_p7(qp->rdev->chip_ctx))
bnxt_ud_qp_hw_stall_workaround(qp);
spin_unlock_irqrestore(&qp->sq_lock, flags);
return rc;
}
static void bnxt_re_legacy_set_uc_fence(struct bnxt_qplib_swqe *wqe)
{
/* Need unconditional fence for non-wire memory opcode
* to work as expected.
*/
if (wqe->type == BNXT_QPLIB_SWQE_TYPE_LOCAL_INV ||
wqe->type == BNXT_QPLIB_SWQE_TYPE_FAST_REG_MR ||
wqe->type == BNXT_QPLIB_SWQE_TYPE_REG_MR ||
wqe->type == BNXT_QPLIB_SWQE_TYPE_BIND_MW)
wqe->flags |= BNXT_QPLIB_SWQE_FLAGS_UC_FENCE;
}
int bnxt_re_post_send(struct ib_qp *ib_qp, const struct ib_send_wr *wr,
const struct ib_send_wr **bad_wr)
{
struct bnxt_re_qp *qp = container_of(ib_qp, struct bnxt_re_qp, ib_qp);
struct bnxt_qplib_swqe wqe;
int rc = 0, payload_sz = 0;
unsigned long flags;
spin_lock_irqsave(&qp->sq_lock, flags);
while (wr) {
/* House keeping */
memset(&wqe, 0, sizeof(wqe));
/* Common */
wqe.num_sge = wr->num_sge;
if (wr->num_sge > qp->qplib_qp.sq.max_sge) {
ibdev_err(&qp->rdev->ibdev,
"Limit exceeded for Send SGEs");
rc = -EINVAL;
goto bad;
}
payload_sz = bnxt_re_copy_wr_payload(qp->rdev, wr, &wqe);
if (payload_sz < 0) {
rc = -EINVAL;
goto bad;
}
wqe.wr_id = wr->wr_id;
switch (wr->opcode) {
case IB_WR_SEND:
case IB_WR_SEND_WITH_IMM:
if (qp->qplib_qp.type == CMDQ_CREATE_QP1_TYPE_GSI) {
rc = bnxt_re_build_qp1_send_v2(qp, wr, &wqe,
payload_sz);
if (rc)
goto bad;
wqe.rawqp1.lflags |=
SQ_SEND_RAWETH_QP1_LFLAGS_ROCE_CRC;
}
switch (wr->send_flags) {
case IB_SEND_IP_CSUM:
wqe.rawqp1.lflags |=
SQ_SEND_RAWETH_QP1_LFLAGS_IP_CHKSUM;
break;
default:
break;
}
fallthrough;
case IB_WR_SEND_WITH_INV:
rc = bnxt_re_build_send_wqe(qp, wr, &wqe);
break;
case IB_WR_RDMA_WRITE:
case IB_WR_RDMA_WRITE_WITH_IMM:
case IB_WR_RDMA_READ:
rc = bnxt_re_build_rdma_wqe(wr, &wqe);
break;
case IB_WR_ATOMIC_CMP_AND_SWP:
case IB_WR_ATOMIC_FETCH_AND_ADD:
rc = bnxt_re_build_atomic_wqe(wr, &wqe);
break;
case IB_WR_RDMA_READ_WITH_INV:
ibdev_err(&qp->rdev->ibdev,
"RDMA Read with Invalidate is not supported");
rc = -EINVAL;
goto bad;
case IB_WR_LOCAL_INV:
rc = bnxt_re_build_inv_wqe(wr, &wqe);
break;
case IB_WR_REG_MR:
rc = bnxt_re_build_reg_wqe(reg_wr(wr), &wqe);
break;
default:
/* Unsupported WRs */
ibdev_err(&qp->rdev->ibdev,
"WR (%#x) is not supported", wr->opcode);
rc = -EINVAL;
goto bad;
}
if (!rc) {
if (!bnxt_qplib_is_chip_gen_p5_p7(qp->rdev->chip_ctx))
bnxt_re_legacy_set_uc_fence(&wqe);
rc = bnxt_qplib_post_send(&qp->qplib_qp, &wqe);
}
bad:
if (rc) {
ibdev_err(&qp->rdev->ibdev,
"post_send failed op:%#x qps = %#x rc = %d\n",
wr->opcode, qp->qplib_qp.state, rc);
*bad_wr = wr;
break;
}
wr = wr->next;
}
bnxt_qplib_post_send_db(&qp->qplib_qp);
if (!bnxt_qplib_is_chip_gen_p5_p7(qp->rdev->chip_ctx))
bnxt_ud_qp_hw_stall_workaround(qp);
spin_unlock_irqrestore(&qp->sq_lock, flags);
return rc;
}
static int bnxt_re_post_recv_shadow_qp(struct bnxt_re_dev *rdev,
struct bnxt_re_qp *qp,
const struct ib_recv_wr *wr)
{
struct bnxt_qplib_swqe wqe;
int rc = 0;
while (wr) {
/* House keeping */
memset(&wqe, 0, sizeof(wqe));
/* Common */
wqe.num_sge = wr->num_sge;
if (wr->num_sge > qp->qplib_qp.rq.max_sge) {
ibdev_err(&rdev->ibdev,
"Limit exceeded for Receive SGEs");
rc = -EINVAL;
break;
}
bnxt_re_build_sgl(wr->sg_list, wqe.sg_list, wr->num_sge);
wqe.wr_id = wr->wr_id;
wqe.type = BNXT_QPLIB_SWQE_TYPE_RECV;
rc = bnxt_qplib_post_recv(&qp->qplib_qp, &wqe);
if (rc)
break;
wr = wr->next;
}
if (!rc)
bnxt_qplib_post_recv_db(&qp->qplib_qp);
return rc;
}
int bnxt_re_post_recv(struct ib_qp *ib_qp, const struct ib_recv_wr *wr,
const struct ib_recv_wr **bad_wr)
{
struct bnxt_re_qp *qp = container_of(ib_qp, struct bnxt_re_qp, ib_qp);
struct bnxt_qplib_swqe wqe;
int rc = 0, payload_sz = 0;
unsigned long flags;
u32 count = 0;
spin_lock_irqsave(&qp->rq_lock, flags);
while (wr) {
/* House keeping */
memset(&wqe, 0, sizeof(wqe));
/* Common */
wqe.num_sge = wr->num_sge;
if (wr->num_sge > qp->qplib_qp.rq.max_sge) {
ibdev_err(&qp->rdev->ibdev,
"Limit exceeded for Receive SGEs");
rc = -EINVAL;
*bad_wr = wr;
break;
}
payload_sz = bnxt_re_build_sgl(wr->sg_list, wqe.sg_list,
wr->num_sge);
wqe.wr_id = wr->wr_id;
wqe.type = BNXT_QPLIB_SWQE_TYPE_RECV;
if (ib_qp->qp_type == IB_QPT_GSI &&
qp->qplib_qp.type != CMDQ_CREATE_QP_TYPE_GSI)
rc = bnxt_re_build_qp1_shadow_qp_recv(qp, wr, &wqe,
payload_sz);
if (!rc)
rc = bnxt_qplib_post_recv(&qp->qplib_qp, &wqe);
if (rc) {
*bad_wr = wr;
break;
}
/* Ring DB if the RQEs posted reaches a threshold value */
if (++count >= BNXT_RE_RQ_WQE_THRESHOLD) {
bnxt_qplib_post_recv_db(&qp->qplib_qp);
count = 0;
}
wr = wr->next;
}
if (count)
bnxt_qplib_post_recv_db(&qp->qplib_qp);
spin_unlock_irqrestore(&qp->rq_lock, flags);
return rc;
}
static struct bnxt_qplib_nq *bnxt_re_get_nq(struct bnxt_re_dev *rdev)
{
int min, indx;
mutex_lock(&rdev->nqr->load_lock);
for (indx = 0, min = 0; indx < (rdev->nqr->num_msix - 1); indx++) {
if (rdev->nqr->nq[min].load > rdev->nqr->nq[indx].load)
min = indx;
}
rdev->nqr->nq[min].load++;
mutex_unlock(&rdev->nqr->load_lock);
return &rdev->nqr->nq[min];
}
static void bnxt_re_put_nq(struct bnxt_re_dev *rdev, struct bnxt_qplib_nq *nq)
{
mutex_lock(&rdev->nqr->load_lock);
nq->load--;
mutex_unlock(&rdev->nqr->load_lock);
}
/* Completion Queues */
int bnxt_re_destroy_cq(struct ib_cq *ib_cq, struct ib_udata *udata)
{
struct bnxt_qplib_chip_ctx *cctx;
struct bnxt_qplib_nq *nq;
struct bnxt_re_dev *rdev;
struct bnxt_re_cq *cq;
cq = container_of(ib_cq, struct bnxt_re_cq, ib_cq);
rdev = cq->rdev;
nq = cq->qplib_cq.nq;
cctx = rdev->chip_ctx;
if (cctx->modes.toggle_bits & BNXT_QPLIB_CQ_TOGGLE_BIT) {
free_page((unsigned long)cq->uctx_cq_page);
hash_del(&cq->hash_entry);
}
bnxt_qplib_destroy_cq(&rdev->qplib_res, &cq->qplib_cq);
bnxt_re_put_nq(rdev, nq);
ib_umem_release(cq->umem);
atomic_dec(&rdev->stats.res.cq_count);
kfree(cq->cql);
return 0;
}
int bnxt_re_create_cq(struct ib_cq *ibcq, const struct ib_cq_init_attr *attr,
struct uverbs_attr_bundle *attrs)
{
struct bnxt_re_cq *cq = container_of(ibcq, struct bnxt_re_cq, ib_cq);
struct bnxt_re_dev *rdev = to_bnxt_re_dev(ibcq->device, ibdev);
struct ib_udata *udata = &attrs->driver_udata;
struct bnxt_re_ucontext *uctx =
rdma_udata_to_drv_context(udata, struct bnxt_re_ucontext, ib_uctx);
struct bnxt_qplib_dev_attr *dev_attr = rdev->dev_attr;
struct bnxt_qplib_chip_ctx *cctx;
int cqe = attr->cqe;
int rc, entries;
u32 active_cqs;
if (attr->flags)
return -EOPNOTSUPP;
/* Validate CQ fields */
if (cqe < 1 || cqe > dev_attr->max_cq_wqes) {
ibdev_err(&rdev->ibdev, "Failed to create CQ -max exceeded");
return -EINVAL;
}
cq->rdev = rdev;
cctx = rdev->chip_ctx;
cq->qplib_cq.cq_handle = (u64)(unsigned long)(&cq->qplib_cq);
entries = bnxt_re_init_depth(cqe + 1, uctx);
if (entries > dev_attr->max_cq_wqes + 1)
entries = dev_attr->max_cq_wqes + 1;
cq->qplib_cq.sg_info.pgsize = PAGE_SIZE;
cq->qplib_cq.sg_info.pgshft = PAGE_SHIFT;
if (udata) {
struct bnxt_re_cq_req req;
if (ib_copy_from_udata(&req, udata, sizeof(req))) {
rc = -EFAULT;
goto fail;
}
cq->umem = ib_umem_get(&rdev->ibdev, req.cq_va,
entries * sizeof(struct cq_base),
IB_ACCESS_LOCAL_WRITE);
if (IS_ERR(cq->umem)) {
rc = PTR_ERR(cq->umem);
goto fail;
}
cq->qplib_cq.sg_info.umem = cq->umem;
cq->qplib_cq.dpi = &uctx->dpi;
} else {
cq->max_cql = min_t(u32, entries, MAX_CQL_PER_POLL);
cq->cql = kcalloc(cq->max_cql, sizeof(struct bnxt_qplib_cqe),
GFP_KERNEL);
if (!cq->cql) {
rc = -ENOMEM;
goto fail;
}
cq->qplib_cq.dpi = &rdev->dpi_privileged;
}
cq->qplib_cq.max_wqe = entries;
cq->qplib_cq.coalescing = &rdev->cq_coalescing;
cq->qplib_cq.nq = bnxt_re_get_nq(rdev);
cq->qplib_cq.cnq_hw_ring_id = cq->qplib_cq.nq->ring_id;
rc = bnxt_qplib_create_cq(&rdev->qplib_res, &cq->qplib_cq);
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to create HW CQ");
goto fail;
}
cq->ib_cq.cqe = entries;
cq->cq_period = cq->qplib_cq.period;
active_cqs = atomic_inc_return(&rdev->stats.res.cq_count);
if (active_cqs > rdev->stats.res.cq_watermark)
rdev->stats.res.cq_watermark = active_cqs;
spin_lock_init(&cq->cq_lock);
if (udata) {
struct bnxt_re_cq_resp resp = {};
if (cctx->modes.toggle_bits & BNXT_QPLIB_CQ_TOGGLE_BIT) {
hash_add(rdev->cq_hash, &cq->hash_entry, cq->qplib_cq.id);
/* Allocate a page */
cq->uctx_cq_page = (void *)get_zeroed_page(GFP_KERNEL);
if (!cq->uctx_cq_page) {
rc = -ENOMEM;
goto c2fail;
}
resp.comp_mask |= BNXT_RE_CQ_TOGGLE_PAGE_SUPPORT;
}
resp.cqid = cq->qplib_cq.id;
resp.tail = cq->qplib_cq.hwq.cons;
resp.phase = cq->qplib_cq.period;
resp.rsvd = 0;
rc = ib_copy_to_udata(udata, &resp, min(sizeof(resp), udata->outlen));
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to copy CQ udata");
bnxt_qplib_destroy_cq(&rdev->qplib_res, &cq->qplib_cq);
goto free_mem;
}
}
return 0;
free_mem:
free_page((unsigned long)cq->uctx_cq_page);
c2fail:
ib_umem_release(cq->umem);
fail:
kfree(cq->cql);
return rc;
}
static void bnxt_re_resize_cq_complete(struct bnxt_re_cq *cq)
{
struct bnxt_re_dev *rdev = cq->rdev;
bnxt_qplib_resize_cq_complete(&rdev->qplib_res, &cq->qplib_cq);
cq->qplib_cq.max_wqe = cq->resize_cqe;
if (cq->resize_umem) {
ib_umem_release(cq->umem);
cq->umem = cq->resize_umem;
cq->resize_umem = NULL;
cq->resize_cqe = 0;
}
}
int bnxt_re_resize_cq(struct ib_cq *ibcq, int cqe, struct ib_udata *udata)
{
struct bnxt_qplib_sg_info sg_info = {};
struct bnxt_qplib_dpi *orig_dpi = NULL;
struct bnxt_qplib_dev_attr *dev_attr;
struct bnxt_re_ucontext *uctx = NULL;
struct bnxt_re_resize_cq_req req;
struct bnxt_re_dev *rdev;
struct bnxt_re_cq *cq;
int rc, entries;
cq = container_of(ibcq, struct bnxt_re_cq, ib_cq);
rdev = cq->rdev;
dev_attr = rdev->dev_attr;
if (!ibcq->uobject) {
ibdev_err(&rdev->ibdev, "Kernel CQ Resize not supported");
return -EOPNOTSUPP;
}
if (cq->resize_umem) {
ibdev_err(&rdev->ibdev, "Resize CQ %#x failed - Busy",
cq->qplib_cq.id);
return -EBUSY;
}
/* Check the requested cq depth out of supported depth */
if (cqe < 1 || cqe > dev_attr->max_cq_wqes) {
ibdev_err(&rdev->ibdev, "Resize CQ %#x failed - out of range cqe %d",
cq->qplib_cq.id, cqe);
return -EINVAL;
}
uctx = rdma_udata_to_drv_context(udata, struct bnxt_re_ucontext, ib_uctx);
entries = bnxt_re_init_depth(cqe + 1, uctx);
if (entries > dev_attr->max_cq_wqes + 1)
entries = dev_attr->max_cq_wqes + 1;
/* uverbs consumer */
if (ib_copy_from_udata(&req, udata, sizeof(req))) {
rc = -EFAULT;
goto fail;
}
cq->resize_umem = ib_umem_get(&rdev->ibdev, req.cq_va,
entries * sizeof(struct cq_base),
IB_ACCESS_LOCAL_WRITE);
if (IS_ERR(cq->resize_umem)) {
rc = PTR_ERR(cq->resize_umem);
cq->resize_umem = NULL;
ibdev_err(&rdev->ibdev, "%s: ib_umem_get failed! rc = %d\n",
__func__, rc);
goto fail;
}
cq->resize_cqe = entries;
memcpy(&sg_info, &cq->qplib_cq.sg_info, sizeof(sg_info));
orig_dpi = cq->qplib_cq.dpi;
cq->qplib_cq.sg_info.umem = cq->resize_umem;
cq->qplib_cq.sg_info.pgsize = PAGE_SIZE;
cq->qplib_cq.sg_info.pgshft = PAGE_SHIFT;
cq->qplib_cq.dpi = &uctx->dpi;
rc = bnxt_qplib_resize_cq(&rdev->qplib_res, &cq->qplib_cq, entries);
if (rc) {
ibdev_err(&rdev->ibdev, "Resize HW CQ %#x failed!",
cq->qplib_cq.id);
goto fail;
}
cq->ib_cq.cqe = cq->resize_cqe;
atomic_inc(&rdev->stats.res.resize_count);
return 0;
fail:
if (cq->resize_umem) {
ib_umem_release(cq->resize_umem);
cq->resize_umem = NULL;
cq->resize_cqe = 0;
memcpy(&cq->qplib_cq.sg_info, &sg_info, sizeof(sg_info));
cq->qplib_cq.dpi = orig_dpi;
}
return rc;
}
static u8 __req_to_ib_wc_status(u8 qstatus)
{
switch (qstatus) {
case CQ_REQ_STATUS_OK:
return IB_WC_SUCCESS;
case CQ_REQ_STATUS_BAD_RESPONSE_ERR:
return IB_WC_BAD_RESP_ERR;
case CQ_REQ_STATUS_LOCAL_LENGTH_ERR:
return IB_WC_LOC_LEN_ERR;
case CQ_REQ_STATUS_LOCAL_QP_OPERATION_ERR:
return IB_WC_LOC_QP_OP_ERR;
case CQ_REQ_STATUS_LOCAL_PROTECTION_ERR:
return IB_WC_LOC_PROT_ERR;
case CQ_REQ_STATUS_MEMORY_MGT_OPERATION_ERR:
return IB_WC_GENERAL_ERR;
case CQ_REQ_STATUS_REMOTE_INVALID_REQUEST_ERR:
return IB_WC_REM_INV_REQ_ERR;
case CQ_REQ_STATUS_REMOTE_ACCESS_ERR:
return IB_WC_REM_ACCESS_ERR;
case CQ_REQ_STATUS_REMOTE_OPERATION_ERR:
return IB_WC_REM_OP_ERR;
case CQ_REQ_STATUS_RNR_NAK_RETRY_CNT_ERR:
return IB_WC_RNR_RETRY_EXC_ERR;
case CQ_REQ_STATUS_TRANSPORT_RETRY_CNT_ERR:
return IB_WC_RETRY_EXC_ERR;
case CQ_REQ_STATUS_WORK_REQUEST_FLUSHED_ERR:
return IB_WC_WR_FLUSH_ERR;
default:
return IB_WC_GENERAL_ERR;
}
return 0;
}
static u8 __rawqp1_to_ib_wc_status(u8 qstatus)
{
switch (qstatus) {
case CQ_RES_RAWETH_QP1_STATUS_OK:
return IB_WC_SUCCESS;
case CQ_RES_RAWETH_QP1_STATUS_LOCAL_ACCESS_ERROR:
return IB_WC_LOC_ACCESS_ERR;
case CQ_RES_RAWETH_QP1_STATUS_HW_LOCAL_LENGTH_ERR:
return IB_WC_LOC_LEN_ERR;
case CQ_RES_RAWETH_QP1_STATUS_LOCAL_PROTECTION_ERR:
return IB_WC_LOC_PROT_ERR;
case CQ_RES_RAWETH_QP1_STATUS_LOCAL_QP_OPERATION_ERR:
return IB_WC_LOC_QP_OP_ERR;
case CQ_RES_RAWETH_QP1_STATUS_MEMORY_MGT_OPERATION_ERR:
return IB_WC_GENERAL_ERR;
case CQ_RES_RAWETH_QP1_STATUS_WORK_REQUEST_FLUSHED_ERR:
return IB_WC_WR_FLUSH_ERR;
case CQ_RES_RAWETH_QP1_STATUS_HW_FLUSH_ERR:
return IB_WC_WR_FLUSH_ERR;
default:
return IB_WC_GENERAL_ERR;
}
}
static u8 __rc_to_ib_wc_status(u8 qstatus)
{
switch (qstatus) {
case CQ_RES_RC_STATUS_OK:
return IB_WC_SUCCESS;
case CQ_RES_RC_STATUS_LOCAL_ACCESS_ERROR:
return IB_WC_LOC_ACCESS_ERR;
case CQ_RES_RC_STATUS_LOCAL_LENGTH_ERR:
return IB_WC_LOC_LEN_ERR;
case CQ_RES_RC_STATUS_LOCAL_PROTECTION_ERR:
return IB_WC_LOC_PROT_ERR;
case CQ_RES_RC_STATUS_LOCAL_QP_OPERATION_ERR:
return IB_WC_LOC_QP_OP_ERR;
case CQ_RES_RC_STATUS_MEMORY_MGT_OPERATION_ERR:
return IB_WC_GENERAL_ERR;
case CQ_RES_RC_STATUS_REMOTE_INVALID_REQUEST_ERR:
return IB_WC_REM_INV_REQ_ERR;
case CQ_RES_RC_STATUS_WORK_REQUEST_FLUSHED_ERR:
return IB_WC_WR_FLUSH_ERR;
case CQ_RES_RC_STATUS_HW_FLUSH_ERR:
return IB_WC_WR_FLUSH_ERR;
default:
return IB_WC_GENERAL_ERR;
}
}
static void bnxt_re_process_req_wc(struct ib_wc *wc, struct bnxt_qplib_cqe *cqe)
{
switch (cqe->type) {
case BNXT_QPLIB_SWQE_TYPE_SEND:
wc->opcode = IB_WC_SEND;
break;
case BNXT_QPLIB_SWQE_TYPE_SEND_WITH_IMM:
wc->opcode = IB_WC_SEND;
wc->wc_flags |= IB_WC_WITH_IMM;
break;
case BNXT_QPLIB_SWQE_TYPE_SEND_WITH_INV:
wc->opcode = IB_WC_SEND;
wc->wc_flags |= IB_WC_WITH_INVALIDATE;
break;
case BNXT_QPLIB_SWQE_TYPE_RDMA_WRITE:
wc->opcode = IB_WC_RDMA_WRITE;
break;
case BNXT_QPLIB_SWQE_TYPE_RDMA_WRITE_WITH_IMM:
wc->opcode = IB_WC_RDMA_WRITE;
wc->wc_flags |= IB_WC_WITH_IMM;
break;
case BNXT_QPLIB_SWQE_TYPE_RDMA_READ:
wc->opcode = IB_WC_RDMA_READ;
break;
case BNXT_QPLIB_SWQE_TYPE_ATOMIC_CMP_AND_SWP:
wc->opcode = IB_WC_COMP_SWAP;
break;
case BNXT_QPLIB_SWQE_TYPE_ATOMIC_FETCH_AND_ADD:
wc->opcode = IB_WC_FETCH_ADD;
break;
case BNXT_QPLIB_SWQE_TYPE_LOCAL_INV:
wc->opcode = IB_WC_LOCAL_INV;
break;
case BNXT_QPLIB_SWQE_TYPE_REG_MR:
wc->opcode = IB_WC_REG_MR;
break;
default:
wc->opcode = IB_WC_SEND;
break;
}
wc->status = __req_to_ib_wc_status(cqe->status);
}
static int bnxt_re_check_packet_type(u16 raweth_qp1_flags,
u16 raweth_qp1_flags2)
{
bool is_ipv6 = false, is_ipv4 = false;
/* raweth_qp1_flags Bit 9-6 indicates itype */
if ((raweth_qp1_flags & CQ_RES_RAWETH_QP1_RAWETH_QP1_FLAGS_ITYPE_ROCE)
!= CQ_RES_RAWETH_QP1_RAWETH_QP1_FLAGS_ITYPE_ROCE)
return -1;
if (raweth_qp1_flags2 &
CQ_RES_RAWETH_QP1_RAWETH_QP1_FLAGS2_IP_CS_CALC &&
raweth_qp1_flags2 &
CQ_RES_RAWETH_QP1_RAWETH_QP1_FLAGS2_L4_CS_CALC) {
/* raweth_qp1_flags2 Bit 8 indicates ip_type. 0-v4 1 - v6 */
(raweth_qp1_flags2 &
CQ_RES_RAWETH_QP1_RAWETH_QP1_FLAGS2_IP_TYPE) ?
(is_ipv6 = true) : (is_ipv4 = true);
return ((is_ipv6) ?
BNXT_RE_ROCEV2_IPV6_PACKET :
BNXT_RE_ROCEV2_IPV4_PACKET);
} else {
return BNXT_RE_ROCE_V1_PACKET;
}
}
static int bnxt_re_to_ib_nw_type(int nw_type)
{
u8 nw_hdr_type = 0xFF;
switch (nw_type) {
case BNXT_RE_ROCE_V1_PACKET:
nw_hdr_type = RDMA_NETWORK_ROCE_V1;
break;
case BNXT_RE_ROCEV2_IPV4_PACKET:
nw_hdr_type = RDMA_NETWORK_IPV4;
break;
case BNXT_RE_ROCEV2_IPV6_PACKET:
nw_hdr_type = RDMA_NETWORK_IPV6;
break;
}
return nw_hdr_type;
}
static bool bnxt_re_is_loopback_packet(struct bnxt_re_dev *rdev,
void *rq_hdr_buf)
{
u8 *tmp_buf = NULL;
struct ethhdr *eth_hdr;
u16 eth_type;
bool rc = false;
tmp_buf = (u8 *)rq_hdr_buf;
/*
* If dest mac is not same as I/F mac, this could be a
* loopback address or multicast address, check whether
* it is a loopback packet
*/
if (!ether_addr_equal(tmp_buf, rdev->netdev->dev_addr)) {
tmp_buf += 4;
/* Check the ether type */
eth_hdr = (struct ethhdr *)tmp_buf;
eth_type = ntohs(eth_hdr->h_proto);
switch (eth_type) {
case ETH_P_IBOE:
rc = true;
break;
case ETH_P_IP:
case ETH_P_IPV6: {
u32 len;
struct udphdr *udp_hdr;
len = (eth_type == ETH_P_IP ? sizeof(struct iphdr) :
sizeof(struct ipv6hdr));
tmp_buf += sizeof(struct ethhdr) + len;
udp_hdr = (struct udphdr *)tmp_buf;
if (ntohs(udp_hdr->dest) ==
ROCE_V2_UDP_DPORT)
rc = true;
break;
}
default:
break;
}
}
return rc;
}
static int bnxt_re_process_raw_qp_pkt_rx(struct bnxt_re_qp *gsi_qp,
struct bnxt_qplib_cqe *cqe)
{
struct bnxt_re_dev *rdev = gsi_qp->rdev;
struct bnxt_re_sqp_entries *sqp_entry = NULL;
struct bnxt_re_qp *gsi_sqp = rdev->gsi_ctx.gsi_sqp;
dma_addr_t shrq_hdr_buf_map;
struct ib_sge s_sge[2] = {};
struct ib_sge r_sge[2] = {};
struct bnxt_re_ah *gsi_sah;
struct ib_recv_wr rwr = {};
dma_addr_t rq_hdr_buf_map;
struct ib_ud_wr udwr = {};
struct ib_send_wr *swr;
u32 skip_bytes = 0;
int pkt_type = 0;
void *rq_hdr_buf;
u32 offset = 0;
u32 tbl_idx;
int rc;
swr = &udwr.wr;
tbl_idx = cqe->wr_id;
rq_hdr_buf = gsi_qp->qplib_qp.rq_hdr_buf +
(tbl_idx * gsi_qp->qplib_qp.rq_hdr_buf_size);
rq_hdr_buf_map = bnxt_qplib_get_qp_buf_from_index(&gsi_qp->qplib_qp,
tbl_idx);
/* Shadow QP header buffer */
shrq_hdr_buf_map = bnxt_qplib_get_qp_buf_from_index(&gsi_qp->qplib_qp,
tbl_idx);
sqp_entry = &rdev->gsi_ctx.sqp_tbl[tbl_idx];
/* Store this cqe */
memcpy(&sqp_entry->cqe, cqe, sizeof(struct bnxt_qplib_cqe));
sqp_entry->qp1_qp = gsi_qp;
/* Find packet type from the cqe */
pkt_type = bnxt_re_check_packet_type(cqe->raweth_qp1_flags,
cqe->raweth_qp1_flags2);
if (pkt_type < 0) {
ibdev_err(&rdev->ibdev, "Invalid packet\n");
return -EINVAL;
}
/* Adjust the offset for the user buffer and post in the rq */
if (pkt_type == BNXT_RE_ROCEV2_IPV4_PACKET)
offset = 20;
/*
* QP1 loopback packet has 4 bytes of internal header before
* ether header. Skip these four bytes.
*/
if (bnxt_re_is_loopback_packet(rdev, rq_hdr_buf))
skip_bytes = 4;
/* First send SGE . Skip the ether header*/
s_sge[0].addr = rq_hdr_buf_map + BNXT_QPLIB_MAX_QP1_RQ_ETH_HDR_SIZE
+ skip_bytes;
s_sge[0].lkey = 0xFFFFFFFF;
s_sge[0].length = offset ? BNXT_QPLIB_MAX_GRH_HDR_SIZE_IPV4 :
BNXT_QPLIB_MAX_GRH_HDR_SIZE_IPV6;
/* Second Send SGE */
s_sge[1].addr = s_sge[0].addr + s_sge[0].length +
BNXT_QPLIB_MAX_QP1_RQ_BDETH_HDR_SIZE;
if (pkt_type != BNXT_RE_ROCE_V1_PACKET)
s_sge[1].addr += 8;
s_sge[1].lkey = 0xFFFFFFFF;
s_sge[1].length = 256;
/* First recv SGE */
r_sge[0].addr = shrq_hdr_buf_map;
r_sge[0].lkey = 0xFFFFFFFF;
r_sge[0].length = 40;
r_sge[1].addr = sqp_entry->sge.addr + offset;
r_sge[1].lkey = sqp_entry->sge.lkey;
r_sge[1].length = BNXT_QPLIB_MAX_GRH_HDR_SIZE_IPV6 + 256 - offset;
/* Create receive work request */
rwr.num_sge = 2;
rwr.sg_list = r_sge;
rwr.wr_id = tbl_idx;
rwr.next = NULL;
rc = bnxt_re_post_recv_shadow_qp(rdev, gsi_sqp, &rwr);
if (rc) {
ibdev_err(&rdev->ibdev,
"Failed to post Rx buffers to shadow QP");
return -ENOMEM;
}
swr->num_sge = 2;
swr->sg_list = s_sge;
swr->wr_id = tbl_idx;
swr->opcode = IB_WR_SEND;
swr->next = NULL;
gsi_sah = rdev->gsi_ctx.gsi_sah;
udwr.ah = &gsi_sah->ib_ah;
udwr.remote_qpn = gsi_sqp->qplib_qp.id;
udwr.remote_qkey = gsi_sqp->qplib_qp.qkey;
/* post data received in the send queue */
return bnxt_re_post_send_shadow_qp(rdev, gsi_sqp, swr);
}
static void bnxt_re_process_res_rawqp1_wc(struct ib_wc *wc,
struct bnxt_qplib_cqe *cqe)
{
wc->opcode = IB_WC_RECV;
wc->status = __rawqp1_to_ib_wc_status(cqe->status);
wc->wc_flags |= IB_WC_GRH;
}
static bool bnxt_re_check_if_vlan_valid(struct bnxt_re_dev *rdev,
u16 vlan_id)
{
/*
* Check if the vlan is configured in the host. If not configured, it
* can be a transparent VLAN. So dont report the vlan id.
*/
if (!__vlan_find_dev_deep_rcu(rdev->netdev,
htons(ETH_P_8021Q), vlan_id))
return false;
return true;
}
static bool bnxt_re_is_vlan_pkt(struct bnxt_qplib_cqe *orig_cqe,
u16 *vid, u8 *sl)
{
bool ret = false;
u32 metadata;
u16 tpid;
metadata = orig_cqe->raweth_qp1_metadata;
if (orig_cqe->raweth_qp1_flags2 &
CQ_RES_RAWETH_QP1_RAWETH_QP1_FLAGS2_META_FORMAT_VLAN) {
tpid = ((metadata &
CQ_RES_RAWETH_QP1_RAWETH_QP1_METADATA_TPID_MASK) >>
CQ_RES_RAWETH_QP1_RAWETH_QP1_METADATA_TPID_SFT);
if (tpid == ETH_P_8021Q) {
*vid = metadata &
CQ_RES_RAWETH_QP1_RAWETH_QP1_METADATA_VID_MASK;
*sl = (metadata &
CQ_RES_RAWETH_QP1_RAWETH_QP1_METADATA_PRI_MASK) >>
CQ_RES_RAWETH_QP1_RAWETH_QP1_METADATA_PRI_SFT;
ret = true;
}
}
return ret;
}
static void bnxt_re_process_res_rc_wc(struct ib_wc *wc,
struct bnxt_qplib_cqe *cqe)
{
wc->opcode = IB_WC_RECV;
wc->status = __rc_to_ib_wc_status(cqe->status);
if (cqe->flags & CQ_RES_RC_FLAGS_IMM)
wc->wc_flags |= IB_WC_WITH_IMM;
if (cqe->flags & CQ_RES_RC_FLAGS_INV)
wc->wc_flags |= IB_WC_WITH_INVALIDATE;
if ((cqe->flags & (CQ_RES_RC_FLAGS_RDMA | CQ_RES_RC_FLAGS_IMM)) ==
(CQ_RES_RC_FLAGS_RDMA | CQ_RES_RC_FLAGS_IMM))
wc->opcode = IB_WC_RECV_RDMA_WITH_IMM;
}
static void bnxt_re_process_res_shadow_qp_wc(struct bnxt_re_qp *gsi_sqp,
struct ib_wc *wc,
struct bnxt_qplib_cqe *cqe)
{
struct bnxt_re_dev *rdev = gsi_sqp->rdev;
struct bnxt_re_qp *gsi_qp = NULL;
struct bnxt_qplib_cqe *orig_cqe = NULL;
struct bnxt_re_sqp_entries *sqp_entry = NULL;
int nw_type;
u32 tbl_idx;
u16 vlan_id;
u8 sl;
tbl_idx = cqe->wr_id;
sqp_entry = &rdev->gsi_ctx.sqp_tbl[tbl_idx];
gsi_qp = sqp_entry->qp1_qp;
orig_cqe = &sqp_entry->cqe;
wc->wr_id = sqp_entry->wrid;
wc->byte_len = orig_cqe->length;
wc->qp = &gsi_qp->ib_qp;
wc->ex.imm_data = cpu_to_be32(orig_cqe->immdata);
wc->src_qp = orig_cqe->src_qp;
memcpy(wc->smac, orig_cqe->smac, ETH_ALEN);
if (bnxt_re_is_vlan_pkt(orig_cqe, &vlan_id, &sl)) {
if (bnxt_re_check_if_vlan_valid(rdev, vlan_id)) {
wc->vlan_id = vlan_id;
wc->sl = sl;
wc->wc_flags |= IB_WC_WITH_VLAN;
}
}
wc->port_num = 1;
wc->vendor_err = orig_cqe->status;
wc->opcode = IB_WC_RECV;
wc->status = __rawqp1_to_ib_wc_status(orig_cqe->status);
wc->wc_flags |= IB_WC_GRH;
nw_type = bnxt_re_check_packet_type(orig_cqe->raweth_qp1_flags,
orig_cqe->raweth_qp1_flags2);
if (nw_type >= 0) {
wc->network_hdr_type = bnxt_re_to_ib_nw_type(nw_type);
wc->wc_flags |= IB_WC_WITH_NETWORK_HDR_TYPE;
}
}
static void bnxt_re_process_res_ud_wc(struct bnxt_re_qp *qp,
struct ib_wc *wc,
struct bnxt_qplib_cqe *cqe)
{
struct bnxt_re_dev *rdev;
u16 vlan_id = 0;
u8 nw_type;
rdev = qp->rdev;
wc->opcode = IB_WC_RECV;
wc->status = __rc_to_ib_wc_status(cqe->status);
if (cqe->flags & CQ_RES_UD_FLAGS_IMM)
wc->wc_flags |= IB_WC_WITH_IMM;
/* report only on GSI QP for Thor */
if (qp->qplib_qp.type == CMDQ_CREATE_QP_TYPE_GSI) {
wc->wc_flags |= IB_WC_GRH;
memcpy(wc->smac, cqe->smac, ETH_ALEN);
wc->wc_flags |= IB_WC_WITH_SMAC;
if (cqe->flags & CQ_RES_UD_FLAGS_META_FORMAT_VLAN) {
vlan_id = (cqe->cfa_meta & 0xFFF);
}
/* Mark only if vlan_id is non zero */
if (vlan_id && bnxt_re_check_if_vlan_valid(rdev, vlan_id)) {
wc->vlan_id = vlan_id;
wc->wc_flags |= IB_WC_WITH_VLAN;
}
nw_type = (cqe->flags & CQ_RES_UD_FLAGS_ROCE_IP_VER_MASK) >>
CQ_RES_UD_FLAGS_ROCE_IP_VER_SFT;
wc->network_hdr_type = bnxt_re_to_ib_nw_type(nw_type);
wc->wc_flags |= IB_WC_WITH_NETWORK_HDR_TYPE;
}
}
static int send_phantom_wqe(struct bnxt_re_qp *qp)
{
struct bnxt_qplib_qp *lib_qp = &qp->qplib_qp;
unsigned long flags;
int rc;
spin_lock_irqsave(&qp->sq_lock, flags);
rc = bnxt_re_bind_fence_mw(lib_qp);
if (!rc) {
lib_qp->sq.phantom_wqe_cnt++;
ibdev_dbg(&qp->rdev->ibdev,
"qp %#x sq->prod %#x sw_prod %#x phantom_wqe_cnt %d\n",
lib_qp->id, lib_qp->sq.hwq.prod,
HWQ_CMP(lib_qp->sq.hwq.prod, &lib_qp->sq.hwq),
lib_qp->sq.phantom_wqe_cnt);
}
spin_unlock_irqrestore(&qp->sq_lock, flags);
return rc;
}
int bnxt_re_poll_cq(struct ib_cq *ib_cq, int num_entries, struct ib_wc *wc)
{
struct bnxt_re_cq *cq = container_of(ib_cq, struct bnxt_re_cq, ib_cq);
struct bnxt_re_qp *qp, *sh_qp;
struct bnxt_qplib_cqe *cqe;
int i, ncqe, budget;
struct bnxt_qplib_q *sq;
struct bnxt_qplib_qp *lib_qp;
u32 tbl_idx;
struct bnxt_re_sqp_entries *sqp_entry = NULL;
unsigned long flags;
/* User CQ; the only processing we do is to
* complete any pending CQ resize operation.
*/
if (cq->umem) {
if (cq->resize_umem)
bnxt_re_resize_cq_complete(cq);
return 0;
}
spin_lock_irqsave(&cq->cq_lock, flags);
budget = min_t(u32, num_entries, cq->max_cql);
num_entries = budget;
if (!cq->cql) {
ibdev_err(&cq->rdev->ibdev, "POLL CQ : no CQL to use");
goto exit;
}
cqe = &cq->cql[0];
while (budget) {
lib_qp = NULL;
ncqe = bnxt_qplib_poll_cq(&cq->qplib_cq, cqe, budget, &lib_qp);
if (lib_qp) {
sq = &lib_qp->sq;
if (sq->send_phantom) {
qp = container_of(lib_qp,
struct bnxt_re_qp, qplib_qp);
if (send_phantom_wqe(qp) == -ENOMEM)
ibdev_err(&cq->rdev->ibdev,
"Phantom failed! Scheduled to send again\n");
else
sq->send_phantom = false;
}
}
if (ncqe < budget)
ncqe += bnxt_qplib_process_flush_list(&cq->qplib_cq,
cqe + ncqe,
budget - ncqe);
if (!ncqe)
break;
for (i = 0; i < ncqe; i++, cqe++) {
/* Transcribe each qplib_wqe back to ib_wc */
memset(wc, 0, sizeof(*wc));
wc->wr_id = cqe->wr_id;
wc->byte_len = cqe->length;
qp = container_of
((struct bnxt_qplib_qp *)
(unsigned long)(cqe->qp_handle),
struct bnxt_re_qp, qplib_qp);
wc->qp = &qp->ib_qp;
if (cqe->flags & CQ_RES_RC_FLAGS_IMM)
wc->ex.imm_data = cpu_to_be32(cqe->immdata);
else
wc->ex.invalidate_rkey = cqe->invrkey;
wc->src_qp = cqe->src_qp;
memcpy(wc->smac, cqe->smac, ETH_ALEN);
wc->port_num = 1;
wc->vendor_err = cqe->status;
switch (cqe->opcode) {
case CQ_BASE_CQE_TYPE_REQ:
sh_qp = qp->rdev->gsi_ctx.gsi_sqp;
if (sh_qp &&
qp->qplib_qp.id == sh_qp->qplib_qp.id) {
/* Handle this completion with
* the stored completion
*/
memset(wc, 0, sizeof(*wc));
continue;
}
bnxt_re_process_req_wc(wc, cqe);
break;
case CQ_BASE_CQE_TYPE_RES_RAWETH_QP1:
if (!cqe->status) {
int rc = 0;
rc = bnxt_re_process_raw_qp_pkt_rx
(qp, cqe);
if (!rc) {
memset(wc, 0, sizeof(*wc));
continue;
}
cqe->status = -1;
}
/* Errors need not be looped back.
* But change the wr_id to the one
* stored in the table
*/
tbl_idx = cqe->wr_id;
sqp_entry = &cq->rdev->gsi_ctx.sqp_tbl[tbl_idx];
wc->wr_id = sqp_entry->wrid;
bnxt_re_process_res_rawqp1_wc(wc, cqe);
break;
case CQ_BASE_CQE_TYPE_RES_RC:
bnxt_re_process_res_rc_wc(wc, cqe);
break;
case CQ_BASE_CQE_TYPE_RES_UD:
sh_qp = qp->rdev->gsi_ctx.gsi_sqp;
if (sh_qp &&
qp->qplib_qp.id == sh_qp->qplib_qp.id) {
/* Handle this completion with
* the stored completion
*/
if (cqe->status) {
continue;
} else {
bnxt_re_process_res_shadow_qp_wc
(qp, wc, cqe);
break;
}
}
bnxt_re_process_res_ud_wc(qp, wc, cqe);
break;
default:
ibdev_err(&cq->rdev->ibdev,
"POLL CQ : type 0x%x not handled",
cqe->opcode);
continue;
}
wc++;
budget--;
}
}
exit:
spin_unlock_irqrestore(&cq->cq_lock, flags);
return num_entries - budget;
}
int bnxt_re_req_notify_cq(struct ib_cq *ib_cq,
enum ib_cq_notify_flags ib_cqn_flags)
{
struct bnxt_re_cq *cq = container_of(ib_cq, struct bnxt_re_cq, ib_cq);
int type = 0, rc = 0;
unsigned long flags;
spin_lock_irqsave(&cq->cq_lock, flags);
/* Trigger on the very next completion */
if (ib_cqn_flags & IB_CQ_NEXT_COMP)
type = DBC_DBC_TYPE_CQ_ARMALL;
/* Trigger on the next solicited completion */
else if (ib_cqn_flags & IB_CQ_SOLICITED)
type = DBC_DBC_TYPE_CQ_ARMSE;
/* Poll to see if there are missed events */
if ((ib_cqn_flags & IB_CQ_REPORT_MISSED_EVENTS) &&
!(bnxt_qplib_is_cq_empty(&cq->qplib_cq))) {
rc = 1;
goto exit;
}
bnxt_qplib_req_notify_cq(&cq->qplib_cq, type);
exit:
spin_unlock_irqrestore(&cq->cq_lock, flags);
return rc;
}
/* Memory Regions */
struct ib_mr *bnxt_re_get_dma_mr(struct ib_pd *ib_pd, int mr_access_flags)
{
struct bnxt_re_pd *pd = container_of(ib_pd, struct bnxt_re_pd, ib_pd);
struct bnxt_re_dev *rdev = pd->rdev;
struct bnxt_re_mr *mr;
u32 active_mrs;
int rc;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
mr->rdev = rdev;
mr->qplib_mr.pd = &pd->qplib_pd;
mr->qplib_mr.access_flags = __from_ib_access_flags(mr_access_flags);
mr->qplib_mr.type = CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR;
if (mr_access_flags & IB_ACCESS_RELAXED_ORDERING)
bnxt_re_check_and_set_relaxed_ordering(rdev, &mr->qplib_mr);
/* Allocate and register 0 as the address */
rc = bnxt_qplib_alloc_mrw(&rdev->qplib_res, &mr->qplib_mr);
if (rc)
goto fail;
mr->qplib_mr.hwq.level = PBL_LVL_MAX;
mr->qplib_mr.total_size = -1; /* Infinte length */
rc = bnxt_qplib_reg_mr(&rdev->qplib_res, &mr->qplib_mr, NULL, 0,
PAGE_SIZE);
if (rc)
goto fail_mr;
mr->ib_mr.lkey = mr->qplib_mr.lkey;
if (mr_access_flags & (IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ |
IB_ACCESS_REMOTE_ATOMIC))
mr->ib_mr.rkey = mr->ib_mr.lkey;
active_mrs = atomic_inc_return(&rdev->stats.res.mr_count);
if (active_mrs > rdev->stats.res.mr_watermark)
rdev->stats.res.mr_watermark = active_mrs;
return &mr->ib_mr;
fail_mr:
bnxt_qplib_free_mrw(&rdev->qplib_res, &mr->qplib_mr);
fail:
kfree(mr);
return ERR_PTR(rc);
}
int bnxt_re_dereg_mr(struct ib_mr *ib_mr, struct ib_udata *udata)
{
struct bnxt_re_mr *mr = container_of(ib_mr, struct bnxt_re_mr, ib_mr);
struct bnxt_re_dev *rdev = mr->rdev;
int rc;
rc = bnxt_qplib_free_mrw(&rdev->qplib_res, &mr->qplib_mr);
RDMA/bnxt_re: Avoid freeing MR resources if dereg fails The driver returns an error code for MR dereg, but frees the MR structure. When the MR dereg is retried due to previous error, the system crashes as the structure is already freed. BUG: unable to handle kernel NULL pointer dereference at 00000000000001b8 PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI CPU: 7 PID: 12178 Comm: ib_send_bw Kdump: loaded Not tainted 4.18.0-124.el8.x86_64 #1 Hardware name: Dell Inc. PowerEdge R430/03XKDV, BIOS 1.1.10 03/10/2015 RIP: 0010:__dev_printk+0x2a/0x70 Code: 0f 1f 44 00 00 49 89 d1 48 85 f6 0f 84 f6 2b 00 00 4c 8b 46 70 4d 85 c0 75 04 4c 8b 46 10 48 8b 86 a8 00 00 00 48 85 c0 74 16 <48> 8b 08 0f be 7f 01 48 c7 c2 13 ac ac 83 83 ef 30 e9 10 fe ff ff RSP: 0018:ffffaf7c04607a60 EFLAGS: 00010006 RAX: 00000000000001b8 RBX: ffffa0010c91c488 RCX: 0000000000000246 RDX: ffffaf7c04607a68 RSI: ffffa0010c91caa8 RDI: ffffffff83a788eb RBP: ffffaf7c04607ac8 R08: 0000000000000000 R09: ffffaf7c04607a68 R10: 0000000000000000 R11: 0000000000000001 R12: ffffaf7c04607b90 R13: 000000000000000e R14: 0000000000000000 R15: 00000000ffffa001 FS: 0000146fa1f1cdc0(0000) GS:ffffa0012fac0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000001b8 CR3: 000000007680a003 CR4: 00000000001606e0 Call Trace: dev_err+0x6c/0x90 ? dev_printk_emit+0x4e/0x70 bnxt_qplib_rcfw_send_message+0x594/0x660 [bnxt_re] ? dev_err+0x6c/0x90 bnxt_qplib_free_mrw+0x80/0xe0 [bnxt_re] bnxt_re_dereg_mr+0x2e/0xd0 [bnxt_re] ib_dereg_mr+0x2f/0x50 [ib_core] destroy_hw_idr_uobject+0x20/0x70 [ib_uverbs] uverbs_destroy_uobject+0x2e/0x170 [ib_uverbs] __uverbs_cleanup_ufile+0x6e/0x90 [ib_uverbs] uverbs_destroy_ufile_hw+0x61/0x130 [ib_uverbs] ib_uverbs_close+0x1f/0x80 [ib_uverbs] __fput+0xb7/0x230 task_work_run+0x8a/0xb0 do_exit+0x2da/0xb40 ... RIP: 0033:0x146fa113a387 Code: Bad RIP value. RSP: 002b:00007fff945d1478 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff02 RAX: 0000000000000000 RBX: 000055a248908d70 RCX: 0000000000000000 RDX: 0000146fa1f2b000 RSI: 0000000000000001 RDI: 000055a248906488 RBP: 000055a248909630 R08: 0000000000010000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 000055a248906488 R13: 0000000000000001 R14: 0000000000000000 R15: 000055a2489095f0 Do not free the MR structures, when driver returns error to the stack. Fixes: 872f3578241d ("RDMA/bnxt_re: Add support for MRs with Huge pages") Link: https://lore.kernel.org/r/1574671174-5064-2-git-send-email-selvin.xavier@broadcom.com Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-25 00:39:29 -08:00
if (rc) {
ibdev_err(&rdev->ibdev, "Dereg MR failed: %#x\n", rc);
RDMA/bnxt_re: Avoid freeing MR resources if dereg fails The driver returns an error code for MR dereg, but frees the MR structure. When the MR dereg is retried due to previous error, the system crashes as the structure is already freed. BUG: unable to handle kernel NULL pointer dereference at 00000000000001b8 PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI CPU: 7 PID: 12178 Comm: ib_send_bw Kdump: loaded Not tainted 4.18.0-124.el8.x86_64 #1 Hardware name: Dell Inc. PowerEdge R430/03XKDV, BIOS 1.1.10 03/10/2015 RIP: 0010:__dev_printk+0x2a/0x70 Code: 0f 1f 44 00 00 49 89 d1 48 85 f6 0f 84 f6 2b 00 00 4c 8b 46 70 4d 85 c0 75 04 4c 8b 46 10 48 8b 86 a8 00 00 00 48 85 c0 74 16 <48> 8b 08 0f be 7f 01 48 c7 c2 13 ac ac 83 83 ef 30 e9 10 fe ff ff RSP: 0018:ffffaf7c04607a60 EFLAGS: 00010006 RAX: 00000000000001b8 RBX: ffffa0010c91c488 RCX: 0000000000000246 RDX: ffffaf7c04607a68 RSI: ffffa0010c91caa8 RDI: ffffffff83a788eb RBP: ffffaf7c04607ac8 R08: 0000000000000000 R09: ffffaf7c04607a68 R10: 0000000000000000 R11: 0000000000000001 R12: ffffaf7c04607b90 R13: 000000000000000e R14: 0000000000000000 R15: 00000000ffffa001 FS: 0000146fa1f1cdc0(0000) GS:ffffa0012fac0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000001b8 CR3: 000000007680a003 CR4: 00000000001606e0 Call Trace: dev_err+0x6c/0x90 ? dev_printk_emit+0x4e/0x70 bnxt_qplib_rcfw_send_message+0x594/0x660 [bnxt_re] ? dev_err+0x6c/0x90 bnxt_qplib_free_mrw+0x80/0xe0 [bnxt_re] bnxt_re_dereg_mr+0x2e/0xd0 [bnxt_re] ib_dereg_mr+0x2f/0x50 [ib_core] destroy_hw_idr_uobject+0x20/0x70 [ib_uverbs] uverbs_destroy_uobject+0x2e/0x170 [ib_uverbs] __uverbs_cleanup_ufile+0x6e/0x90 [ib_uverbs] uverbs_destroy_ufile_hw+0x61/0x130 [ib_uverbs] ib_uverbs_close+0x1f/0x80 [ib_uverbs] __fput+0xb7/0x230 task_work_run+0x8a/0xb0 do_exit+0x2da/0xb40 ... RIP: 0033:0x146fa113a387 Code: Bad RIP value. RSP: 002b:00007fff945d1478 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff02 RAX: 0000000000000000 RBX: 000055a248908d70 RCX: 0000000000000000 RDX: 0000146fa1f2b000 RSI: 0000000000000001 RDI: 000055a248906488 RBP: 000055a248909630 R08: 0000000000010000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 000055a248906488 R13: 0000000000000001 R14: 0000000000000000 R15: 000055a2489095f0 Do not free the MR structures, when driver returns error to the stack. Fixes: 872f3578241d ("RDMA/bnxt_re: Add support for MRs with Huge pages") Link: https://lore.kernel.org/r/1574671174-5064-2-git-send-email-selvin.xavier@broadcom.com Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-25 00:39:29 -08:00
return rc;
}
if (mr->pages) {
rc = bnxt_qplib_free_fast_reg_page_list(&rdev->qplib_res,
&mr->qplib_frpl);
kfree(mr->pages);
mr->npages = 0;
mr->pages = NULL;
}
ib_umem_release(mr->ib_umem);
kfree(mr);
atomic_dec(&rdev->stats.res.mr_count);
return rc;
}
static int bnxt_re_set_page(struct ib_mr *ib_mr, u64 addr)
{
struct bnxt_re_mr *mr = container_of(ib_mr, struct bnxt_re_mr, ib_mr);
if (unlikely(mr->npages == mr->qplib_frpl.max_pg_ptrs))
return -ENOMEM;
mr->pages[mr->npages++] = addr;
return 0;
}
int bnxt_re_map_mr_sg(struct ib_mr *ib_mr, struct scatterlist *sg, int sg_nents,
unsigned int *sg_offset)
{
struct bnxt_re_mr *mr = container_of(ib_mr, struct bnxt_re_mr, ib_mr);
mr->npages = 0;
return ib_sg_to_pages(ib_mr, sg, sg_nents, sg_offset, bnxt_re_set_page);
}
struct ib_mr *bnxt_re_alloc_mr(struct ib_pd *ib_pd, enum ib_mr_type type,
u32 max_num_sg)
{
struct bnxt_re_pd *pd = container_of(ib_pd, struct bnxt_re_pd, ib_pd);
struct bnxt_re_dev *rdev = pd->rdev;
struct bnxt_re_mr *mr = NULL;
u32 active_mrs;
int rc;
if (type != IB_MR_TYPE_MEM_REG) {
ibdev_dbg(&rdev->ibdev, "MR type 0x%x not supported", type);
return ERR_PTR(-EINVAL);
}
if (max_num_sg > MAX_PBL_LVL_1_PGS)
return ERR_PTR(-EINVAL);
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
mr->rdev = rdev;
mr->qplib_mr.pd = &pd->qplib_pd;
mr->qplib_mr.access_flags = BNXT_QPLIB_FR_PMR;
mr->qplib_mr.type = CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR;
rc = bnxt_qplib_alloc_mrw(&rdev->qplib_res, &mr->qplib_mr);
if (rc)
goto bail;
mr->ib_mr.lkey = mr->qplib_mr.lkey;
mr->ib_mr.rkey = mr->ib_mr.lkey;
mr->pages = kcalloc(max_num_sg, sizeof(u64), GFP_KERNEL);
if (!mr->pages) {
rc = -ENOMEM;
goto fail;
}
rc = bnxt_qplib_alloc_fast_reg_page_list(&rdev->qplib_res,
&mr->qplib_frpl, max_num_sg);
if (rc) {
ibdev_err(&rdev->ibdev,
"Failed to allocate HW FR page list");
goto fail_mr;
}
active_mrs = atomic_inc_return(&rdev->stats.res.mr_count);
if (active_mrs > rdev->stats.res.mr_watermark)
rdev->stats.res.mr_watermark = active_mrs;
return &mr->ib_mr;
fail_mr:
kfree(mr->pages);
fail:
bnxt_qplib_free_mrw(&rdev->qplib_res, &mr->qplib_mr);
bail:
kfree(mr);
return ERR_PTR(rc);
}
struct ib_mw *bnxt_re_alloc_mw(struct ib_pd *ib_pd, enum ib_mw_type type,
struct ib_udata *udata)
{
struct bnxt_re_pd *pd = container_of(ib_pd, struct bnxt_re_pd, ib_pd);
struct bnxt_re_dev *rdev = pd->rdev;
struct bnxt_re_mw *mw;
u32 active_mws;
int rc;
mw = kzalloc(sizeof(*mw), GFP_KERNEL);
if (!mw)
return ERR_PTR(-ENOMEM);
mw->rdev = rdev;
mw->qplib_mw.pd = &pd->qplib_pd;
mw->qplib_mw.type = (type == IB_MW_TYPE_1 ?
CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1 :
CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B);
rc = bnxt_qplib_alloc_mrw(&rdev->qplib_res, &mw->qplib_mw);
if (rc) {
ibdev_err(&rdev->ibdev, "Allocate MW failed!");
goto fail;
}
mw->ib_mw.rkey = mw->qplib_mw.rkey;
active_mws = atomic_inc_return(&rdev->stats.res.mw_count);
if (active_mws > rdev->stats.res.mw_watermark)
rdev->stats.res.mw_watermark = active_mws;
return &mw->ib_mw;
fail:
kfree(mw);
return ERR_PTR(rc);
}
int bnxt_re_dealloc_mw(struct ib_mw *ib_mw)
{
struct bnxt_re_mw *mw = container_of(ib_mw, struct bnxt_re_mw, ib_mw);
struct bnxt_re_dev *rdev = mw->rdev;
int rc;
rc = bnxt_qplib_free_mrw(&rdev->qplib_res, &mw->qplib_mw);
if (rc) {
ibdev_err(&rdev->ibdev, "Free MW failed: %#x\n", rc);
return rc;
}
kfree(mw);
atomic_dec(&rdev->stats.res.mw_count);
return rc;
}
static struct ib_mr *__bnxt_re_user_reg_mr(struct ib_pd *ib_pd, u64 length, u64 virt_addr,
int mr_access_flags, struct ib_umem *umem)
{
struct bnxt_re_pd *pd = container_of(ib_pd, struct bnxt_re_pd, ib_pd);
struct bnxt_re_dev *rdev = pd->rdev;
unsigned long page_size;
struct bnxt_re_mr *mr;
int umem_pgs, rc;
u32 active_mrs;
if (length > BNXT_RE_MAX_MR_SIZE) {
ibdev_err(&rdev->ibdev, "MR Size: %lld > Max supported:%lld\n",
length, BNXT_RE_MAX_MR_SIZE);
return ERR_PTR(-ENOMEM);
}
page_size = ib_umem_find_best_pgsz(umem, BNXT_RE_PAGE_SIZE_SUPPORTED, virt_addr);
if (!page_size) {
ibdev_err(&rdev->ibdev, "umem page size unsupported!");
return ERR_PTR(-EINVAL);
}
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
mr->rdev = rdev;
mr->qplib_mr.pd = &pd->qplib_pd;
mr->qplib_mr.access_flags = __from_ib_access_flags(mr_access_flags);
mr->qplib_mr.type = CMDQ_ALLOCATE_MRW_MRW_FLAGS_MR;
if (!_is_alloc_mr_unified(rdev->dev_attr->dev_cap_flags)) {
rc = bnxt_qplib_alloc_mrw(&rdev->qplib_res, &mr->qplib_mr);
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to allocate MR rc = %d", rc);
rc = -EIO;
goto free_mr;
}
/* The fixed portion of the rkey is the same as the lkey */
mr->ib_mr.rkey = mr->qplib_mr.rkey;
} else {
mr->qplib_mr.flags = CMDQ_REGISTER_MR_FLAGS_ALLOC_MR;
}
mr->ib_umem = umem;
mr->qplib_mr.va = virt_addr;
mr->qplib_mr.total_size = length;
if (mr_access_flags & IB_ACCESS_RELAXED_ORDERING)
bnxt_re_check_and_set_relaxed_ordering(rdev, &mr->qplib_mr);
umem_pgs = ib_umem_num_dma_blocks(umem, page_size);
rc = bnxt_qplib_reg_mr(&rdev->qplib_res, &mr->qplib_mr, umem,
umem_pgs, page_size);
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to register user MR - rc = %d\n", rc);
rc = -EIO;
goto free_mrw;
}
mr->ib_mr.lkey = mr->qplib_mr.lkey;
mr->ib_mr.rkey = mr->qplib_mr.lkey;
active_mrs = atomic_inc_return(&rdev->stats.res.mr_count);
if (active_mrs > rdev->stats.res.mr_watermark)
rdev->stats.res.mr_watermark = active_mrs;
return &mr->ib_mr;
free_mrw:
bnxt_qplib_free_mrw(&rdev->qplib_res, &mr->qplib_mr);
free_mr:
kfree(mr);
return ERR_PTR(rc);
}
struct ib_mr *bnxt_re_reg_user_mr(struct ib_pd *ib_pd, u64 start, u64 length,
u64 virt_addr, int mr_access_flags,
struct ib_dmah *dmah,
struct ib_udata *udata)
{
struct bnxt_re_pd *pd = container_of(ib_pd, struct bnxt_re_pd, ib_pd);
struct bnxt_re_dev *rdev = pd->rdev;
struct ib_umem *umem;
struct ib_mr *ib_mr;
if (dmah)
return ERR_PTR(-EOPNOTSUPP);
umem = ib_umem_get(&rdev->ibdev, start, length, mr_access_flags);
if (IS_ERR(umem))
return ERR_CAST(umem);
ib_mr = __bnxt_re_user_reg_mr(ib_pd, length, virt_addr, mr_access_flags, umem);
if (IS_ERR(ib_mr))
ib_umem_release(umem);
return ib_mr;
}
struct ib_mr *bnxt_re_reg_user_mr_dmabuf(struct ib_pd *ib_pd, u64 start,
u64 length, u64 virt_addr, int fd,
int mr_access_flags,
struct ib_dmah *dmah,
struct uverbs_attr_bundle *attrs)
{
struct bnxt_re_pd *pd = container_of(ib_pd, struct bnxt_re_pd, ib_pd);
struct bnxt_re_dev *rdev = pd->rdev;
struct ib_umem_dmabuf *umem_dmabuf;
struct ib_umem *umem;
struct ib_mr *ib_mr;
if (dmah)
return ERR_PTR(-EOPNOTSUPP);
umem_dmabuf = ib_umem_dmabuf_get_pinned(&rdev->ibdev, start, length,
fd, mr_access_flags);
if (IS_ERR(umem_dmabuf))
return ERR_CAST(umem_dmabuf);
umem = &umem_dmabuf->umem;
ib_mr = __bnxt_re_user_reg_mr(ib_pd, length, virt_addr, mr_access_flags, umem);
if (IS_ERR(ib_mr))
ib_umem_release(umem);
return ib_mr;
}
int bnxt_re_alloc_ucontext(struct ib_ucontext *ctx, struct ib_udata *udata)
{
struct ib_device *ibdev = ctx->device;
struct bnxt_re_ucontext *uctx =
container_of(ctx, struct bnxt_re_ucontext, ib_uctx);
struct bnxt_re_dev *rdev = to_bnxt_re_dev(ibdev, ibdev);
struct bnxt_qplib_dev_attr *dev_attr = rdev->dev_attr;
struct bnxt_re_user_mmap_entry *entry;
struct bnxt_re_uctx_resp resp = {};
struct bnxt_re_uctx_req ureq = {};
u32 chip_met_rev_num = 0;
int rc;
ibdev_dbg(ibdev, "ABI version requested %u", ibdev->ops.uverbs_abi_ver);
if (ibdev->ops.uverbs_abi_ver != BNXT_RE_ABI_VERSION) {
ibdev_dbg(ibdev, " is different from the device %d ",
BNXT_RE_ABI_VERSION);
return -EPERM;
}
uctx->rdev = rdev;
uctx->shpg = (void *)__get_free_page(GFP_KERNEL);
if (!uctx->shpg) {
rc = -ENOMEM;
goto fail;
}
spin_lock_init(&uctx->sh_lock);
resp.comp_mask = BNXT_RE_UCNTX_CMASK_HAVE_CCTX;
chip_met_rev_num = rdev->chip_ctx->chip_num;
chip_met_rev_num |= ((u32)rdev->chip_ctx->chip_rev & 0xFF) <<
BNXT_RE_CHIP_ID0_CHIP_REV_SFT;
chip_met_rev_num |= ((u32)rdev->chip_ctx->chip_metal & 0xFF) <<
BNXT_RE_CHIP_ID0_CHIP_MET_SFT;
resp.chip_id0 = chip_met_rev_num;
/*Temp, Use xa_alloc instead */
resp.dev_id = rdev->en_dev->pdev->devfn;
resp.max_qp = rdev->qplib_ctx.qpc_count;
resp.pg_size = PAGE_SIZE;
resp.cqe_sz = sizeof(struct cq_base);
resp.max_cqd = dev_attr->max_cq_wqes;
if (rdev->chip_ctx->modes.db_push)
resp.comp_mask |= BNXT_RE_UCNTX_CMASK_WC_DPI_ENABLED;
entry = bnxt_re_mmap_entry_insert(uctx, 0, BNXT_RE_MMAP_SH_PAGE, NULL);
if (!entry) {
rc = -ENOMEM;
goto cfail;
}
uctx->shpage_mmap = &entry->rdma_entry;
if (rdev->pacing.dbr_pacing)
resp.comp_mask |= BNXT_RE_UCNTX_CMASK_DBR_PACING_ENABLED;
if (_is_host_msn_table(rdev->qplib_res.dattr->dev_cap_flags2))
resp.comp_mask |= BNXT_RE_UCNTX_CMASK_MSN_TABLE_ENABLED;
if (udata->inlen >= sizeof(ureq)) {
rc = ib_copy_from_udata(&ureq, udata, min(udata->inlen, sizeof(ureq)));
if (rc)
goto cfail;
if (ureq.comp_mask & BNXT_RE_COMP_MASK_REQ_UCNTX_POW2_SUPPORT) {
resp.comp_mask |= BNXT_RE_UCNTX_CMASK_POW2_DISABLED;
uctx->cmask |= BNXT_RE_UCNTX_CAP_POW2_DISABLED;
}
if (ureq.comp_mask & BNXT_RE_COMP_MASK_REQ_UCNTX_VAR_WQE_SUPPORT) {
resp.comp_mask |= BNXT_RE_UCNTX_CMASK_HAVE_MODE;
resp.mode = rdev->chip_ctx->modes.wqe_mode;
if (resp.mode == BNXT_QPLIB_WQE_MODE_VARIABLE)
uctx->cmask |= BNXT_RE_UCNTX_CAP_VAR_WQE_ENABLED;
}
}
rc = ib_copy_to_udata(udata, &resp, min(udata->outlen, sizeof(resp)));
if (rc) {
ibdev_err(ibdev, "Failed to copy user context");
rc = -EFAULT;
goto cfail;
}
return 0;
cfail:
free_page((unsigned long)uctx->shpg);
uctx->shpg = NULL;
fail:
return rc;
}
void bnxt_re_dealloc_ucontext(struct ib_ucontext *ib_uctx)
{
struct bnxt_re_ucontext *uctx = container_of(ib_uctx,
struct bnxt_re_ucontext,
ib_uctx);
struct bnxt_re_dev *rdev = uctx->rdev;
rdma_user_mmap_entry_remove(uctx->shpage_mmap);
uctx->shpage_mmap = NULL;
if (uctx->shpg)
free_page((unsigned long)uctx->shpg);
if (uctx->dpi.dbr) {
/* Free DPI only if this is the first PD allocated by the
* application and mark the context dpi as NULL
*/
bnxt_qplib_dealloc_dpi(&rdev->qplib_res, &uctx->dpi);
uctx->dpi.dbr = NULL;
}
}
static struct bnxt_re_cq *bnxt_re_search_for_cq(struct bnxt_re_dev *rdev, u32 cq_id)
{
struct bnxt_re_cq *cq = NULL, *tmp_cq;
hash_for_each_possible(rdev->cq_hash, tmp_cq, hash_entry, cq_id) {
if (tmp_cq->qplib_cq.id == cq_id) {
cq = tmp_cq;
break;
}
}
return cq;
}
static struct bnxt_re_srq *bnxt_re_search_for_srq(struct bnxt_re_dev *rdev, u32 srq_id)
{
struct bnxt_re_srq *srq = NULL, *tmp_srq;
hash_for_each_possible(rdev->srq_hash, tmp_srq, hash_entry, srq_id) {
if (tmp_srq->qplib_srq.id == srq_id) {
srq = tmp_srq;
break;
}
}
return srq;
}
/* Helper function to mmap the virtual memory from user app */
int bnxt_re_mmap(struct ib_ucontext *ib_uctx, struct vm_area_struct *vma)
{
struct bnxt_re_ucontext *uctx = container_of(ib_uctx,
struct bnxt_re_ucontext,
ib_uctx);
struct bnxt_re_user_mmap_entry *bnxt_entry;
struct rdma_user_mmap_entry *rdma_entry;
int ret = 0;
u64 pfn;
rdma_entry = rdma_user_mmap_entry_get(&uctx->ib_uctx, vma);
if (!rdma_entry)
return -EINVAL;
bnxt_entry = container_of(rdma_entry, struct bnxt_re_user_mmap_entry,
rdma_entry);
switch (bnxt_entry->mmap_flag) {
case BNXT_RE_MMAP_WC_DB:
pfn = bnxt_entry->mem_offset >> PAGE_SHIFT;
ret = rdma_user_mmap_io(ib_uctx, vma, pfn, PAGE_SIZE,
pgprot_writecombine(vma->vm_page_prot),
rdma_entry);
break;
case BNXT_RE_MMAP_UC_DB:
pfn = bnxt_entry->mem_offset >> PAGE_SHIFT;
ret = rdma_user_mmap_io(ib_uctx, vma, pfn, PAGE_SIZE,
pgprot_noncached(vma->vm_page_prot),
rdma_entry);
break;
case BNXT_RE_MMAP_SH_PAGE:
ret = vm_insert_page(vma, vma->vm_start, virt_to_page(uctx->shpg));
break;
case BNXT_RE_MMAP_DBR_BAR:
pfn = bnxt_entry->mem_offset >> PAGE_SHIFT;
ret = rdma_user_mmap_io(ib_uctx, vma, pfn, PAGE_SIZE,
pgprot_noncached(vma->vm_page_prot),
rdma_entry);
break;
case BNXT_RE_MMAP_DBR_PAGE:
case BNXT_RE_MMAP_TOGGLE_PAGE:
/* Driver doesn't expect write access for user space */
if (vma->vm_flags & VM_WRITE)
ret = -EFAULT;
else
ret = vm_insert_page(vma, vma->vm_start,
virt_to_page((void *)bnxt_entry->mem_offset));
break;
default:
ret = -EINVAL;
break;
}
rdma_user_mmap_entry_put(rdma_entry);
return ret;
}
void bnxt_re_mmap_free(struct rdma_user_mmap_entry *rdma_entry)
{
struct bnxt_re_user_mmap_entry *bnxt_entry;
bnxt_entry = container_of(rdma_entry, struct bnxt_re_user_mmap_entry,
rdma_entry);
kfree(bnxt_entry);
}
int bnxt_re_process_mad(struct ib_device *ibdev, int mad_flags,
u32 port_num, const struct ib_wc *in_wc,
const struct ib_grh *in_grh,
const struct ib_mad *in_mad, struct ib_mad *out_mad,
size_t *out_mad_size, u16 *out_mad_pkey_index)
{
struct bnxt_re_dev *rdev = to_bnxt_re_dev(ibdev, ibdev);
struct ib_class_port_info cpi = {};
int ret = IB_MAD_RESULT_SUCCESS;
int rc = 0;
if (in_mad->mad_hdr.mgmt_class != IB_MGMT_CLASS_PERF_MGMT)
return ret;
switch (in_mad->mad_hdr.attr_id) {
case IB_PMA_CLASS_PORT_INFO:
cpi.capability_mask = IB_PMA_CLASS_CAP_EXT_WIDTH;
memcpy((out_mad->data + 40), &cpi, sizeof(cpi));
break;
case IB_PMA_PORT_COUNTERS_EXT:
rc = bnxt_re_assign_pma_port_ext_counters(rdev, out_mad);
break;
case IB_PMA_PORT_COUNTERS:
rc = bnxt_re_assign_pma_port_counters(rdev, out_mad);
break;
default:
rc = -EINVAL;
break;
}
if (rc)
return IB_MAD_RESULT_FAILURE;
ret |= IB_MAD_RESULT_REPLY;
return ret;
}
static int UVERBS_HANDLER(BNXT_RE_METHOD_NOTIFY_DRV)(struct uverbs_attr_bundle *attrs)
{
struct bnxt_re_ucontext *uctx;
uctx = container_of(ib_uverbs_get_ucontext(attrs), struct bnxt_re_ucontext, ib_uctx);
bnxt_re_pacing_alert(uctx->rdev);
return 0;
}
static int UVERBS_HANDLER(BNXT_RE_METHOD_ALLOC_PAGE)(struct uverbs_attr_bundle *attrs)
{
struct ib_uobject *uobj = uverbs_attr_get_uobject(attrs, BNXT_RE_ALLOC_PAGE_HANDLE);
enum bnxt_re_alloc_page_type alloc_type;
struct bnxt_re_user_mmap_entry *entry;
enum bnxt_re_mmap_flag mmap_flag;
struct bnxt_qplib_chip_ctx *cctx;
struct bnxt_re_ucontext *uctx;
struct bnxt_re_dev *rdev;
u64 mmap_offset;
u32 length;
u32 dpi;
u64 addr;
int err;
uctx = container_of(ib_uverbs_get_ucontext(attrs), struct bnxt_re_ucontext, ib_uctx);
if (IS_ERR(uctx))
return PTR_ERR(uctx);
err = uverbs_get_const(&alloc_type, attrs, BNXT_RE_ALLOC_PAGE_TYPE);
if (err)
return err;
rdev = uctx->rdev;
cctx = rdev->chip_ctx;
switch (alloc_type) {
case BNXT_RE_ALLOC_WC_PAGE:
if (cctx->modes.db_push) {
if (bnxt_qplib_alloc_dpi(&rdev->qplib_res, &uctx->wcdpi,
uctx, BNXT_QPLIB_DPI_TYPE_WC))
return -ENOMEM;
length = PAGE_SIZE;
dpi = uctx->wcdpi.dpi;
addr = (u64)uctx->wcdpi.umdbr;
mmap_flag = BNXT_RE_MMAP_WC_DB;
} else {
return -EINVAL;
}
break;
case BNXT_RE_ALLOC_DBR_BAR_PAGE:
length = PAGE_SIZE;
addr = (u64)rdev->pacing.dbr_bar_addr;
mmap_flag = BNXT_RE_MMAP_DBR_BAR;
break;
case BNXT_RE_ALLOC_DBR_PAGE:
length = PAGE_SIZE;
addr = (u64)rdev->pacing.dbr_page;
mmap_flag = BNXT_RE_MMAP_DBR_PAGE;
break;
default:
return -EOPNOTSUPP;
}
entry = bnxt_re_mmap_entry_insert(uctx, addr, mmap_flag, &mmap_offset);
if (!entry)
return -ENOMEM;
uobj->object = entry;
uverbs_finalize_uobj_create(attrs, BNXT_RE_ALLOC_PAGE_HANDLE);
err = uverbs_copy_to(attrs, BNXT_RE_ALLOC_PAGE_MMAP_OFFSET,
&mmap_offset, sizeof(mmap_offset));
if (err)
return err;
err = uverbs_copy_to(attrs, BNXT_RE_ALLOC_PAGE_MMAP_LENGTH,
&length, sizeof(length));
if (err)
return err;
err = uverbs_copy_to(attrs, BNXT_RE_ALLOC_PAGE_DPI,
&dpi, sizeof(length));
if (err)
return err;
return 0;
}
static int alloc_page_obj_cleanup(struct ib_uobject *uobject,
enum rdma_remove_reason why,
struct uverbs_attr_bundle *attrs)
{
struct bnxt_re_user_mmap_entry *entry = uobject->object;
struct bnxt_re_ucontext *uctx = entry->uctx;
switch (entry->mmap_flag) {
case BNXT_RE_MMAP_WC_DB:
if (uctx && uctx->wcdpi.dbr) {
struct bnxt_re_dev *rdev = uctx->rdev;
bnxt_qplib_dealloc_dpi(&rdev->qplib_res, &uctx->wcdpi);
uctx->wcdpi.dbr = NULL;
}
break;
case BNXT_RE_MMAP_DBR_BAR:
case BNXT_RE_MMAP_DBR_PAGE:
break;
default:
goto exit;
}
rdma_user_mmap_entry_remove(&entry->rdma_entry);
exit:
return 0;
}
DECLARE_UVERBS_NAMED_METHOD(BNXT_RE_METHOD_ALLOC_PAGE,
UVERBS_ATTR_IDR(BNXT_RE_ALLOC_PAGE_HANDLE,
BNXT_RE_OBJECT_ALLOC_PAGE,
UVERBS_ACCESS_NEW,
UA_MANDATORY),
UVERBS_ATTR_CONST_IN(BNXT_RE_ALLOC_PAGE_TYPE,
enum bnxt_re_alloc_page_type,
UA_MANDATORY),
UVERBS_ATTR_PTR_OUT(BNXT_RE_ALLOC_PAGE_MMAP_OFFSET,
UVERBS_ATTR_TYPE(u64),
UA_MANDATORY),
UVERBS_ATTR_PTR_OUT(BNXT_RE_ALLOC_PAGE_MMAP_LENGTH,
UVERBS_ATTR_TYPE(u32),
UA_MANDATORY),
UVERBS_ATTR_PTR_OUT(BNXT_RE_ALLOC_PAGE_DPI,
UVERBS_ATTR_TYPE(u32),
UA_MANDATORY));
DECLARE_UVERBS_NAMED_METHOD_DESTROY(BNXT_RE_METHOD_DESTROY_PAGE,
UVERBS_ATTR_IDR(BNXT_RE_DESTROY_PAGE_HANDLE,
BNXT_RE_OBJECT_ALLOC_PAGE,
UVERBS_ACCESS_DESTROY,
UA_MANDATORY));
DECLARE_UVERBS_NAMED_OBJECT(BNXT_RE_OBJECT_ALLOC_PAGE,
UVERBS_TYPE_ALLOC_IDR(alloc_page_obj_cleanup),
&UVERBS_METHOD(BNXT_RE_METHOD_ALLOC_PAGE),
&UVERBS_METHOD(BNXT_RE_METHOD_DESTROY_PAGE));
DECLARE_UVERBS_NAMED_METHOD(BNXT_RE_METHOD_NOTIFY_DRV);
DECLARE_UVERBS_GLOBAL_METHODS(BNXT_RE_OBJECT_NOTIFY_DRV,
&UVERBS_METHOD(BNXT_RE_METHOD_NOTIFY_DRV));
/* Toggle MEM */
static int UVERBS_HANDLER(BNXT_RE_METHOD_GET_TOGGLE_MEM)(struct uverbs_attr_bundle *attrs)
{
struct ib_uobject *uobj = uverbs_attr_get_uobject(attrs, BNXT_RE_TOGGLE_MEM_HANDLE);
enum bnxt_re_mmap_flag mmap_flag = BNXT_RE_MMAP_TOGGLE_PAGE;
enum bnxt_re_get_toggle_mem_type res_type;
struct bnxt_re_user_mmap_entry *entry;
struct bnxt_re_ucontext *uctx;
struct ib_ucontext *ib_uctx;
struct bnxt_re_dev *rdev;
struct bnxt_re_srq *srq;
u32 length = PAGE_SIZE;
struct bnxt_re_cq *cq;
u64 mem_offset;
u32 offset = 0;
u64 addr = 0;
u32 res_id;
int err;
ib_uctx = ib_uverbs_get_ucontext(attrs);
if (IS_ERR(ib_uctx))
return PTR_ERR(ib_uctx);
err = uverbs_get_const(&res_type, attrs, BNXT_RE_TOGGLE_MEM_TYPE);
if (err)
return err;
uctx = container_of(ib_uctx, struct bnxt_re_ucontext, ib_uctx);
rdev = uctx->rdev;
err = uverbs_copy_from(&res_id, attrs, BNXT_RE_TOGGLE_MEM_RES_ID);
if (err)
return err;
switch (res_type) {
case BNXT_RE_CQ_TOGGLE_MEM:
cq = bnxt_re_search_for_cq(rdev, res_id);
if (!cq)
return -EINVAL;
addr = (u64)cq->uctx_cq_page;
break;
case BNXT_RE_SRQ_TOGGLE_MEM:
srq = bnxt_re_search_for_srq(rdev, res_id);
if (!srq)
return -EINVAL;
addr = (u64)srq->uctx_srq_page;
break;
default:
return -EOPNOTSUPP;
}
entry = bnxt_re_mmap_entry_insert(uctx, addr, mmap_flag, &mem_offset);
if (!entry)
return -ENOMEM;
uobj->object = entry;
uverbs_finalize_uobj_create(attrs, BNXT_RE_TOGGLE_MEM_HANDLE);
err = uverbs_copy_to(attrs, BNXT_RE_TOGGLE_MEM_MMAP_PAGE,
&mem_offset, sizeof(mem_offset));
if (err)
return err;
err = uverbs_copy_to(attrs, BNXT_RE_TOGGLE_MEM_MMAP_LENGTH,
&length, sizeof(length));
if (err)
return err;
err = uverbs_copy_to(attrs, BNXT_RE_TOGGLE_MEM_MMAP_OFFSET,
&offset, sizeof(offset));
if (err)
return err;
return 0;
}
static int get_toggle_mem_obj_cleanup(struct ib_uobject *uobject,
enum rdma_remove_reason why,
struct uverbs_attr_bundle *attrs)
{
struct bnxt_re_user_mmap_entry *entry = uobject->object;
rdma_user_mmap_entry_remove(&entry->rdma_entry);
return 0;
}
DECLARE_UVERBS_NAMED_METHOD(BNXT_RE_METHOD_GET_TOGGLE_MEM,
UVERBS_ATTR_IDR(BNXT_RE_TOGGLE_MEM_HANDLE,
BNXT_RE_OBJECT_GET_TOGGLE_MEM,
UVERBS_ACCESS_NEW,
UA_MANDATORY),
UVERBS_ATTR_CONST_IN(BNXT_RE_TOGGLE_MEM_TYPE,
enum bnxt_re_get_toggle_mem_type,
UA_MANDATORY),
UVERBS_ATTR_PTR_IN(BNXT_RE_TOGGLE_MEM_RES_ID,
UVERBS_ATTR_TYPE(u32),
UA_MANDATORY),
UVERBS_ATTR_PTR_OUT(BNXT_RE_TOGGLE_MEM_MMAP_PAGE,
UVERBS_ATTR_TYPE(u64),
UA_MANDATORY),
UVERBS_ATTR_PTR_OUT(BNXT_RE_TOGGLE_MEM_MMAP_OFFSET,
UVERBS_ATTR_TYPE(u32),
UA_MANDATORY),
UVERBS_ATTR_PTR_OUT(BNXT_RE_TOGGLE_MEM_MMAP_LENGTH,
UVERBS_ATTR_TYPE(u32),
UA_MANDATORY));
DECLARE_UVERBS_NAMED_METHOD_DESTROY(BNXT_RE_METHOD_RELEASE_TOGGLE_MEM,
UVERBS_ATTR_IDR(BNXT_RE_RELEASE_TOGGLE_MEM_HANDLE,
BNXT_RE_OBJECT_GET_TOGGLE_MEM,
UVERBS_ACCESS_DESTROY,
UA_MANDATORY));
DECLARE_UVERBS_NAMED_OBJECT(BNXT_RE_OBJECT_GET_TOGGLE_MEM,
UVERBS_TYPE_ALLOC_IDR(get_toggle_mem_obj_cleanup),
&UVERBS_METHOD(BNXT_RE_METHOD_GET_TOGGLE_MEM),
&UVERBS_METHOD(BNXT_RE_METHOD_RELEASE_TOGGLE_MEM));
const struct uapi_definition bnxt_re_uapi_defs[] = {
UAPI_DEF_CHAIN_OBJ_TREE_NAMED(BNXT_RE_OBJECT_ALLOC_PAGE),
UAPI_DEF_CHAIN_OBJ_TREE_NAMED(BNXT_RE_OBJECT_NOTIFY_DRV),
UAPI_DEF_CHAIN_OBJ_TREE_NAMED(BNXT_RE_OBJECT_GET_TOGGLE_MEM),
{}
};