mirror of
https://github.com/santinic/audiblez.git
synced 2025-04-13 09:38:57 +00:00
314 lines
12 KiB
Python
Executable file
314 lines
12 KiB
Python
Executable file
#!/usr/bin/env python3
|
||
# audiblez - A program to convert e-books into audiobooks using
|
||
# Kokoro-82M model for high-quality text-to-speech synthesis.
|
||
# by Claudio Santini 2025 - https://claudio.uk
|
||
import torch
|
||
import spacy
|
||
import ebooklib
|
||
import soundfile
|
||
import numpy as np
|
||
import argparse
|
||
import sys
|
||
import time
|
||
import shutil
|
||
import subprocess
|
||
import re
|
||
from tabulate import tabulate
|
||
from pathlib import Path
|
||
from string import Formatter
|
||
from yaspin import yaspin
|
||
from bs4 import BeautifulSoup
|
||
from kokoro import KPipeline
|
||
from ebooklib import epub
|
||
from pydub import AudioSegment
|
||
from pick import pick
|
||
from tempfile import NamedTemporaryFile
|
||
|
||
from voices import voices, available_voices_str
|
||
|
||
sample_rate = 24000
|
||
|
||
|
||
def main(file_path, voice, pick_manually, speed, max_chapters=None):
|
||
if not spacy.util.is_package("xx_ent_wiki_sm"):
|
||
print("Downloading Spacy model xx_ent_wiki_sm...")
|
||
spacy.cli.download("xx_ent_wiki_sm")
|
||
filename = Path(file_path).name
|
||
book = epub.read_epub(file_path)
|
||
meta_title = book.get_metadata('DC', 'title')
|
||
title = meta_title[0][0] if meta_title else ''
|
||
meta_creator = book.get_metadata('DC', 'creator')
|
||
creator = meta_creator[0][0] if meta_creator else ''
|
||
|
||
cover_maybe = find_cover(book)
|
||
cover_image = cover_maybe.get_content() if cover_maybe else b""
|
||
if cover_maybe:
|
||
print(f'Found cover image {cover_maybe.file_name} in {cover_maybe.media_type} format')
|
||
|
||
intro = f'{title} – {creator}.\n\n'
|
||
print(intro)
|
||
|
||
document_chapters = find_document_chapters_and_extract_texts(book)
|
||
if pick_manually is True:
|
||
selected_chapters = pick_chapters(document_chapters)
|
||
else:
|
||
selected_chapters = find_good_chapters(document_chapters)
|
||
print_selected_chapters(document_chapters, selected_chapters)
|
||
texts = [c.extracted_text for c in selected_chapters]
|
||
|
||
has_ffmpeg = shutil.which('ffmpeg') is not None
|
||
if not has_ffmpeg:
|
||
print('\033[91m' + 'ffmpeg not found. Please install ffmpeg to create mp3 and m4b audiobook files.' + '\033[0m')
|
||
|
||
total_chars, processed_chars = sum(map(len, texts)), 0
|
||
print('Started at:', time.strftime('%H:%M:%S'))
|
||
print(f'Total characters: {total_chars:,}')
|
||
print('Total words:', len(' '.join(texts).split()))
|
||
chars_per_sec = 500 if torch.cuda.is_available() else 50
|
||
print(f'Estimated time remaining (assuming {chars_per_sec} chars/sec): {strfdelta((total_chars - processed_chars) / chars_per_sec)}')
|
||
|
||
chapter_wav_files = []
|
||
for i, chapter in enumerate(selected_chapters, start=1):
|
||
if max_chapters and i > max_chapters: break
|
||
text = chapter.extracted_text
|
||
xhtml_file_name = chapter.get_name().replace(' ', '_').replace('/', '_').replace('\\', '_')
|
||
chapter_filename = filename.replace('.epub', f'_chapter_{i}_{voice}_{xhtml_file_name}.wav')
|
||
chapter_wav_files.append(chapter_filename)
|
||
if Path(chapter_filename).exists():
|
||
print(f'File for chapter {i} already exists. Skipping')
|
||
continue
|
||
if len(text.strip()) < 10:
|
||
print(f'Skipping empty chapter {i}')
|
||
chapter_wav_files.remove(chapter_filename)
|
||
continue
|
||
if i == 1:
|
||
text = intro + '.\n\n' + text
|
||
start_time = time.time()
|
||
pipeline = KPipeline(lang_code=voice[0]) # a for american or b for british etc.
|
||
|
||
with yaspin(text=f'Reading chapter {i} ({len(text):,} characters)...', color="yellow") as spinner:
|
||
audio_segments = gen_audio_segments(pipeline, text, voice, speed)
|
||
if audio_segments:
|
||
final_audio = np.concatenate(audio_segments)
|
||
soundfile.write(chapter_filename, final_audio, sample_rate)
|
||
end_time = time.time()
|
||
delta_seconds = end_time - start_time
|
||
chars_per_sec = len(text) / delta_seconds
|
||
processed_chars += len(text)
|
||
spinner.ok("✅")
|
||
print(f'Estimated time remaining: {strfdelta((total_chars - processed_chars) / chars_per_sec)}')
|
||
print('Chapter written to', chapter_filename)
|
||
print(f'Chapter {i} read in {delta_seconds:.2f} seconds ({chars_per_sec:.0f} characters per second)')
|
||
progress = processed_chars * 100 // total_chars
|
||
print('Progress:', f'{progress}%\n')
|
||
else:
|
||
spinner.fail("❌")
|
||
print(f'Warning: No audio generated for chapter {i}')
|
||
chapter_wav_files.remove(chapter_filename)
|
||
|
||
if has_ffmpeg:
|
||
create_index_file(title, creator, chapter_wav_files)
|
||
create_m4b(chapter_wav_files, filename, cover_image)
|
||
|
||
|
||
def find_cover(book):
|
||
def is_image(item):
|
||
return item is not None and item.media_type.startswith('image/')
|
||
|
||
for item in book.get_items_of_type(ebooklib.ITEM_COVER):
|
||
if is_image(item):
|
||
return item
|
||
|
||
# https://idpf.org/forum/topic-715
|
||
for meta in book.get_metadata('OPF', 'cover'):
|
||
if is_image(item := book.get_item_with_id(meta[1]['content'])):
|
||
return item
|
||
|
||
if is_image(item := book.get_item_with_id('cover')):
|
||
return item
|
||
|
||
for item in book.get_items_of_type(ebooklib.ITEM_IMAGE):
|
||
if 'cover' in item.get_name().lower() and is_image(item):
|
||
return item
|
||
|
||
return None
|
||
|
||
|
||
def print_selected_chapters(document_chapters, chapters):
|
||
print(tabulate([
|
||
[i, c.get_name(), len(c.extracted_text), '✅' if c in chapters else '', chapter_beginning_one_liner(c)]
|
||
for i, c in enumerate(document_chapters, start=1)
|
||
], headers=['#', 'Chapter', 'Text Length', 'Selected', 'First words']))
|
||
|
||
|
||
def gen_audio_segments(pipeline, text, voice, speed):
|
||
nlp = spacy.load('xx_ent_wiki_sm')
|
||
nlp.add_pipe('sentencizer')
|
||
audio_segments = []
|
||
doc = nlp(text)
|
||
sentences = list(doc.sents)
|
||
for sent in sentences:
|
||
for gs, ps, audio in pipeline(sent.text, voice=voice, speed=speed, split_pattern=r'\n\n\n'):
|
||
audio_segments.append(audio)
|
||
return audio_segments
|
||
|
||
|
||
def find_document_chapters_and_extract_texts(book):
|
||
"""Returns every chapter that is an ITEM_DOCUMENT and enriches each chapter with extracted_text."""
|
||
document_chapters = []
|
||
for chapter in book.get_items():
|
||
if chapter.get_type() != ebooklib.ITEM_DOCUMENT:
|
||
continue
|
||
xml = chapter.get_body_content()
|
||
soup = BeautifulSoup(xml, features='lxml')
|
||
chapter_text = ''
|
||
html_content_tags = ['title', 'p', 'h1', 'h2', 'h3', 'h4', 'li']
|
||
for child in soup.find_all(html_content_tags):
|
||
inner_text = child.text.strip() if child.text else ""
|
||
if inner_text:
|
||
chapter_text += inner_text + '\n'
|
||
chapter.extracted_text = chapter_text
|
||
document_chapters.append(chapter)
|
||
return document_chapters
|
||
|
||
|
||
def is_chapter(c):
|
||
name = c.get_name().lower()
|
||
has_min_len = len(c.extracted_text) > 100
|
||
title_looks_like_chapter = bool(
|
||
'chapter' in name.lower()
|
||
or re.search(r'part_?\d{1,3}', name)
|
||
or re.search(r'split_?\d{1,3}', name)
|
||
or re.search(r'ch_?\d{1,3}', name)
|
||
or re.search(r'chap_?\d{1,3}', name)
|
||
)
|
||
return has_min_len and title_looks_like_chapter
|
||
|
||
|
||
def chapter_beginning_one_liner(c, chars=20):
|
||
s = c.extracted_text[:chars].strip().replace('\n', ' ').replace('\r', ' ')
|
||
return s + '…' if len(s) > 0 else ''
|
||
|
||
|
||
def find_good_chapters(document_chapters):
|
||
chapters = [c for c in document_chapters if c.get_type() == ebooklib.ITEM_DOCUMENT and is_chapter(c)]
|
||
if len(chapters) == 0:
|
||
print('Not easy to recognize the chapters, defaulting to all non-empty documents.')
|
||
chapters = [c for c in document_chapters if c.get_type() == ebooklib.ITEM_DOCUMENT and len(c.extracted_text) > 10]
|
||
return chapters
|
||
|
||
|
||
def pick_chapters(chapters):
|
||
# Display the document name, the length and first 50 characters of the text
|
||
chapters_by_names = {
|
||
f'{c.get_name()}\t({len(c.extracted_text)} chars)\t[{chapter_beginning_one_liner(c, 50)}]': c
|
||
for c in chapters}
|
||
title = 'Select which chapters to read in the audiobook'
|
||
ret = pick(list(chapters_by_names.keys()), title, multiselect=True, min_selection_count=1)
|
||
selected_chapters_out_of_order = [chapters_by_names[r[0]] for r in ret]
|
||
selected_chapters = [c for c in chapters if c in selected_chapters_out_of_order]
|
||
return selected_chapters
|
||
|
||
|
||
def strfdelta(tdelta, fmt='{D:02}d {H:02}h {M:02}m {S:02}s'):
|
||
remainder = int(tdelta)
|
||
f = Formatter()
|
||
desired_fields = [field_tuple[1] for field_tuple in f.parse(fmt)]
|
||
possible_fields = ('W', 'D', 'H', 'M', 'S')
|
||
constants = {'W': 604800, 'D': 86400, 'H': 3600, 'M': 60, 'S': 1}
|
||
values = {}
|
||
for field in possible_fields:
|
||
if field in desired_fields and field in constants:
|
||
values[field], remainder = divmod(remainder, constants[field])
|
||
return f.format(fmt, **values)
|
||
|
||
|
||
def create_m4b(chapter_files, filename, cover_image):
|
||
tmp_filename = filename.replace('.epub', '.tmp.mp4')
|
||
if not Path(tmp_filename).exists():
|
||
combined_audio = AudioSegment.empty()
|
||
for wav_file in chapter_files:
|
||
audio = AudioSegment.from_wav(wav_file)
|
||
combined_audio += audio
|
||
print('Converting to Mp4...')
|
||
combined_audio.export(tmp_filename, format="mp4", codec="aac", bitrate="64k")
|
||
final_filename = filename.replace('.epub', '.m4b')
|
||
print('Creating M4B file...')
|
||
|
||
if cover_image:
|
||
cover_image_file = NamedTemporaryFile("wb")
|
||
cover_image_file.write(cover_image)
|
||
cover_image_args = ["-i", cover_image_file.name, "-map", "0:a", "-map", "2:v"]
|
||
else:
|
||
cover_image_args = []
|
||
|
||
proc = subprocess.run([
|
||
'ffmpeg',
|
||
'-i', f'{tmp_filename}',
|
||
'-i', 'chapters.txt',
|
||
*cover_image_args,
|
||
'-map', '0',
|
||
'-map_metadata', '1',
|
||
'-c:a', 'copy',
|
||
'-c:v', 'copy',
|
||
'-disposition:v', 'attached_pic',
|
||
'-c', 'copy',
|
||
'-f', 'mp4',
|
||
f'{final_filename}'
|
||
])
|
||
Path(tmp_filename).unlink()
|
||
if proc.returncode == 0:
|
||
print(f'{final_filename} created. Enjoy your audiobook.')
|
||
print('Feel free to delete the intermediary .wav chapter files, the .m4b is all you need.')
|
||
|
||
|
||
def probe_duration(file_name):
|
||
args = ['ffprobe', '-i', file_name, '-show_entries', 'format=duration', '-v', 'quiet', '-of', 'default=noprint_wrappers=1:nokey=1']
|
||
proc = subprocess.run(args, capture_output=True, text=True, check=True)
|
||
return float(proc.stdout.strip())
|
||
|
||
|
||
def create_index_file(title, creator, chapter_mp3_files):
|
||
with open("chapters.txt", "w") as f:
|
||
f.write(f";FFMETADATA1\ntitle={title}\nartist={creator}\n\n")
|
||
start = 0
|
||
i = 0
|
||
for c in chapter_mp3_files:
|
||
duration = probe_duration(c)
|
||
end = start + (int)(duration * 1000)
|
||
f.write(f"[CHAPTER]\nTIMEBASE=1/1000\nSTART={start}\nEND={end}\ntitle=Chapter {i}\n\n")
|
||
i += 1
|
||
start = end
|
||
|
||
|
||
def cli_main():
|
||
voices_str = ', '.join(voices)
|
||
epilog = ('example:\n' +
|
||
' audiblez book.epub -l en-us -v af_sky\n\n' +
|
||
'available voices:\n' +
|
||
available_voices_str)
|
||
default_voice = 'af_sky'
|
||
parser = argparse.ArgumentParser(epilog=epilog, formatter_class=argparse.RawDescriptionHelpFormatter)
|
||
parser.add_argument('epub_file_path', help='Path to the epub file')
|
||
parser.add_argument('-v', '--voice', default=default_voice, help=f'Choose narrating voice: {voices_str}')
|
||
parser.add_argument('-p', '--pick', default=False, help=f'Interactively select which chapters to read in the audiobook', action='store_true')
|
||
parser.add_argument('-s', '--speed', default=1.0, help=f'Set speed from 0.5 to 2.0', type=float)
|
||
parser.add_argument('-c', '--cuda', default=False, help=f'Use GPU via Cuda in Torch if available', action='store_true')
|
||
|
||
if len(sys.argv) == 1:
|
||
parser.print_help(sys.stderr)
|
||
sys.exit(1)
|
||
args = parser.parse_args()
|
||
|
||
if args.cuda:
|
||
if torch.cuda.is_available():
|
||
print('CUDA GPU available')
|
||
torch.set_default_device('cuda')
|
||
else:
|
||
print('CUDA GPU not available. Defaulting to CPU')
|
||
|
||
main(args.epub_file_path, args.voice, args.pick, args.speed)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
cli_main()
|