#!/usr/bin/env python3 # audiblez - A program to convert e-books into audiobooks using # Kokoro-82M model for high-quality text-to-speech synthesis. # by Claudio Santini 2025 - https://claudio.uk import torch import spacy import ebooklib import soundfile import numpy as np import argparse import sys import time import shutil import subprocess import re from tabulate import tabulate from pathlib import Path from string import Formatter from yaspin import yaspin from bs4 import BeautifulSoup from kokoro import KPipeline from ebooklib import epub from pydub import AudioSegment from pick import pick from tempfile import NamedTemporaryFile from voices import voices, available_voices_str sample_rate = 24000 def main(file_path, voice, pick_manually, speed, max_chapters=None): if not spacy.util.is_package("xx_ent_wiki_sm"): print("Downloading Spacy model xx_ent_wiki_sm...") spacy.cli.download("xx_ent_wiki_sm") filename = Path(file_path).name book = epub.read_epub(file_path) meta_title = book.get_metadata('DC', 'title') title = meta_title[0][0] if meta_title else '' meta_creator = book.get_metadata('DC', 'creator') creator = meta_creator[0][0] if meta_creator else '' cover_maybe = find_cover(book) cover_image = cover_maybe.get_content() if cover_maybe else b"" if cover_maybe: print(f'Found cover image {cover_maybe.file_name} in {cover_maybe.media_type} format') intro = f'{title} – {creator}.\n\n' print(intro) document_chapters = find_document_chapters_and_extract_texts(book) if pick_manually is True: selected_chapters = pick_chapters(document_chapters) else: selected_chapters = find_good_chapters(document_chapters) print_selected_chapters(document_chapters, selected_chapters) texts = [c.extracted_text for c in selected_chapters] has_ffmpeg = shutil.which('ffmpeg') is not None if not has_ffmpeg: print('\033[91m' + 'ffmpeg not found. Please install ffmpeg to create mp3 and m4b audiobook files.' + '\033[0m') total_chars, processed_chars = sum(map(len, texts)), 0 print('Started at:', time.strftime('%H:%M:%S')) print(f'Total characters: {total_chars:,}') print('Total words:', len(' '.join(texts).split())) chars_per_sec = 500 if torch.cuda.is_available() else 50 print(f'Estimated time remaining (assuming {chars_per_sec} chars/sec): {strfdelta((total_chars - processed_chars) / chars_per_sec)}') chapter_wav_files = [] for i, chapter in enumerate(selected_chapters, start=1): if max_chapters and i > max_chapters: break text = chapter.extracted_text xhtml_file_name = chapter.get_name().replace(' ', '_').replace('/', '_').replace('\\', '_') chapter_filename = filename.replace('.epub', f'_chapter_{i}_{voice}_{xhtml_file_name}.wav') chapter_wav_files.append(chapter_filename) if Path(chapter_filename).exists(): print(f'File for chapter {i} already exists. Skipping') continue if len(text.strip()) < 10: print(f'Skipping empty chapter {i}') chapter_wav_files.remove(chapter_filename) continue if i == 1: text = intro + '.\n\n' + text start_time = time.time() pipeline = KPipeline(lang_code=voice[0]) # a for american or b for british etc. with yaspin(text=f'Reading chapter {i} ({len(text):,} characters)...', color="yellow") as spinner: audio_segments = gen_audio_segments(pipeline, text, voice, speed) if audio_segments: final_audio = np.concatenate(audio_segments) soundfile.write(chapter_filename, final_audio, sample_rate) end_time = time.time() delta_seconds = end_time - start_time chars_per_sec = len(text) / delta_seconds processed_chars += len(text) spinner.ok("✅") print(f'Estimated time remaining: {strfdelta((total_chars - processed_chars) / chars_per_sec)}') print('Chapter written to', chapter_filename) print(f'Chapter {i} read in {delta_seconds:.2f} seconds ({chars_per_sec:.0f} characters per second)') progress = processed_chars * 100 // total_chars print('Progress:', f'{progress}%\n') else: spinner.fail("❌") print(f'Warning: No audio generated for chapter {i}') chapter_wav_files.remove(chapter_filename) if has_ffmpeg: create_index_file(title, creator, chapter_wav_files) create_m4b(chapter_wav_files, filename, cover_image) def find_cover(book): def is_image(item): return item is not None and item.media_type.startswith('image/') for item in book.get_items_of_type(ebooklib.ITEM_COVER): if is_image(item): return item # https://idpf.org/forum/topic-715 for meta in book.get_metadata('OPF', 'cover'): if is_image(item := book.get_item_with_id(meta[1]['content'])): return item if is_image(item := book.get_item_with_id('cover')): return item for item in book.get_items_of_type(ebooklib.ITEM_IMAGE): if 'cover' in item.get_name().lower() and is_image(item): return item return None def print_selected_chapters(document_chapters, chapters): print(tabulate([ [i, c.get_name(), len(c.extracted_text), '✅' if c in chapters else '', chapter_beginning_one_liner(c)] for i, c in enumerate(document_chapters, start=1) ], headers=['#', 'Chapter', 'Text Length', 'Selected', 'First words'])) def gen_audio_segments(pipeline, text, voice, speed): nlp = spacy.load('xx_ent_wiki_sm') nlp.add_pipe('sentencizer') audio_segments = [] doc = nlp(text) sentences = list(doc.sents) for sent in sentences: for gs, ps, audio in pipeline(sent.text, voice=voice, speed=speed, split_pattern=r'\n\n\n'): audio_segments.append(audio) return audio_segments def find_document_chapters_and_extract_texts(book): """Returns every chapter that is an ITEM_DOCUMENT and enriches each chapter with extracted_text.""" document_chapters = [] for chapter in book.get_items(): if chapter.get_type() != ebooklib.ITEM_DOCUMENT: continue xml = chapter.get_body_content() soup = BeautifulSoup(xml, features='lxml') chapter_text = '' html_content_tags = ['title', 'p', 'h1', 'h2', 'h3', 'h4', 'li'] for child in soup.find_all(html_content_tags): inner_text = child.text.strip() if child.text else "" if inner_text: chapter_text += inner_text + '\n' chapter.extracted_text = chapter_text document_chapters.append(chapter) return document_chapters def is_chapter(c): name = c.get_name().lower() has_min_len = len(c.extracted_text) > 100 title_looks_like_chapter = bool( 'chapter' in name.lower() or re.search(r'part_?\d{1,3}', name) or re.search(r'split_?\d{1,3}', name) or re.search(r'ch_?\d{1,3}', name) or re.search(r'chap_?\d{1,3}', name) ) return has_min_len and title_looks_like_chapter def chapter_beginning_one_liner(c, chars=20): s = c.extracted_text[:chars].strip().replace('\n', ' ').replace('\r', ' ') return s + '…' if len(s) > 0 else '' def find_good_chapters(document_chapters): chapters = [c for c in document_chapters if c.get_type() == ebooklib.ITEM_DOCUMENT and is_chapter(c)] if len(chapters) == 0: print('Not easy to recognize the chapters, defaulting to all non-empty documents.') chapters = [c for c in document_chapters if c.get_type() == ebooklib.ITEM_DOCUMENT and len(c.extracted_text) > 10] return chapters def pick_chapters(chapters): # Display the document name, the length and first 50 characters of the text chapters_by_names = { f'{c.get_name()}\t({len(c.extracted_text)} chars)\t[{chapter_beginning_one_liner(c, 50)}]': c for c in chapters} title = 'Select which chapters to read in the audiobook' ret = pick(list(chapters_by_names.keys()), title, multiselect=True, min_selection_count=1) selected_chapters_out_of_order = [chapters_by_names[r[0]] for r in ret] selected_chapters = [c for c in chapters if c in selected_chapters_out_of_order] return selected_chapters def strfdelta(tdelta, fmt='{D:02}d {H:02}h {M:02}m {S:02}s'): remainder = int(tdelta) f = Formatter() desired_fields = [field_tuple[1] for field_tuple in f.parse(fmt)] possible_fields = ('W', 'D', 'H', 'M', 'S') constants = {'W': 604800, 'D': 86400, 'H': 3600, 'M': 60, 'S': 1} values = {} for field in possible_fields: if field in desired_fields and field in constants: values[field], remainder = divmod(remainder, constants[field]) return f.format(fmt, **values) def create_m4b(chapter_files, filename, cover_image): tmp_filename = filename.replace('.epub', '.tmp.mp4') if not Path(tmp_filename).exists(): combined_audio = AudioSegment.empty() for wav_file in chapter_files: audio = AudioSegment.from_wav(wav_file) combined_audio += audio print('Converting to Mp4...') combined_audio.export(tmp_filename, format="mp4", codec="aac", bitrate="64k") final_filename = filename.replace('.epub', '.m4b') print('Creating M4B file...') if cover_image: cover_image_file = NamedTemporaryFile("wb") cover_image_file.write(cover_image) cover_image_args = ["-i", cover_image_file.name, "-map", "0:a", "-map", "2:v"] else: cover_image_args = [] proc = subprocess.run([ 'ffmpeg', '-i', f'{tmp_filename}', '-i', 'chapters.txt', *cover_image_args, '-map', '0', '-map_metadata', '1', '-c:a', 'copy', '-c:v', 'copy', '-disposition:v', 'attached_pic', '-c', 'copy', '-f', 'mp4', f'{final_filename}' ]) Path(tmp_filename).unlink() if proc.returncode == 0: print(f'{final_filename} created. Enjoy your audiobook.') print('Feel free to delete the intermediary .wav chapter files, the .m4b is all you need.') def probe_duration(file_name): args = ['ffprobe', '-i', file_name, '-show_entries', 'format=duration', '-v', 'quiet', '-of', 'default=noprint_wrappers=1:nokey=1'] proc = subprocess.run(args, capture_output=True, text=True, check=True) return float(proc.stdout.strip()) def create_index_file(title, creator, chapter_mp3_files): with open("chapters.txt", "w") as f: f.write(f";FFMETADATA1\ntitle={title}\nartist={creator}\n\n") start = 0 i = 0 for c in chapter_mp3_files: duration = probe_duration(c) end = start + (int)(duration * 1000) f.write(f"[CHAPTER]\nTIMEBASE=1/1000\nSTART={start}\nEND={end}\ntitle=Chapter {i}\n\n") i += 1 start = end def cli_main(): voices_str = ', '.join(voices) epilog = ('example:\n' + ' audiblez book.epub -l en-us -v af_sky\n\n' + 'available voices:\n' + available_voices_str) default_voice = 'af_sky' parser = argparse.ArgumentParser(epilog=epilog, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('epub_file_path', help='Path to the epub file') parser.add_argument('-v', '--voice', default=default_voice, help=f'Choose narrating voice: {voices_str}') parser.add_argument('-p', '--pick', default=False, help=f'Interactively select which chapters to read in the audiobook', action='store_true') parser.add_argument('-s', '--speed', default=1.0, help=f'Set speed from 0.5 to 2.0', type=float) parser.add_argument('-c', '--cuda', default=False, help=f'Use GPU via Cuda in Torch if available', action='store_true') if len(sys.argv) == 1: parser.print_help(sys.stderr) sys.exit(1) args = parser.parse_args() if args.cuda: if torch.cuda.is_available(): print('CUDA GPU available') torch.set_default_device('cuda') else: print('CUDA GPU not available. Defaulting to CPU') main(args.epub_file_path, args.voice, args.pick, args.speed) if __name__ == '__main__': cli_main()