NewsBlur-viq/apps/statistics/models.py

383 lines
14 KiB
Python
Raw Normal View History

2011-04-15 11:34:41 -04:00
import datetime
import mongoengine as mongo
2020-06-15 03:52:07 -04:00
import urllib.request, urllib.error, urllib.parse
import redis
import dateutil
from django.conf import settings
from apps.social.models import MSharedStory
2011-04-15 11:34:41 -04:00
from apps.profile.models import Profile
from apps.statistics.rstats import RStats, round_time
from utils.story_functions import relative_date
from utils import json_functions as json
from utils import db_functions
from utils import log as logging
2011-04-15 11:34:41 -04:00
class MStatistics(mongo.Document):
key = mongo.StringField(unique=True)
value = mongo.DynamicField()
2015-07-21 15:17:24 -07:00
expiration_date = mongo.DateTimeField()
2011-04-15 11:34:41 -04:00
meta = {
'collection': 'statistics',
'allow_inheritance': False,
'indexes': ['key'],
}
def __str__(self):
2011-04-15 11:34:41 -04:00
return "%s: %s" % (self.key, self.value)
@classmethod
def get(cls, key, default=None):
obj = cls.objects.filter(key=key).first()
if not obj:
return default
if obj.expiration_date and obj.expiration_date < datetime.datetime.now():
2015-07-21 15:19:09 -07:00
obj.delete()
return default
return obj.value
@classmethod
def set(cls, key, value, expiration_sec=None):
try:
obj = cls.objects.get(key=key)
except cls.DoesNotExist:
obj = cls.objects.create(key=key)
obj.value = value
if expiration_sec:
obj.expiration_date = datetime.datetime.now() + datetime.timedelta(seconds=expiration_sec)
obj.save()
2011-04-15 11:34:41 -04:00
@classmethod
def all(cls):
stats = cls.objects.all()
values = dict([(stat.key, stat.value) for stat in stats])
2020-06-15 03:52:07 -04:00
for key, value in list(values.items()):
if key in ('avg_time_taken', 'sites_loaded', 'stories_shared'):
values[key] = json.decode(value)
elif key in ('feeds_fetched', 'premium_users', 'standard_users', 'latest_sites_loaded',
'max_sites_loaded', 'max_stories_shared'):
values[key] = int(value)
2016-12-15 12:24:15 -08:00
elif key in ('latest_avg_time_taken', 'max_avg_time_taken', 'last_5_min_time_taken'):
values[key] = float(value)
values['total_sites_loaded'] = sum(values['sites_loaded']) if 'sites_loaded' in values else 0
values['total_stories_shared'] = sum(values['stories_shared']) if 'stories_shared' in values else 0
return values
2011-04-15 11:34:41 -04:00
@classmethod
def collect_statistics(cls):
now = datetime.datetime.now()
cls.collect_statistics_premium_users()
2020-06-15 03:52:07 -04:00
print("Premiums: %s" % (datetime.datetime.now() - now))
cls.collect_statistics_standard_users()
2020-06-15 03:52:07 -04:00
print("Standard users: %s" % (datetime.datetime.now() - now))
cls.collect_statistics_sites_loaded()
2020-06-15 03:52:07 -04:00
print("Sites loaded: %s" % (datetime.datetime.now() - now))
cls.collect_statistics_stories_shared()
2020-06-15 03:52:07 -04:00
print("Stories shared: %s" % (datetime.datetime.now() - now))
cls.collect_statistics_for_db()
2020-06-15 03:52:07 -04:00
print("DB Stats: %s" % (datetime.datetime.now() - now))
cls.collect_statistics_feeds_fetched()
2020-06-15 03:52:07 -04:00
print("Feeds Fetched: %s" % (datetime.datetime.now() - now))
@classmethod
def collect_statistics_feeds_fetched(cls):
feeds_fetched = RStats.count('feed_fetch', hours=24)
cls.objects(key='feeds_fetched').update_one(upsert=True,
set__key='feeds_fetched',
set__value=feeds_fetched)
return feeds_fetched
@classmethod
def collect_statistics_premium_users(cls):
last_day = datetime.datetime.now() - datetime.timedelta(hours=24)
2011-04-15 11:34:41 -04:00
premium_users = Profile.objects.filter(last_seen_on__gte=last_day, is_premium=True).count()
cls.objects(key='premium_users').update_one(upsert=True, set__key='premium_users', set__value=premium_users)
2011-04-15 11:34:41 -04:00
return premium_users
@classmethod
def collect_statistics_standard_users(cls):
last_day = datetime.datetime.now() - datetime.timedelta(hours=24)
2011-04-15 11:34:41 -04:00
standard_users = Profile.objects.filter(last_seen_on__gte=last_day, is_premium=False).count()
cls.objects(key='standard_users').update_one(upsert=True, set__key='standard_users', set__value=standard_users)
return standard_users
@classmethod
def collect_statistics_sites_loaded(cls):
now = round_time(datetime.datetime.now(), round_to=60)
sites_loaded = []
avg_time_taken = []
last_5_min_time_taken = 0
r = redis.Redis(connection_pool=settings.REDIS_STATISTICS_POOL)
for hour in range(24):
start_hours_ago = now - datetime.timedelta(hours=hour+1)
pipe = r.pipeline()
for m in range(60):
minute = start_hours_ago + datetime.timedelta(minutes=m)
key = "%s:%s" % (RStats.stats_type('page_load'), minute.strftime('%s'))
pipe.get("%s:s" % key)
pipe.get("%s:a" % key)
times = pipe.execute()
counts = [int(c) for c in times[::2] if c]
avgs = [float(a) for a in times[1::2] if a]
if hour == 0:
2016-12-15 12:24:15 -08:00
last_5_min_time_taken = round(sum(avgs[:1]) / max(1, sum(counts[:1])), 2)
if counts and avgs:
2016-12-15 12:24:15 -08:00
count = max(1, sum(counts))
avg = round(sum(avgs) / count, 3)
else:
count = 0
avg = 0
sites_loaded.append(count)
avg_time_taken.append(avg)
sites_loaded.reverse()
avg_time_taken.reverse()
values = (
('sites_loaded', json.encode(sites_loaded)),
('avg_time_taken', json.encode(avg_time_taken)),
('latest_sites_loaded', sites_loaded[-1]),
('latest_avg_time_taken', avg_time_taken[-1]),
('max_sites_loaded', max(sites_loaded)),
('max_avg_time_taken', max(1, max(avg_time_taken))),
('last_5_min_time_taken', last_5_min_time_taken),
)
for key, value in values:
cls.objects(key=key).update_one(upsert=True, set__key=key, set__value=value)
@classmethod
def collect_statistics_stories_shared(cls):
now = datetime.datetime.now()
stories_shared = []
for hour in range(24):
start_hours_ago = now - datetime.timedelta(hours=hour)
end_hours_ago = now - datetime.timedelta(hours=hour+1)
shares = MSharedStory.objects.filter(
shared_date__lte=start_hours_ago,
shared_date__gte=end_hours_ago
).count()
stories_shared.append(shares)
stories_shared.reverse()
values = (
('stories_shared', json.encode(stories_shared)),
('latest_stories_shared', stories_shared[-1]),
('max_stories_shared', max(stories_shared)),
)
for key, value in values:
cls.objects(key=key).update_one(upsert=True, set__key=key, set__value=value)
@classmethod
def collect_statistics_for_db(cls, debug=False):
lag = db_functions.mongo_max_replication_lag(settings.MONGODB)
cls.set('mongodb_replication_lag', lag)
now = round_time(datetime.datetime.now(), round_to=60)
r = redis.Redis(connection_pool=settings.REDIS_STATISTICS_POOL)
db_times = {}
latest_db_times = {}
for db in ['sql', 'mongo', 'redis', 'task_sql', 'task_mongo', 'task_redis']:
db_times[db] = []
for hour in range(24):
start_hours_ago = now - datetime.timedelta(hours=hour+1)
pipe = r.pipeline()
for m in range(60):
minute = start_hours_ago + datetime.timedelta(minutes=m)
key = "DB:%s:%s" % (db, minute.strftime('%s'))
if debug:
print(" -> %s:c" % key)
pipe.get("%s:c" % key)
pipe.get("%s:t" % key)
times = pipe.execute()
counts = [int(c or 0) for c in times[::2]]
avgs = [float(a or 0) for a in times[1::2]]
if counts and avgs:
count = sum(counts)
avg = round(sum(avgs) / count, 3) if count else 0
else:
count = 0
avg = 0
if hour == 0:
latest_count = float(counts[-1]) if len(counts) else 0
latest_avg = float(avgs[-1]) if len(avgs) else 0
latest_db_times[db] = latest_avg / latest_count if latest_count else 0
db_times[db].append(avg)
db_times[db].reverse()
values = (
('avg_sql_times', json.encode(db_times['sql'])),
('avg_mongo_times', json.encode(db_times['mongo'])),
('avg_redis_times', json.encode(db_times['redis'])),
('latest_sql_avg', latest_db_times['sql']),
('latest_mongo_avg', latest_db_times['mongo']),
('latest_redis_avg', latest_db_times['redis']),
('latest_task_sql_avg', latest_db_times['task_sql']),
('latest_task_mongo_avg', latest_db_times['task_mongo']),
('latest_task_redis_avg', latest_db_times['task_redis']),
)
for key, value in values:
cls.objects(key=key).update_one(upsert=True, set__key=key, set__value=value)
2012-12-10 13:33:37 -08:00
class MFeedback(mongo.Document):
date = mongo.DateTimeField()
date_short = mongo.StringField()
subject = mongo.StringField()
url = mongo.StringField()
style = mongo.StringField()
2011-06-15 11:21:55 -04:00
order = mongo.IntField()
meta = {
'collection': 'feedback',
'allow_inheritance': False,
'indexes': ['style'],
2011-06-15 11:21:55 -04:00
'ordering': ['order'],
}
CATEGORIES = {
5: 'idea',
6: 'problem',
7: 'praise',
8: 'question',
}
def __str__(self):
return "%s: (%s) %s" % (self.style, self.date, self.subject)
@classmethod
def collect_feedback(cls):
seen_posts = set()
try:
2020-06-15 03:52:07 -04:00
data = urllib.request.urlopen('https://forum.newsblur.com/posts.json').read()
except (urllib.error.HTTPError) as e:
logging.debug(" ***> Failed to collect feedback: %s" % e)
return
data = json.decode(data).get('latest_posts', "")
if not len(data):
2020-06-15 03:52:07 -04:00
print("No data!")
return
cls.objects.delete()
post_count = 0
for post in data:
if post['topic_id'] in seen_posts: continue
seen_posts.add(post['topic_id'])
feedback = {}
feedback['order'] = post_count
post_count += 1
feedback['date'] = dateutil.parser.parse(post['created_at']).replace(tzinfo=None)
feedback['date_short'] = relative_date(feedback['date'])
feedback['subject'] = post['topic_title']
feedback['url'] = "https://forum.newsblur.com/t/%s/%s/%s" % (post['topic_slug'], post['topic_id'], post['post_number'])
feedback['style'] = cls.CATEGORIES[post['category_id']]
cls.objects.create(**feedback)
2020-06-15 03:52:07 -04:00
print("%s: %s (%s)" % (feedback['style'], feedback['subject'], feedback['date_short']))
if post_count >= 4: break
@classmethod
def all(cls):
feedbacks = cls.objects.all()[:4]
return feedbacks
class MAnalyticsFetcher(mongo.Document):
date = mongo.DateTimeField(default=datetime.datetime.now)
feed_id = mongo.IntField()
feed_fetch = mongo.FloatField()
feed_process = mongo.FloatField()
page = mongo.FloatField()
icon = mongo.FloatField()
total = mongo.FloatField()
server = mongo.StringField()
feed_code = mongo.IntField()
meta = {
'db_alias': 'nbanalytics',
'collection': 'feed_fetches',
'allow_inheritance': False,
'indexes': ['date', 'feed_id', 'server', 'feed_code'],
'ordering': ['date'],
}
def __str__(self):
return "%s: %.4s+%.4s+%.4s+%.4s = %.4ss" % (self.feed_id, self.feed_fetch,
self.feed_process,
self.page,
self.icon,
self.total)
@classmethod
def add(cls, feed_id, feed_fetch, feed_process,
page, icon, total, feed_code):
server_name = settings.SERVER_NAME
if 'app' in server_name: return
if icon and page:
icon -= page
if page and feed_process:
page -= feed_process
elif page and feed_fetch:
page -= feed_fetch
if feed_process and feed_fetch:
feed_process -= feed_fetch
cls.objects.create(feed_id=feed_id, feed_fetch=feed_fetch,
feed_process=feed_process,
page=page, icon=icon, total=total,
server=server_name, feed_code=feed_code)
@classmethod
def calculate_stats(cls, stats):
return cls.aggregate(**stats)
class MAnalyticsLoader(mongo.Document):
date = mongo.DateTimeField(default=datetime.datetime.now)
page_load = mongo.FloatField()
server = mongo.StringField()
meta = {
'db_alias': 'nbanalytics',
'collection': 'page_loads',
'allow_inheritance': False,
'indexes': ['date', 'server'],
'ordering': ['date'],
}
def __str__(self):
return "%s: %.4ss" % (self.server, self.page_load)
@classmethod
def add(cls, page_load):
server_name = settings.SERVER_NAME
cls.objects.create(page_load=page_load, server=server_name)
@classmethod
def calculate_stats(cls, stats):
return cls.aggregate(**stats)