NewsBlur-viq/apps/statistics/models.py

69 lines
3.4 KiB
Python
Raw Normal View History

2011-04-15 11:34:41 -04:00
import datetime
import mongoengine as mongo
from django.db.models import Avg, Count
from apps.rss_feeds.models import MFeedFetchHistory, FeedLoadtime
2011-04-15 11:34:41 -04:00
from apps.profile.models import Profile
from utils import json_functions as json
2011-04-15 11:34:41 -04:00
class MStatistics(mongo.Document):
key = mongo.StringField(unique=True)
value = mongo.StringField()
2011-04-15 11:34:41 -04:00
meta = {
'collection': 'statistics',
'allow_inheritance': False,
'indexes': ['key'],
}
def __unicode__(self):
return "%s: %s" % (self.key, self.value)
@classmethod
def all(cls):
values = dict([(stat.key, stat.value) for stat in cls.objects.all()])
for key, value in values.items():
if key in ('avg_time_taken', 'sites_loaded'):
values[key] = json.decode(value)
elif key in ('feeds_fetched', 'premium_users', 'standard_users', 'latest_sites_loaded',
'max_sites_loaded'):
values[key] = int(value)
elif key in ('latest_avg_time_taken', 'max_avg_time_taken'):
values[key] = float(value)
return values
2011-04-15 11:34:41 -04:00
@classmethod
def collect_statistics(cls):
last_day = datetime.datetime.now() - datetime.timedelta(hours=24)
feeds_fetched = MFeedFetchHistory.objects(fetch_date__gte=last_day).count()
cls.objects(key='feeds_fetched').update_one(upsert=True, key='feeds_fetched', value=feeds_fetched)
premium_users = Profile.objects.filter(last_seen_on__gte=last_day, is_premium=True).count()
cls.objects(key='premium_users').update_one(upsert=True, key='premium_users', value=premium_users)
standard_users = Profile.objects.filter(last_seen_on__gte=last_day, is_premium=False).count()
cls.objects(key='standard_users').update_one(upsert=True, key='standard_users', value=standard_users)
now = datetime.datetime.now()
sites_loaded = []
avg_time_taken = []
for hour in range(24):
start_hours_ago = now - datetime.timedelta(hours=hour)
end_hours_ago = now - datetime.timedelta(hours=hour+1)
aggregates = dict(count=Count('loadtime'), avg=Avg('loadtime'))
load_times = FeedLoadtime.objects.filter(
date_accessed__lte=start_hours_ago,
date_accessed__gte=end_hours_ago
).aggregate(**aggregates)
sites_loaded.append(load_times['count'] or 0)
avg_time_taken.append(load_times['avg'] or 0)
sites_loaded.reverse()
avg_time_taken.reverse()
cls.objects(key='sites_loaded').update_one(upsert=True, key='sites_loaded', value=json.encode(sites_loaded))
cls.objects(key='avg_time_taken').update_one(upsert=True, key='avg_time_taken', value=json.encode(avg_time_taken))
cls.objects(key='latest_sites_loaded').update_one(upsert=True, key='latest_sites_loaded', value=sites_loaded[-1])
cls.objects(key='latest_avg_time_taken').update_one(upsert=True, key='latest_avg_time_taken', value=avg_time_taken[-1])
2011-04-16 16:23:12 -04:00
print sites_loaded, avg_time_taken
print max(sites_loaded), max(avg_time_taken)
cls.objects(key='max_sites_loaded').update_one(upsert=True, key='max_sites_loaded', value=max(sites_loaded))
cls.objects(key='max_avg_time_taken').update_one(upsert=True, key='max_avg_time_taken', value=max(1, max(avg_time_taken)))