Kokoro-FastAPI/README.md
2025-01-13 05:51:47 -07:00

385 lines
12 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<p align="center">
<img src="githubbanner.png" alt="Kokoro TTS Banner">
</p>
# Kokoro TTS API
[![Tests](https://img.shields.io/badge/tests-117%20passed-darkgreen)]()
[![Coverage](https://img.shields.io/badge/coverage-75%25-darkgreen)]()
[![Tested at Model Commit](https://img.shields.io/badge/last--tested--model--commit-a67f113-blue)](https://huggingface.co/hexgrad/Kokoro-82M/tree/c3b0d86e2a980e027ef71c28819ea02e351c2667) [![Try on Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Try%20on-Spaces-blue)](https://huggingface.co/spaces/Remsky/Kokoro-TTS-Zero)
Dockerized FastAPI wrapper for [Kokoro-82M](https://huggingface.co/hexgrad/Kokoro-82M) text-to-speech model
- OpenAI-compatible Speech endpoint, with inline voice combination functionality
- NVIDIA GPU accelerated or CPU Onnx inference
- very fast generation time
- 100x+ real time speed via HF A100
- 35-50x+ real time speed via 4060Ti
- 5x+ real time speed via M3 Pro CPU
- streaming support w/ variable chunking to control latency & artifacts
- simple audio generation web ui utility
- (new) phoneme endpoints for conversion and generation
## Quick Start
The service can be accessed through either the API endpoints or the Gradio web interface.
1. Install prerequisites:
- Install [Docker Desktop](https://www.docker.com/products/docker-desktop/) + [Git](https://git-scm.com/downloads)
- Clone and start the service:
```bash
git clone https://github.com/remsky/Kokoro-FastAPI.git
cd Kokoro-FastAPI
docker compose up --build
```
2. Run locally as an OpenAI-Compatible Speech Endpoint
```python
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:8880/v1",
api_key="not-needed"
)
response = client.audio.speech.create(
model="kokoro",
voice="af_sky+af_bella", #single or multiple voicepack combo
input="Hello world!",
response_format="mp3"
)
response.stream_to_file("output.mp3")
```
or visit http://localhost:7860
<p align="center">
<img src="ui\GradioScreenShot.png" width="80%" alt="Voice Analysis Comparison" style="border: 2px solid #333; padding: 10px;">
</p>
## Features
<details>
<summary>OpenAI-Compatible Speech Endpoint</summary>
```python
# Using OpenAI's Python library
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8880/v1", api_key="not-needed")
response = client.audio.speech.create(
model="kokoro", # Not used but required for compatibility, also accepts library defaults
voice="af_bella+af_sky",
input="Hello world!",
response_format="mp3"
)
response.stream_to_file("output.mp3")
```
Or Via Requests:
```python
import requests
response = requests.get("http://localhost:8880/v1/audio/voices")
voices = response.json()["voices"]
# Generate audio
response = requests.post(
"http://localhost:8880/v1/audio/speech",
json={
"model": "kokoro", # Not used but required for compatibility
"input": "Hello world!",
"voice": "af_bella",
"response_format": "mp3", # Supported: mp3, wav, opus, flac
"speed": 1.0
}
)
# Save audio
with open("output.mp3", "wb") as f:
f.write(response.content)
```
Quick tests (run from another terminal):
```bash
python examples/assorted_checks/test_openai/test_openai_tts.py # Test OpenAI Compatibility
python examples/assorted_checks/test_voices/test_all_voices.py # Test all available voices
```
</details>
<details>
<summary>Voice Combination</summary>
- Averages model weights of any existing voicepacks
- Saves generated voicepacks for future use
- (new) Available through any endpoint, simply concatenate desired packs with "+"
Combine voices and generate audio:
```python
import requests
response = requests.get("http://localhost:8880/v1/audio/voices")
voices = response.json()["voices"]
# Create combined voice (saves locally on server)
response = requests.post(
"http://localhost:8880/v1/audio/voices/combine",
json=[voices[0], voices[1]]
)
combined_voice = response.json()["voice"]
# Generate audio with combined voice (or, simply pass multiple directly with `+` )
response = requests.post(
"http://localhost:8880/v1/audio/speech",
json={
"input": "Hello world!",
"voice": combined_voice, # or skip the above step with f"{voices[0]}+{voices[1]}"
"response_format": "mp3"
}
)
```
<p align="center">
<img src="assets/voice_analysis.png" width="80%" alt="Voice Analysis Comparison" style="border: 2px solid #333; padding: 10px;">
</p>
</details>
<details>
<summary>Multiple Output Audio Formats</summary>
- mp3
- wav
- opus
- flac
- aac
- pcm
<p align="center">
<img src="assets/format_comparison.png" width="80%" alt="Audio Format Comparison" style="border: 2px solid #333; padding: 10px;">
</p>
</details>
<details>
<summary>Gradio Web Utility</summary>
Access the interactive web UI at http://localhost:7860 after starting the service. Features include:
- Voice/format/speed selection
- Audio playback and download
- Text file or direct input
If you only want the API, just comment out everything in the docker-compose.yml under and including `gradio-ui`
Currently, voices created via the API are accessible here, but voice combination/creation has not yet been added
*Note: Recent updates for streaming could lead to temporary glitches. If so, pull from the most recent stable release v0.0.2 to restore*
</details>
<details>
<summary>Streaming Support</summary>
```python
# OpenAI-compatible streaming
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:8880", api_key="not-needed")
# Stream to file
with client.audio.speech.with_streaming_response.create(
model="kokoro",
voice="af_bella",
input="Hello world!"
) as response:
response.stream_to_file("output.mp3")
# Stream to speakers (requires PyAudio)
import pyaudio
player = pyaudio.PyAudio().open(
format=pyaudio.paInt16,
channels=1,
rate=24000,
output=True
)
with client.audio.speech.with_streaming_response.create(
model="kokoro",
voice="af_bella",
response_format="pcm",
input="Hello world!"
) as response:
for chunk in response.iter_bytes(chunk_size=1024):
player.write(chunk)
```
Or via requests:
```python
import requests
response = requests.post(
"http://localhost:8880/v1/audio/speech",
json={
"input": "Hello world!",
"voice": "af_bella",
"response_format": "pcm"
},
stream=True
)
for chunk in response.iter_content(chunk_size=1024):
if chunk:
# Process streaming chunks
pass
```
<p align="center">
<img src="assets/gpu_first_token_timeline_openai.png" width="45%" alt="GPU First Token Timeline" style="border: 2px solid #333; padding: 10px; margin-right: 1%;">
<img src="assets/cpu_first_token_timeline_stream_openai.png" width="45%" alt="CPU First Token Timeline" style="border: 2px solid #333; padding: 10px;">
</p>
Key Streaming Metrics:
- First token latency @ chunksize
- ~300ms (GPU) @ 400
- ~3500ms (CPU) @ 200 (older i7)
- ~<1s (CPU) @ 200 (M3 Pro)
- Adjustable chunking settings for real-time playback
*Note: Artifacts in intonation can increase with smaller chunks*
</details>
## Processing Details
<details>
<summary>Performance Benchmarks</summary>
Benchmarking was performed on generation via the local API using text lengths up to feature-length books (~1.5 hours output), measuring processing time and realtime factor. Tests were run on:
- Windows 11 Home w/ WSL2
- NVIDIA 4060Ti 16gb GPU @ CUDA 12.1
- 11th Gen i7-11700 @ 2.5GHz
- 64gb RAM
- WAV native output
- H.G. Wells - The Time Machine (full text)
<p align="center">
<img src="assets/gpu_processing_time.png" width="45%" alt="Processing Time" style="border: 2px solid #333; padding: 10px; margin-right: 1%;">
<img src="assets/gpu_realtime_factor.png" width="45%" alt="Realtime Factor" style="border: 2px solid #333; padding: 10px;">
</p>
Key Performance Metrics:
- Realtime Speed: Ranges between 25-50x (generation time to output audio length)
- Average Processing Rate: 137.67 tokens/second (cl100k_base)
</details>
<details>
<summary>GPU Vs. CPU</summary>
```bash
# GPU: Requires NVIDIA GPU with CUDA 12.1 support (~35x realtime speed)
docker compose up --build
# CPU: ONNX optimized inference (~2.4x realtime speed)
docker compose -f docker-compose.cpu.yml up --build
```
*Note: Overall speed may have reduced somewhat with the structural changes to accomodate streaming. Looking into it*
</details>
<details>
<summary>Natural Boundary Detection</summary>
- Automatically splits and stitches at sentence boundaries
- Helps to reduce artifacts and allow long form processing as the base model is only currently configured for approximately 30s output
</details>
<details>
<summary>Phoneme & Token Routes</summary>
Convert text to phonemes and/or generate audio directly from phonemes:
```python
import requests
# Convert text to phonemes
response = requests.post(
"http://localhost:8880/dev/phonemize",
json={
"text": "Hello world!",
"language": "a" # "a" for American English
}
)
result = response.json()
phonemes = result["phonemes"] # Phoneme string e.g ðɪs ɪz ˈoʊnli ɐ tˈɛst
tokens = result["tokens"] # Token IDs including start/end tokens
# Generate audio from phonemes
response = requests.post(
"http://localhost:8880/dev/generate_from_phonemes",
json={
"phonemes": phonemes,
"voice": "af_bella",
"speed": 1.0
}
)
# Save WAV audio
with open("speech.wav", "wb") as f:
f.write(response.content)
```
See `examples/phoneme_examples/generate_phonemes.py` for a sample script.
</details>
## Known Issues
<details>
<summary>Linux GPU Permissions</summary>
Some Linux users may encounter GPU permission issues when running as non-root.
Can't guarantee anything, but here are some common solutions, consider your security requirements carefully
### Option 1: Container Groups (Likely the best option)
```yaml
services:
kokoro-tts:
# ... existing config ...
group_add:
- "video"
- "render"
```
### Option 2: Host System Groups
```yaml
services:
kokoro-tts:
# ... existing config ...
user: "${UID}:${GID}"
group_add:
- "video"
```
Note: May require adding host user to groups: `sudo usermod -aG docker,video $USER` and system restart.
### Option 3: Device Permissions (Use with caution)
```yaml
services:
kokoro-tts:
# ... existing config ...
devices:
- /dev/nvidia0:/dev/nvidia0
- /dev/nvidiactl:/dev/nvidiactl
- /dev/nvidia-uvm:/dev/nvidia-uvm
```
⚠️ Warning: Reduces system security. Use only in development environments.
Prerequisites: NVIDIA GPU, drivers, and container toolkit must be properly configured.
Visit [NVIDIA Container Toolkit installation](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) for more detailed information
</details>
## Model and License
<details open>
<summary>Model</summary>
This API uses the [Kokoro-82M](https://huggingface.co/hexgrad/Kokoro-82M) model from HuggingFace.
Visit the model page for more details about training, architecture, and capabilities. I have no affiliation with any of their work, and produced this wrapper for ease of use and personal projects.
</details>
<details>
<summary>License</summary>
This project is licensed under the Apache License 2.0 - see below for details:
- The Kokoro model weights are licensed under Apache 2.0 (see [model page](https://huggingface.co/hexgrad/Kokoro-82M))
- The FastAPI wrapper code in this repository is licensed under Apache 2.0 to match
- The inference code adapted from StyleTTS2 is MIT licensed
The full Apache 2.0 license text can be found at: https://www.apache.org/licenses/LICENSE-2.0
</details>