mirror of
https://github.com/remsky/Kokoro-FastAPI.git
synced 2025-08-05 16:48:53 +00:00
66 lines
2.3 KiB
Python
66 lines
2.3 KiB
Python
![]() |
import os
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from onnxruntime import InferenceSession, SessionOptions, GraphOptimizationLevel, ExecutionMode
|
||
|
from loguru import logger
|
||
|
|
||
|
class TTSCPUModel:
|
||
|
_instance = None
|
||
|
_onnx_session = None
|
||
|
|
||
|
@classmethod
|
||
|
def initialize(cls, model_dir: str):
|
||
|
"""Initialize ONNX model for CPU inference"""
|
||
|
if cls._onnx_session is None:
|
||
|
# Try loading ONNX model
|
||
|
onnx_path = os.path.join(model_dir, "kokoro-v0_19.onnx")
|
||
|
if not os.path.exists(onnx_path):
|
||
|
return None
|
||
|
|
||
|
logger.info(f"Loading ONNX model from {onnx_path}")
|
||
|
|
||
|
# Configure ONNX session for optimal performance
|
||
|
session_options = SessionOptions()
|
||
|
session_options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
|
||
|
session_options.intra_op_num_threads = 4 # Adjust based on CPU cores
|
||
|
session_options.execution_mode = ExecutionMode.ORT_SEQUENTIAL
|
||
|
|
||
|
# Configure CPU provider options
|
||
|
provider_options = {
|
||
|
'CPUExecutionProvider': {
|
||
|
'arena_extend_strategy': 'kNextPowerOfTwo',
|
||
|
'cpu_memory_arena_cfg': 'cpu:0'
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cls._onnx_session = InferenceSession(
|
||
|
onnx_path,
|
||
|
sess_options=session_options,
|
||
|
providers=['CPUExecutionProvider'],
|
||
|
provider_options=[provider_options]
|
||
|
)
|
||
|
|
||
|
return cls._onnx_session
|
||
|
return cls._onnx_session
|
||
|
|
||
|
@classmethod
|
||
|
def generate(cls, tokens: list, voicepack: torch.Tensor, speed: float) -> np.ndarray:
|
||
|
"""Generate audio using ONNX model"""
|
||
|
if cls._onnx_session is None:
|
||
|
raise RuntimeError("ONNX model not initialized")
|
||
|
|
||
|
# Pre-allocate and prepare inputs
|
||
|
tokens_input = np.array([tokens], dtype=np.int64)
|
||
|
style_input = voicepack[len(tokens)-2].numpy() # Already has correct dimensions
|
||
|
speed_input = np.full(1, speed, dtype=np.float32) # More efficient than ones * speed
|
||
|
|
||
|
# Run inference with optimized inputs
|
||
|
return cls._onnx_session.run(
|
||
|
None,
|
||
|
{
|
||
|
'tokens': tokens_input,
|
||
|
'style': style_input,
|
||
|
'speed': speed_input
|
||
|
}
|
||
|
)[0]
|