import os import numpy as np import torch from onnxruntime import InferenceSession, SessionOptions, GraphOptimizationLevel, ExecutionMode from loguru import logger class TTSCPUModel: _instance = None _onnx_session = None @classmethod def initialize(cls, model_dir: str): """Initialize ONNX model for CPU inference""" if cls._onnx_session is None: # Try loading ONNX model onnx_path = os.path.join(model_dir, "kokoro-v0_19.onnx") if not os.path.exists(onnx_path): return None logger.info(f"Loading ONNX model from {onnx_path}") # Configure ONNX session for optimal performance session_options = SessionOptions() session_options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL session_options.intra_op_num_threads = 4 # Adjust based on CPU cores session_options.execution_mode = ExecutionMode.ORT_SEQUENTIAL # Configure CPU provider options provider_options = { 'CPUExecutionProvider': { 'arena_extend_strategy': 'kNextPowerOfTwo', 'cpu_memory_arena_cfg': 'cpu:0' } } cls._onnx_session = InferenceSession( onnx_path, sess_options=session_options, providers=['CPUExecutionProvider'], provider_options=[provider_options] ) return cls._onnx_session return cls._onnx_session @classmethod def generate(cls, tokens: list, voicepack: torch.Tensor, speed: float) -> np.ndarray: """Generate audio using ONNX model""" if cls._onnx_session is None: raise RuntimeError("ONNX model not initialized") # Pre-allocate and prepare inputs tokens_input = np.array([tokens], dtype=np.int64) style_input = voicepack[len(tokens)-2].numpy() # Already has correct dimensions speed_input = np.full(1, speed, dtype=np.float32) # More efficient than ones * speed # Run inference with optimized inputs return cls._onnx_session.run( None, { 'tokens': tokens_input, 'style': style_input, 'speed': speed_input } )[0]