Kokoro-FastAPI/api/src/services/tts_cpu.py

95 lines
3.4 KiB
Python
Raw Normal View History

import os
import numpy as np
import torch
from onnxruntime import InferenceSession, SessionOptions, GraphOptimizationLevel, ExecutionMode
from loguru import logger
from .tts_base import TTSBaseModel
class TTSCPUModel(TTSBaseModel):
_instance = None
_onnx_session = None
@classmethod
def initialize(cls, model_dir: str, model_path: str = None):
"""Initialize ONNX model for CPU inference"""
if cls._onnx_session is None:
# Try loading ONNX model
# First try the specified path if provided
if model_path and model_path.endswith('.onnx'):
onnx_path = os.path.join(model_dir, model_path)
if os.path.exists(onnx_path):
logger.info(f"Loading specified ONNX model from {onnx_path}")
else:
onnx_path = None
else:
# Look for any .onnx file in the directory as fallback
onnx_files = [f for f in os.listdir(model_dir) if f.endswith('.onnx')]
if onnx_files:
onnx_path = os.path.join(model_dir, onnx_files[0])
logger.info(f"Found ONNX model: {onnx_path}")
else:
logger.error(f"No ONNX model found in {model_dir}")
return None
if not onnx_path:
return None
logger.info(f"Loading ONNX model from {onnx_path}")
# Configure ONNX session for optimal performance
session_options = SessionOptions()
session_options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
session_options.intra_op_num_threads = 4 # Adjust based on CPU cores
session_options.execution_mode = ExecutionMode.ORT_SEQUENTIAL
# Configure CPU provider options
provider_options = {
'CPUExecutionProvider': {
'arena_extend_strategy': 'kNextPowerOfTwo',
'cpu_memory_arena_cfg': 'cpu:0'
}
}
cls._onnx_session = InferenceSession(
onnx_path,
sess_options=session_options,
providers=['CPUExecutionProvider'],
provider_options=[provider_options]
)
return cls._onnx_session
return cls._onnx_session
@classmethod
def generate(cls, input_data: list[int], voicepack: torch.Tensor, *args) -> np.ndarray:
"""Generate audio using ONNX model
Args:
input_data: list of token IDs
voicepack: Voice tensor
*args: (speed,) tuple
Returns:
np.ndarray: Generated audio samples
"""
if cls._onnx_session is None:
raise RuntimeError("ONNX model not initialized")
speed = args[0]
# Pre-allocate and prepare inputs
tokens_input = np.array([input_data], dtype=np.int64)
style_input = voicepack[len(input_data)-2].numpy() # Already has correct dimensions
speed_input = np.full(1, speed, dtype=np.float32) # More efficient than ones * speed
# Run inference with optimized inputs
result = cls._onnx_session.run(
None,
{
'tokens': tokens_input,
'style': style_input,
'speed': speed_input
}
)
return result[0]