Kokoro-FastAPI/api/src/services/tts_gpu.py

263 lines
9.4 KiB
Python
Raw Normal View History

import os
2025-01-09 18:41:44 -07:00
import time
import numpy as np
import torch
from loguru import logger
from builds.models import build_model
from .tts_base import TTSBaseModel
from ..core.config import settings
2025-01-09 18:41:44 -07:00
from .text_processing import tokenize, phonemize
# @torch.no_grad()
# def forward(model, tokens, ref_s, speed):
# """Forward pass through the model"""
# device = ref_s.device
# tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
# input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
# text_mask = length_to_mask(input_lengths).to(device)
# bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
# d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
# s = ref_s[:, 128:]
# d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
# x, _ = model.predictor.lstm(d)
# duration = model.predictor.duration_proj(x)
# duration = torch.sigmoid(duration).sum(axis=-1) / speed
# pred_dur = torch.round(duration).clamp(min=1).long()
# pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
# c_frame = 0
# for i in range(pred_aln_trg.size(0)):
# pred_aln_trg[i, c_frame : c_frame + pred_dur[0, i].item()] = 1
# c_frame += pred_dur[0, i].item()
# en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
# F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
# t_en = model.text_encoder(tokens, input_lengths, text_mask)
# asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
# return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
@torch.no_grad()
def forward(model, tokens, ref_s, speed):
2025-01-12 21:33:23 -07:00
"""Forward pass through the model with moderate memory management"""
device = ref_s.device
2025-01-12 21:33:23 -07:00
try:
# Initial tensor setup with proper device placement
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
# Split and clone reference signals with explicit device placement
s_content = ref_s[:, 128:].clone().to(device)
s_ref = ref_s[:, :128].clone().to(device)
# BERT and encoder pass
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
# Predictor forward pass
d = model.predictor.text_encoder(d_en, s_content, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
# Duration prediction
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1) / speed
pred_dur = torch.round(duration).clamp(min=1).long()
# Only cleanup large intermediates
del duration, x
# Alignment matrix construction
pred_aln_trg = torch.zeros(input_lengths.item(), pred_dur.sum().item(), device=device)
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame : c_frame + pred_dur[0, i].item()] = 1
c_frame += pred_dur[0, i].item()
pred_aln_trg = pred_aln_trg.unsqueeze(0)
# Matrix multiplications with selective cleanup
en = d.transpose(-1, -2) @ pred_aln_trg
del d # Free large intermediate tensor
F0_pred, N_pred = model.predictor.F0Ntrain(en, s_content)
del en # Free large intermediate tensor
# Final text encoding and decoding
t_en = model.text_encoder(tokens, input_lengths, text_mask)
asr = t_en @ pred_aln_trg
del t_en # Free large intermediate tensor
# Final decoding and transfer to CPU
output = model.decoder(asr, F0_pred, N_pred, s_ref)
result = output.squeeze().cpu().numpy()
return result
finally:
# Let PyTorch handle most cleanup automatically
# Only explicitly free the largest tensors
del pred_aln_trg, asr
2025-01-09 18:41:44 -07:00
# def length_to_mask(lengths):
# """Create attention mask from lengths"""
# mask = (
# torch.arange(lengths.max())
# .unsqueeze(0)
# .expand(lengths.shape[0], -1)
# .type_as(lengths)
# )
# mask = torch.gt(mask + 1, lengths.unsqueeze(1))
# return mask
2025-01-09 18:41:44 -07:00
def length_to_mask(lengths):
"""Create attention mask from lengths - possibly optimized version"""
max_len = lengths.max()
# Create mask directly on the same device as lengths
2025-01-09 18:41:44 -07:00
mask = torch.arange(max_len, device=lengths.device)[None, :].expand(
lengths.shape[0], -1
)
# Avoid type_as by using the correct dtype from the start
if lengths.dtype != mask.dtype:
mask = mask.to(dtype=lengths.dtype)
# Fuse operations using broadcasting
return mask + 1 > lengths[:, None]
2025-01-09 18:41:44 -07:00
class TTSGPUModel(TTSBaseModel):
_instance = None
_device = "cuda"
@classmethod
def get_instance(cls):
"""Get the model instance"""
if cls._instance is None:
raise RuntimeError("GPU model not initialized. Call initialize() first.")
return cls._instance
@classmethod
def initialize(cls, model_dir: str, model_path: str):
"""Initialize PyTorch model for GPU inference"""
if cls._instance is None and torch.cuda.is_available():
try:
logger.info("Initializing GPU model")
model_path = os.path.join(model_dir, settings.pytorch_model_path)
model = build_model(model_path, cls._device)
cls._instance = model
return model
except Exception as e:
logger.error(f"Failed to initialize GPU model: {e}")
return None
return cls._instance
@classmethod
def process_text(cls, text: str, language: str) -> tuple[str, list[int]]:
"""Process text into phonemes and tokens
2025-01-09 18:41:44 -07:00
Args:
text: Input text
language: Language code
2025-01-09 18:41:44 -07:00
Returns:
tuple[str, list[int]]: Phonemes and token IDs
"""
phonemes = phonemize(text, language)
tokens = tokenize(phonemes)
return phonemes, tokens
@classmethod
2025-01-09 18:41:44 -07:00
def generate_from_text(
cls, text: str, voicepack: torch.Tensor, language: str, speed: float
) -> tuple[np.ndarray, str]:
"""Generate audio from text
2025-01-09 18:41:44 -07:00
Args:
text: Input text
voicepack: Voice tensor
language: Language code
speed: Speed factor
2025-01-09 18:41:44 -07:00
Returns:
tuple[np.ndarray, str]: Generated audio samples and phonemes
"""
if cls._instance is None:
raise RuntimeError("GPU model not initialized")
2025-01-09 18:41:44 -07:00
# Process text
phonemes, tokens = cls.process_text(text, language)
2025-01-09 18:41:44 -07:00
# Generate audio
audio = cls.generate_from_tokens(tokens, voicepack, speed)
2025-01-09 18:41:44 -07:00
return audio, phonemes
@classmethod
2025-01-09 18:41:44 -07:00
def generate_from_tokens(
cls, tokens: list[int], voicepack: torch.Tensor, speed: float
) -> np.ndarray:
2025-01-12 21:33:23 -07:00
"""Generate audio from tokens with moderate memory management
2025-01-09 18:41:44 -07:00
Args:
tokens: Token IDs
voicepack: Voice tensor
speed: Speed factor
2025-01-09 18:41:44 -07:00
Returns:
np.ndarray: Generated audio samples
"""
if cls._instance is None:
raise RuntimeError("GPU model not initialized")
2025-01-09 18:41:44 -07:00
2025-01-12 21:33:23 -07:00
try:
device = cls._device
# Check memory pressure
if torch.cuda.is_available():
memory_allocated = torch.cuda.memory_allocated(device) / 1e9 # Convert to GB
if memory_allocated > 2.0: # 2GB limit
logger.info(
f"Memory usage above 2GB threshold:{memory_allocated:.2f}GB "
f"Clearing cache"
)
torch.cuda.empty_cache()
import gc
gc.collect()
# Get reference style with proper device placement
ref_s = voicepack[len(tokens)].clone().to(device)
# Generate audio
audio = forward(cls._instance, tokens, ref_s, speed)
return audio
except RuntimeError as e:
if "out of memory" in str(e):
# On OOM, do a full cleanup and retry
if torch.cuda.is_available():
logger.warning("Out of memory detected, performing full cleanup")
torch.cuda.synchronize()
torch.cuda.empty_cache()
import gc
gc.collect()
# Log memory stats after cleanup
memory_allocated = torch.cuda.memory_allocated(device)
memory_reserved = torch.cuda.memory_reserved(device)
logger.info(
f"Memory after OOM cleanup: "
f"Allocated: {memory_allocated / 1e9:.2f}GB, "
f"Reserved: {memory_reserved / 1e9:.2f}GB"
)
# Retry generation
ref_s = voicepack[len(tokens)].clone().to(device)
audio = forward(cls._instance, tokens, ref_s, speed)
return audio
raise
finally:
# Only synchronize at the top level, no empty_cache
if torch.cuda.is_available():
torch.cuda.synchronize()