2025-01-03 00:53:41 -07:00
|
|
|
import os
|
2025-01-03 03:16:42 -07:00
|
|
|
import numpy as np
|
2025-01-03 00:53:41 -07:00
|
|
|
import torch
|
|
|
|
from loguru import logger
|
|
|
|
from models import build_model
|
2025-01-03 17:54:17 -07:00
|
|
|
from .text_processing import phonemize, tokenize
|
2025-01-03 00:53:41 -07:00
|
|
|
|
2025-01-03 03:16:42 -07:00
|
|
|
from .tts_base import TTSBaseModel
|
2025-01-03 17:54:17 -07:00
|
|
|
from ..core.config import settings
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def forward(model, tokens, ref_s, speed):
|
|
|
|
"""Forward pass through the model"""
|
|
|
|
device = ref_s.device
|
|
|
|
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
|
|
|
|
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
|
|
|
text_mask = length_to_mask(input_lengths).to(device)
|
|
|
|
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
|
|
|
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
|
|
|
s = ref_s[:, 128:]
|
|
|
|
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
|
|
|
|
x, _ = model.predictor.lstm(d)
|
|
|
|
duration = model.predictor.duration_proj(x)
|
|
|
|
duration = torch.sigmoid(duration).sum(axis=-1) / speed
|
|
|
|
pred_dur = torch.round(duration).clamp(min=1).long()
|
|
|
|
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
|
|
|
|
c_frame = 0
|
|
|
|
for i in range(pred_aln_trg.size(0)):
|
|
|
|
pred_aln_trg[i, c_frame : c_frame + pred_dur[0, i].item()] = 1
|
|
|
|
c_frame += pred_dur[0, i].item()
|
|
|
|
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
|
|
|
|
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
|
|
|
|
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
|
|
|
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
|
|
|
|
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
|
|
|
|
|
|
|
|
def length_to_mask(lengths):
|
|
|
|
"""Create attention mask from lengths"""
|
|
|
|
mask = (
|
|
|
|
torch.arange(lengths.max())
|
|
|
|
.unsqueeze(0)
|
|
|
|
.expand(lengths.shape[0], -1)
|
|
|
|
.type_as(lengths)
|
|
|
|
)
|
|
|
|
mask = torch.gt(mask + 1, lengths.unsqueeze(1))
|
|
|
|
return mask
|
2025-01-03 03:16:42 -07:00
|
|
|
|
|
|
|
class TTSGPUModel(TTSBaseModel):
|
2025-01-03 00:53:41 -07:00
|
|
|
_instance = None
|
|
|
|
_device = "cuda"
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def initialize(cls, model_dir: str, model_path: str):
|
|
|
|
"""Initialize PyTorch model for GPU inference"""
|
|
|
|
if cls._instance is None and torch.cuda.is_available():
|
|
|
|
try:
|
|
|
|
logger.info("Initializing GPU model")
|
2025-01-03 17:54:17 -07:00
|
|
|
model_path = os.path.join(model_dir, settings.pytorch_model_path)
|
2025-01-03 00:53:41 -07:00
|
|
|
model = build_model(model_path, cls._device)
|
|
|
|
cls._instance = model
|
|
|
|
return cls._instance
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"Failed to initialize GPU model: {e}")
|
|
|
|
return None
|
|
|
|
return cls._instance
|
|
|
|
|
|
|
|
@classmethod
|
2025-01-03 17:54:17 -07:00
|
|
|
def process_text(cls, text: str, language: str) -> tuple[str, list[int]]:
|
|
|
|
"""Process text into phonemes and tokens
|
|
|
|
|
|
|
|
Args:
|
|
|
|
text: Input text
|
|
|
|
language: Language code
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
tuple[str, list[int]]: Phonemes and token IDs
|
|
|
|
"""
|
|
|
|
phonemes = phonemize(text, language)
|
|
|
|
tokens = tokenize(phonemes)
|
|
|
|
return phonemes, tokens
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def generate_from_text(cls, text: str, voicepack: torch.Tensor, language: str, speed: float) -> tuple[np.ndarray, str]:
|
|
|
|
"""Generate audio from text
|
2025-01-03 03:16:42 -07:00
|
|
|
|
|
|
|
Args:
|
2025-01-03 17:54:17 -07:00
|
|
|
text: Input text
|
2025-01-03 03:16:42 -07:00
|
|
|
voicepack: Voice tensor
|
2025-01-03 17:54:17 -07:00
|
|
|
language: Language code
|
|
|
|
speed: Speed factor
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
tuple[np.ndarray, str]: Generated audio samples and phonemes
|
|
|
|
"""
|
|
|
|
if cls._instance is None:
|
|
|
|
raise RuntimeError("GPU model not initialized")
|
|
|
|
|
|
|
|
# Process text
|
|
|
|
phonemes, tokens = cls.process_text(text, language)
|
|
|
|
|
|
|
|
# Generate audio
|
|
|
|
audio = cls.generate_from_tokens(tokens, voicepack, speed)
|
|
|
|
|
|
|
|
return audio, phonemes
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def generate_from_tokens(cls, tokens: list[int], voicepack: torch.Tensor, speed: float) -> np.ndarray:
|
|
|
|
"""Generate audio from tokens
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tokens: Token IDs
|
|
|
|
voicepack: Voice tensor
|
|
|
|
speed: Speed factor
|
2025-01-03 03:16:42 -07:00
|
|
|
|
|
|
|
Returns:
|
|
|
|
np.ndarray: Generated audio samples
|
|
|
|
"""
|
2025-01-03 00:53:41 -07:00
|
|
|
if cls._instance is None:
|
|
|
|
raise RuntimeError("GPU model not initialized")
|
|
|
|
|
2025-01-03 17:54:17 -07:00
|
|
|
# Get reference style
|
|
|
|
ref_s = voicepack[len(tokens)]
|
2025-01-03 03:16:42 -07:00
|
|
|
|
2025-01-03 17:54:17 -07:00
|
|
|
# Generate audio
|
|
|
|
audio = forward(cls._instance, tokens, ref_s, speed)
|
|
|
|
|
2025-01-03 03:16:42 -07:00
|
|
|
return audio
|