3b1b-manim/manimlib/shaders/quadratic_bezier_stroke/geom.glsl
2024-08-07 14:46:26 -05:00

222 lines
No EOL
7.3 KiB
GLSL

#version 330
layout (triangles) in;
layout (triangle_strip, max_vertices = 64) out; // Related to MAX_STEPS below
uniform float anti_alias_width;
uniform float flat_stroke;
uniform float pixel_size;
uniform float joint_type;
uniform float frame_scale;
in vec3 verts[3];
in vec4 v_joint_product[3];
in float v_stroke_width[3];
in vec4 v_color[3];
out vec4 color;
out float scaled_anti_alias_width;
out float scaled_signed_dist_to_curve;
// Codes for joint types
const int NO_JOINT = 0;
const int AUTO_JOINT = 1;
const int BEVEL_JOINT = 2;
const int MITER_JOINT = 3;
// When the cosine of the angle between
// two vectors is larger than this, we
// consider them aligned
const float COS_THRESHOLD = 0.999;
// Used to determine how many lines to break the curve into
const float POLYLINE_FACTOR = 100;
const int MAX_STEPS = 32;
#INSERT emit_gl_Position.glsl
#INSERT finalize_color.glsl
vec3 get_joint_unit_normal(vec4 joint_product){
float tol = 1e-8;
if (length(joint_product.xyz) > tol){
return normalize(joint_product.xyz);
}
if (length(v_joint_product[1].xyz) > tol){
return normalize(v_joint_product[1].xyz);
}
return vec3(0.0, 0.0, 1.0);
}
vec4 unit_joint_product(vec4 joint_product){
float tol = 1e-8;
float norm = length(joint_product);
return (norm < tol) ? vec4(0.0, 0.0, 0.0, 1.0) : joint_product / norm;
}
vec3 point_on_quadratic(float t, vec3 c0, vec3 c1, vec3 c2){
return c0 + c1 * t + c2 * t * t;
}
vec3 tangent_on_quadratic(float t, vec3 c1, vec3 c2){
return c1 + 2 * c2 * t;
}
vec4 get_joint_product(vec3 v1, vec3 v2){
return vec4(cross(v1, v2), dot(v1, v2));
}
vec3 project(vec3 vect, vec3 unit_normal){
/* Project the vector onto the plane perpendicular to a given unit normal */
return vect - dot(vect, unit_normal) * unit_normal;
}
vec3 inverse_vector_product(vec3 vect, vec3 cross_product, float dot_product){
/*
Suppose cross(v1, v2) = cross_product and dot(v1, v2) = dot_product.
Given v1, this function return v2.
*/
return (vect * dot_product - cross(vect, cross_product)) / dot(vect, vect);
}
vec3 step_to_corner(vec3 point, vec3 tangent, vec3 unit_normal, vec4 joint_product, bool inner_joint){
/*
Step the the left of a curve.
First a perpendicular direction is calculated, then it is adjusted
so as to make a joint.
*/
vec3 unit_tan = normalize(flat_stroke == 0.0 ? project(tangent, unit_normal) : tangent);
vec4 unit_jp = unit_joint_product(joint_product);
float cos_angle = unit_jp.w;
// Step to stroke width bound should be perpendicular
// both to the tangent and the normal direction
vec3 step = normalize(cross(unit_normal, unit_tan));
// Conditions where no joint needs to be created
if (inner_joint || int(joint_type) == NO_JOINT || cos_angle > COS_THRESHOLD) return step;
if (flat_stroke == 0){
// Figure out what joint product would be for everything projected onto
// the plane perpendicular to the normal direction (which here would be to_camera)
vec3 adj_tan = inverse_vector_product(tangent, unit_jp.xyz, unit_jp.w);
adj_tan = project(adj_tan, unit_normal);
vec4 flat_jp = get_joint_product(unit_tan, adj_tan);
cos_angle = unit_joint_product(flat_jp).w;
}
// Adjust based on the joint.
// If joint type is auto, it will bevel for cos(angle) > -0.7,
// and smoothly transition to miter for those with sharper angles
float miter_factor;
if (joint_type == AUTO_JOINT) miter_factor = smoothstep(-0.7, -0.9, cos_angle);
else if (joint_type == BEVEL_JOINT) miter_factor = 0.0;
else miter_factor = 1.0;
float sin_angle = sqrt(1 - cos_angle * cos_angle) * sign(dot(joint_product.xyz, unit_normal));
float shift = (cos_angle + mix(-1, 1, miter_factor)) / sin_angle;
return step + shift * unit_tan;
}
void emit_point_with_width(
vec3 point,
vec3 tangent,
vec4 joint_product,
float width,
vec4 joint_color,
bool inner_joint
){
// Find unit normal
vec3 to_camera = camera_position - point;
vec3 unit_normal;
if (flat_stroke == 0.0){
unit_normal = normalize(to_camera);
}else{
unit_normal = get_joint_unit_normal(joint_product);
unit_normal *= sign(dot(unit_normal, to_camera)); // Choose the "outward" normal direction
}
// Figure out the step from the point to the corners of the
// triangle strip around the polyline
vec3 step = step_to_corner(point, tangent, unit_normal, joint_product, inner_joint);
// TODO, this gives a potentially nice effect that's like a ribbon mostly with its
// broad side to the camera. Currently hard to access via VMobject
if(flat_stroke == 2.0){
// Rotate the step towards the unit normal by an amount depending
// on the camera position
float cos_angle = dot(unit_normal, normalize(camera_position));
float sin_angle = sqrt(max(1 - cos_angle * cos_angle, 0));
step = cos_angle * step + sin_angle * unit_normal;
}
// Set styling
color = finalize_color(joint_color, point, unit_normal);
if (width == 0) scaled_anti_alias_width = -1.0; // Signal to discard in the frag shader
else scaled_anti_alias_width = 2.0 * anti_alias_width * pixel_size / width;
// Emit two corners
// The frag shader will receive a value from -1 to 1,
// reflecting where in the stroke that point is
for (int sign = -1; sign <= 1; sign += 2){
scaled_signed_dist_to_curve = sign;
emit_gl_Position(point + 0.5 * width * sign * step);
EmitVertex();
}
}
void main() {
// Curves are marked as ended when the handle after
// the first anchor is set equal to that anchor
if (verts[0] == verts[1]) return;
// Coefficients such that the quadratic bezier is c0 + c1 * t + c2 * t^2
vec3 c0 = verts[0];
vec3 c1 = 2 * (verts[1] - verts[0]);
vec3 c2 = verts[0] - 2 * verts[1] + verts[2];
// Estimate how many line segment the curve should be divided into
// based on the area of the triangle defined by these control points
float area = 0.5 * length(v_joint_product[1].xzy);
int count = int(round(POLYLINE_FACTOR * sqrt(area) / frame_scale));
int n_steps = min(2 + count, MAX_STEPS);
// Emit vertex pairs aroudn subdivided points
for (int i = 0; i < MAX_STEPS; i++){
if (i >= n_steps) break;
float t = float(i) / (n_steps - 1);
// Point and tangent
vec3 point = point_on_quadratic(t, c0, c1, c2);
vec3 tangent = tangent_on_quadratic(t, c1, c2);
// Style
float stroke_width = mix(v_stroke_width[0], v_stroke_width[2], t);
vec4 color = mix(v_color[0], v_color[2], t);
// This is sent along to prevent needless joint creation
bool inside_curve = (i > 0 && i < n_steps - 1);
// Use middle joint product for inner points, flip sign for first one's cross product component
vec4 joint_product;
if (i == 0) joint_product = v_joint_product[0] * vec4(-1, -1, -1, 1);
else if (inside_curve) joint_product = v_joint_product[1];
else joint_product = v_joint_product[2];
emit_point_with_width(
point, tangent, joint_product,
stroke_width, color,
inside_curve
);
}
EndPrimitive();
}