mirror of
https://github.com/3b1b/manim.git
synced 2025-08-05 16:49:03 +00:00
commit
d8b49f471a
3 changed files with 154 additions and 124 deletions
|
@ -514,7 +514,6 @@ class FuncRotater(Animation):
|
||||||
angle_revs * 2 * np.pi,
|
angle_revs * 2 * np.pi,
|
||||||
)
|
)
|
||||||
self.mobject.set_color(color_func(angle_revs))
|
self.mobject.set_color(color_func(angle_revs))
|
||||||
# Will want to have arrow colors change to match direction as well
|
|
||||||
|
|
||||||
class TestRotater(Scene):
|
class TestRotater(Scene):
|
||||||
def construct(self):
|
def construct(self):
|
||||||
|
@ -543,6 +542,12 @@ class OdometerScene(Scene):
|
||||||
rate_func = None)
|
rate_func = None)
|
||||||
|
|
||||||
def point_to_rev((x, y)):
|
def point_to_rev((x, y)):
|
||||||
|
# Warning: np.arctan2 would happily discontinuously returns the value 0 for (0, 0), due to
|
||||||
|
# design choices in the underlying atan2 library call, but for our purposes, this is
|
||||||
|
# illegitimate, and all winding number calculations must be set up to avoid this
|
||||||
|
if (x, y) == (0, 0):
|
||||||
|
print "Error! Angle of (0, 0) computed!"
|
||||||
|
return None
|
||||||
return np.true_divide(np.arctan2(y, x), 2 * np.pi)
|
return np.true_divide(np.arctan2(y, x), 2 * np.pi)
|
||||||
|
|
||||||
# Returns the value with the same fractional component as x, closest to m
|
# Returns the value with the same fractional component as x, closest to m
|
||||||
|
@ -578,16 +583,16 @@ class RectangleData():
|
||||||
self.rect = (x_interval, y_interval)
|
self.rect = (x_interval, y_interval)
|
||||||
|
|
||||||
def get_top_left(self):
|
def get_top_left(self):
|
||||||
return np.array((self.rect[0][0], self.rect[1][0]))
|
return np.array((self.rect[0][0], self.rect[1][1]))
|
||||||
|
|
||||||
def get_top_right(self):
|
def get_top_right(self):
|
||||||
return np.array((self.rect[0][1], self.rect[1][0]))
|
|
||||||
|
|
||||||
def get_bottom_right(self):
|
|
||||||
return np.array((self.rect[0][1], self.rect[1][1]))
|
return np.array((self.rect[0][1], self.rect[1][1]))
|
||||||
|
|
||||||
|
def get_bottom_right(self):
|
||||||
|
return np.array((self.rect[0][1], self.rect[1][0]))
|
||||||
|
|
||||||
def get_bottom_left(self):
|
def get_bottom_left(self):
|
||||||
return np.array((self.rect[0][0], self.rect[1][1]))
|
return np.array((self.rect[0][0], self.rect[1][0]))
|
||||||
|
|
||||||
def get_top(self):
|
def get_top(self):
|
||||||
return (self.get_top_left(), self.get_top_right())
|
return (self.get_top_left(), self.get_top_right())
|
||||||
|
@ -611,22 +616,50 @@ class RectangleData():
|
||||||
elif dim == 1:
|
elif dim == 1:
|
||||||
return_data = [RectangleData(x_interval, new_interval) for new_interval in split_interval(y_interval)]
|
return_data = [RectangleData(x_interval, new_interval) for new_interval in split_interval(y_interval)]
|
||||||
else:
|
else:
|
||||||
print "Error!"
|
print "RectangleData.splits_on_dim passed illegitimate dimension!"
|
||||||
|
|
||||||
return tuple(return_data)
|
return tuple(return_data)
|
||||||
|
|
||||||
|
def split_line_on_dim(self, dim):
|
||||||
|
x_interval = self.rect[0]
|
||||||
|
y_interval = self.rect[1]
|
||||||
|
|
||||||
|
if dim == 0:
|
||||||
|
sides = (self.get_top(), self.get_bottom())
|
||||||
|
elif dim == 1:
|
||||||
|
sides = (self.get_left(), self.get_right())
|
||||||
|
|
||||||
|
return tuple([mid(x, y) for (x, y) in sides])
|
||||||
|
|
||||||
def complex_to_pair(c):
|
def complex_to_pair(c):
|
||||||
return (c.real, c.imag)
|
return (c.real, c.imag)
|
||||||
|
|
||||||
class iterative_2d_test(Scene):
|
def plane_poly_with_roots(*points):
|
||||||
|
def f((x, y)):
|
||||||
|
return complex_to_pair(np.prod([complex(x, y) - complex(a,b) for (a,b) in points]))
|
||||||
|
return f
|
||||||
|
|
||||||
|
def plane_func_from_complex_func(f):
|
||||||
|
return lambda (x, y) : complex_to_pair(f(complex(x,y)))
|
||||||
|
|
||||||
|
empty_animation = Animation(Mobject())
|
||||||
|
def EmptyAnimation():
|
||||||
|
return empty_animation
|
||||||
|
|
||||||
|
# TODO: Perhaps restructure this to avoid using AnimationGroup/UnsyncedParallels, and instead
|
||||||
|
# use lists of animations or lists or other such data, to be merged and processed into parallel
|
||||||
|
# animations later
|
||||||
|
class EquationSolver2d(Scene):
|
||||||
CONFIG = {
|
CONFIG = {
|
||||||
"func" : lambda (x, y) : complex_to_pair(complex(x, y)**2 - complex(1, 2)**2),
|
"func" : plane_poly_with_roots((1, 2), (-1, 3)),
|
||||||
"initial_lower_x" : -5.1,
|
"initial_lower_x" : -5.1,
|
||||||
"initial_upper_x" : 5.1,
|
"initial_upper_x" : 5.1,
|
||||||
"initial_lower_y" : -3.1,
|
"initial_lower_y" : -3.1,
|
||||||
"initial_upper_y" : 3.1,
|
"initial_upper_y" : 3.1,
|
||||||
"num_iterations" : 20,
|
"num_iterations" : 5,
|
||||||
"num_checkpoints" : 10
|
"num_checkpoints" : 10,
|
||||||
|
# TODO: Consider adding a "find_all_roots" flag, which could be turned off
|
||||||
|
# to only explore one of the two candidate subrectangles when both are viable
|
||||||
}
|
}
|
||||||
|
|
||||||
def construct(self):
|
def construct(self):
|
||||||
|
@ -634,8 +667,70 @@ class iterative_2d_test(Scene):
|
||||||
num_plane.fade()
|
num_plane.fade()
|
||||||
self.add(num_plane)
|
self.add(num_plane)
|
||||||
|
|
||||||
num_display = DecimalNumber(0, color = ORANGE)
|
rev_func = lambda p : point_to_rev(self.func(p))
|
||||||
num_display.move_to(UP + RIGHT)
|
|
||||||
|
def Animate2dSolver(cur_depth, rect, dim_to_split):
|
||||||
|
if cur_depth >= self.num_iterations:
|
||||||
|
return EmptyAnimation()
|
||||||
|
|
||||||
|
def draw_line_return_wind(start, end, start_wind):
|
||||||
|
alpha_winder = make_alpha_winder(rev_func, start, end, self.num_checkpoints)
|
||||||
|
a0 = alpha_winder(0)
|
||||||
|
rebased_winder = lambda alpha: alpha_winder(alpha) - a0 + start_wind
|
||||||
|
line = Line(num_plane.coords_to_point(*start), num_plane.coords_to_point(*end),
|
||||||
|
stroke_width = 5,
|
||||||
|
color = RED)
|
||||||
|
thin_line = line.copy()
|
||||||
|
thin_line.set_stroke(width = 1)
|
||||||
|
anim = Succession(
|
||||||
|
ShowCreation, line,
|
||||||
|
Transform, line, thin_line
|
||||||
|
)
|
||||||
|
return (anim, rebased_winder(1))
|
||||||
|
|
||||||
|
wind_so_far = 0
|
||||||
|
anim = EmptyAnimation()
|
||||||
|
sides = [
|
||||||
|
rect.get_top(),
|
||||||
|
rect.get_right(),
|
||||||
|
rect.get_bottom(),
|
||||||
|
rect.get_left()
|
||||||
|
]
|
||||||
|
for (start, end) in sides:
|
||||||
|
(next_anim, wind_so_far) = draw_line_return_wind(start, end, wind_so_far)
|
||||||
|
anim = Succession(anim, next_anim)
|
||||||
|
|
||||||
|
total_wind = round(wind_so_far)
|
||||||
|
|
||||||
|
if total_wind == 0:
|
||||||
|
coords = [
|
||||||
|
rect.get_top_left(),
|
||||||
|
rect.get_top_right(),
|
||||||
|
rect.get_bottom_right(),
|
||||||
|
rect.get_bottom_left()
|
||||||
|
]
|
||||||
|
points = [num_plane.coords_to_point(x, y) for (x, y) in coords]
|
||||||
|
fill_rect = polygonObject = Polygon(*points, fill_opacity = 0.8, color = RED)
|
||||||
|
return Succession(anim, FadeIn(fill_rect))
|
||||||
|
else:
|
||||||
|
(sub_rect1, sub_rect2) = rect.splits_on_dim(dim_to_split)
|
||||||
|
sub_rects = [sub_rect1, sub_rect2]
|
||||||
|
sub_anims = [
|
||||||
|
Animate2dSolver(
|
||||||
|
cur_depth = cur_depth + 1,
|
||||||
|
rect = sub_rect,
|
||||||
|
dim_to_split = 1 - dim_to_split
|
||||||
|
)
|
||||||
|
for sub_rect in sub_rects
|
||||||
|
]
|
||||||
|
mid_line_coords = rect.split_line_on_dim(dim_to_split)
|
||||||
|
mid_line_points = [num_plane.coords_to_point(x, y) for (x, y) in mid_line_coords]
|
||||||
|
mid_line = DashedLine(*mid_line_points)
|
||||||
|
return Succession(anim,
|
||||||
|
ShowCreation(mid_line),
|
||||||
|
FadeOut(mid_line),
|
||||||
|
UnsyncedParallel(*sub_anims)
|
||||||
|
)
|
||||||
|
|
||||||
lower_x = self.initial_lower_x
|
lower_x = self.initial_lower_x
|
||||||
upper_x = self.initial_upper_x
|
upper_x = self.initial_upper_x
|
||||||
|
@ -647,80 +742,13 @@ class iterative_2d_test(Scene):
|
||||||
|
|
||||||
rect = RectangleData(x_interval, y_interval)
|
rect = RectangleData(x_interval, y_interval)
|
||||||
|
|
||||||
rev_func = lambda p : point_to_rev(self.func(p))
|
anim = Animate2dSolver(
|
||||||
|
cur_depth = 0,
|
||||||
|
rect = rect,
|
||||||
|
dim_to_split = 0,
|
||||||
|
)
|
||||||
|
|
||||||
dim_to_split = 0 # 0 for x, 1 for y
|
self.play(anim)
|
||||||
|
|
||||||
def draw_line_return_wind(start, end, start_wind):
|
|
||||||
alpha_winder = make_alpha_winder(rev_func, start, end, self.num_checkpoints)
|
|
||||||
a0 = alpha_winder(0)
|
|
||||||
rebased_winder = lambda alpha: alpha_winder(alpha) - a0 + start_wind
|
|
||||||
line = Line(num_plane.coords_to_point(*start), num_plane.coords_to_point(*end),
|
|
||||||
stroke_width = 5,
|
|
||||||
color = "#FF0000")
|
|
||||||
self.play(
|
|
||||||
ShowCreation(line),
|
|
||||||
#ChangingDecimal(num_display, rebased_winder)
|
|
||||||
)
|
|
||||||
line.set_color("#00FF00")
|
|
||||||
return rebased_winder(1)
|
|
||||||
|
|
||||||
for i in range(self.num_iterations):
|
|
||||||
(explore_rect, alt_rect) = rect.splits_on_dim(dim_to_split)
|
|
||||||
|
|
||||||
top_wind = draw_line_return_wind(
|
|
||||||
explore_rect.get_top_left(),
|
|
||||||
explore_rect.get_top_right(),
|
|
||||||
0
|
|
||||||
)
|
|
||||||
|
|
||||||
print(len(self.mobjects))
|
|
||||||
|
|
||||||
right_wind = draw_line_return_wind(
|
|
||||||
explore_rect.get_top_right(),
|
|
||||||
explore_rect.get_bottom_right(),
|
|
||||||
top_wind
|
|
||||||
)
|
|
||||||
|
|
||||||
print(len(self.mobjects))
|
|
||||||
|
|
||||||
bottom_wind = draw_line_return_wind(
|
|
||||||
explore_rect.get_bottom_right(),
|
|
||||||
explore_rect.get_bottom_left(),
|
|
||||||
right_wind
|
|
||||||
)
|
|
||||||
|
|
||||||
print(len(self.mobjects))
|
|
||||||
|
|
||||||
left_wind = draw_line_return_wind(
|
|
||||||
explore_rect.get_bottom_left(),
|
|
||||||
explore_rect.get_top_left(),
|
|
||||||
bottom_wind
|
|
||||||
)
|
|
||||||
|
|
||||||
print(len(self.mobjects))
|
|
||||||
|
|
||||||
total_wind = round(left_wind)
|
|
||||||
|
|
||||||
if total_wind == 0:
|
|
||||||
rect = alt_rect
|
|
||||||
else:
|
|
||||||
rect = explore_rect
|
|
||||||
|
|
||||||
dim_to_split = 1 - dim_to_split
|
|
||||||
|
|
||||||
self.wait()
|
self.wait()
|
||||||
|
|
||||||
|
|
||||||
class EquationSolver2d(ZoomedScene):
|
|
||||||
#TODO
|
|
||||||
CONFIG = {
|
|
||||||
"func" : lambda p : p,
|
|
||||||
"target_input" : (0, 0),
|
|
||||||
"target_output" : (0, 0),
|
|
||||||
"initial_top_left_point" : (0, 0),
|
|
||||||
"initial_guess_dimensions" : (0, 0),
|
|
||||||
"num_iterations" : 10,
|
|
||||||
"iteration_at_which_to_start_zoom" : None
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
|
@ -357,7 +357,7 @@ class Succession(Animation):
|
||||||
"""
|
"""
|
||||||
Each arg will either be an animation, or an animation class
|
Each arg will either be an animation, or an animation class
|
||||||
followed by its arguments (and potentially a dict for
|
followed by its arguments (and potentially a dict for
|
||||||
configuraiton).
|
configuration).
|
||||||
|
|
||||||
For example,
|
For example,
|
||||||
Succession(
|
Succession(
|
||||||
|
@ -415,27 +415,36 @@ class Succession(Animation):
|
||||||
#might very well mess with it.
|
#might very well mess with it.
|
||||||
self.original_run_time = run_time
|
self.original_run_time = run_time
|
||||||
|
|
||||||
|
# critical_alphas[i] is the start alpha of self.animations[i]
|
||||||
|
# critical_alphas[i + 1] is the end alpha of self.animations[i]
|
||||||
|
critical_times = np.concatenate(([0], np.cumsum(self.run_times)))
|
||||||
|
self.critical_alphas = map (lambda x : np.true_divide(x, run_time), critical_times)
|
||||||
|
|
||||||
mobject = Group(*[anim.mobject for anim in self.animations])
|
mobject = Group(*[anim.mobject for anim in self.animations])
|
||||||
Animation.__init__(self, mobject, run_time = run_time, **kwargs)
|
Animation.__init__(self, mobject, run_time = run_time, **kwargs)
|
||||||
|
|
||||||
|
def rewind_to_start(self):
|
||||||
|
for anim in reversed(self.animations):
|
||||||
|
anim.update(0)
|
||||||
|
|
||||||
def update_mobject(self, alpha):
|
def update_mobject(self, alpha):
|
||||||
if alpha >= 1.0:
|
self.rewind_to_start()
|
||||||
self.animations[-1].update(1)
|
|
||||||
return
|
for i in range(len(self.animations)):
|
||||||
run_times = self.run_times
|
sub_alpha = inverse_interpolate(
|
||||||
index = 0
|
self.critical_alphas[i],
|
||||||
time = alpha*self.original_run_time
|
self.critical_alphas[i + 1],
|
||||||
while sum(run_times[:index+1]) < time:
|
alpha
|
||||||
index += 1
|
)
|
||||||
if index > self.last_index:
|
if sub_alpha < 0:
|
||||||
self.animations[self.last_index].update(1)
|
return
|
||||||
self.animations[self.last_index].clean_up()
|
|
||||||
self.last_index = index
|
sub_alpha = clamp(0, 1, sub_alpha) # Could possibly adopt a non-clamping convention here
|
||||||
curr_anim = self.animations[index]
|
self.animations[i].update(sub_alpha)
|
||||||
sub_alpha = np.clip(
|
|
||||||
(time - sum(run_times[:index]))/run_times[index], 0, 1
|
def clean_up(self, *args, **kwargs):
|
||||||
)
|
for anim in self.animations:
|
||||||
curr_anim.update(sub_alpha)
|
anim.clean_up(*args, **kwargs)
|
||||||
|
|
||||||
class AnimationGroup(Animation):
|
class AnimationGroup(Animation):
|
||||||
CONFIG = {
|
CONFIG = {
|
||||||
|
@ -452,23 +461,10 @@ class AnimationGroup(Animation):
|
||||||
for anim in self.sub_anims:
|
for anim in self.sub_anims:
|
||||||
anim.update(alpha)
|
anim.update(alpha)
|
||||||
|
|
||||||
|
# Parallel animations where shorter animations are not stretched out to match the longest
|
||||||
|
class UnsyncedParallel(AnimationGroup):
|
||||||
|
def __init__(self, *sub_anims, **kwargs):
|
||||||
|
digest_config(self, kwargs, locals())
|
||||||
|
self.run_time = max([a.run_time for a in sub_anims])
|
||||||
|
everything = Mobject(*[a.mobject for a in sub_anims])
|
||||||
|
Animation.__init__(self, everything, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -304,6 +304,12 @@ def digest_locals(obj, keys = None):
|
||||||
def interpolate(start, end, alpha):
|
def interpolate(start, end, alpha):
|
||||||
return (1-alpha)*start + alpha*end
|
return (1-alpha)*start + alpha*end
|
||||||
|
|
||||||
|
def mid(start, end):
|
||||||
|
return (start + end)/2.0
|
||||||
|
|
||||||
|
def inverse_interpolate(start, end, value):
|
||||||
|
return np.true_divide(value - start, end - start)
|
||||||
|
|
||||||
def clamp(lower, upper, val):
|
def clamp(lower, upper, val):
|
||||||
if val < lower:
|
if val < lower:
|
||||||
return lower
|
return lower
|
||||||
|
|
Loading…
Add table
Reference in a new issue