Very rudimentary 3dSurface type

This commit is contained in:
Grant Sanderson 2020-06-04 15:41:20 -07:00
parent e4419204cb
commit 4c33b99d39
12 changed files with 196 additions and 464 deletions

View file

@ -166,14 +166,14 @@ class Camera(object):
self.fbo = self.get_fbo()
self.fbo.use()
flag = moderngl.BLEND
if self.apply_depth_test:
self.ctx.enable(moderngl.DEPTH_TEST | moderngl.BLEND)
else:
self.ctx.enable(moderngl.BLEND)
self.ctx.blend_func = (
moderngl.SRC_ALPHA, moderngl.ONE_MINUS_SRC_ALPHA,
moderngl.ONE, moderngl.ONE
)
flag |= moderngl.DEPTH_TEST
self.ctx.enable(flag)
self.ctx.blend_func = ( # Needed?
moderngl.SRC_ALPHA, moderngl.ONE_MINUS_SRC_ALPHA,
moderngl.ONE, moderngl.ONE
)
self.background_fbo = None
def init_light_source(self):
@ -379,3 +379,8 @@ class Camera(object):
texture.use(location=tid)
self.path_to_texture_id[path] = tid
return self.path_to_texture_id[path]
class ThreeDCamera(Camera):
# Purely here to keep old scenes happy
pass

View file

@ -1,232 +0,0 @@
import numpy as np
from manimlib.camera.camera import Camera
from manimlib.constants import *
from manimlib.mobject.three_d_utils import get_3d_vmob_end_corner
from manimlib.mobject.three_d_utils import get_3d_vmob_end_corner_unit_normal
from manimlib.mobject.three_d_utils import get_3d_vmob_start_corner
from manimlib.mobject.three_d_utils import get_3d_vmob_start_corner_unit_normal
from manimlib.mobject.types.point_cloud_mobject import Point
from manimlib.mobject.value_tracker import ValueTracker
from manimlib.utils.color import get_shaded_rgb
from manimlib.utils.simple_functions import clip_in_place
from manimlib.utils.space_ops import rotation_about_z
from manimlib.utils.space_ops import rotation_matrix
class ThreeDCamera(Camera):
CONFIG = {
"shading_factor": 0.2,
"distance": 20.0,
"default_distance": 5.0,
"phi": 0, # Angle off z axis
"theta": -90 * DEGREES, # Rotation about z axis
"gamma": 0, # Rotation about normal vector to camera
"light_source_start_point": 9 * DOWN + 7 * LEFT + 10 * OUT,
"frame_center": ORIGIN,
"should_apply_shading": True,
"exponential_projection": False,
"max_allowable_norm": 3 * FRAME_WIDTH,
}
def __init__(self, *args, **kwargs):
Camera.__init__(self, *args, **kwargs)
self.phi_tracker = ValueTracker(self.phi)
self.theta_tracker = ValueTracker(self.theta)
self.distance_tracker = ValueTracker(self.distance)
self.gamma_tracker = ValueTracker(self.gamma)
self.light_source = Point(self.light_source_start_point)
self.frame_center = Point(self.frame_center)
self.fixed_orientation_mobjects = dict()
self.fixed_in_frame_mobjects = set()
self.reset_rotation_matrix()
def capture(self, *mobjects, **kwargs):
self.reset_rotation_matrix()
Camera.capture(self, *mobjects, **kwargs)
def get_value_trackers(self):
return [
self.phi_tracker,
self.theta_tracker,
self.distance_tracker,
self.gamma_tracker,
]
def modified_rgbas(self, vmobject, rgbas):
if not self.should_apply_shading:
return rgbas
if vmobject.shade_in_3d and (vmobject.get_num_points() > 0):
light_source_point = self.light_source.points[0]
if len(rgbas) < 2:
shaded_rgbas = rgbas.repeat(2, axis=0)
else:
shaded_rgbas = np.array(rgbas[:2])
shaded_rgbas[0, :3] = get_shaded_rgb(
shaded_rgbas[0, :3],
get_3d_vmob_start_corner(vmobject),
get_3d_vmob_start_corner_unit_normal(vmobject),
light_source_point,
)
shaded_rgbas[1, :3] = get_shaded_rgb(
shaded_rgbas[1, :3],
get_3d_vmob_end_corner(vmobject),
get_3d_vmob_end_corner_unit_normal(vmobject),
light_source_point,
)
return shaded_rgbas
return rgbas
def get_stroke_rgbas(self, vmobject, background=False):
return self.modified_rgbas(
vmobject, vmobject.get_stroke_rgbas(background)
)
def get_fill_rgbas(self, vmobject):
return self.modified_rgbas(
vmobject, vmobject.get_fill_rgbas()
)
def get_mobjects_to_display(self, *args, **kwargs):
mobjects = Camera.get_mobjects_to_display(
self, *args, **kwargs
)
rot_matrix = self.get_rotation_matrix()
def z_key(mob):
if not (hasattr(mob, "shade_in_3d") and mob.shade_in_3d):
return np.inf
# Assign a number to a three dimensional mobjects
# based on how close it is to the camera
return np.dot(
mob.get_z_index_reference_point(),
rot_matrix.T
)[2]
return sorted(mobjects, key=z_key)
def get_phi(self):
return self.phi_tracker.get_value()
def get_theta(self):
return self.theta_tracker.get_value()
def get_distance(self):
return self.distance_tracker.get_value()
def get_gamma(self):
return self.gamma_tracker.get_value()
def get_frame_center(self):
return self.frame_center.points[0]
def set_phi(self, value):
self.phi_tracker.set_value(value)
def set_theta(self, value):
self.theta_tracker.set_value(value)
def set_distance(self, value):
self.distance_tracker.set_value(value)
def set_gamma(self, value):
self.gamma_tracker.set_value(value)
def set_frame_center(self, point):
self.frame_center.move_to(point)
def reset_rotation_matrix(self):
self.rotation_matrix = self.generate_rotation_matrix()
def get_rotation_matrix(self):
return self.rotation_matrix
def generate_rotation_matrix(self):
phi = self.get_phi()
theta = self.get_theta()
gamma = self.get_gamma()
matrices = [
rotation_about_z(-theta - 90 * DEGREES),
rotation_matrix(-phi, RIGHT),
rotation_about_z(gamma),
]
result = np.identity(3)
for matrix in matrices:
result = np.dot(matrix, result)
return result
def project_points(self, points):
frame_center = self.get_frame_center()
distance = self.get_distance()
rot_matrix = self.get_rotation_matrix()
points = points - frame_center
points = np.dot(points, rot_matrix.T)
zs = points[:, 2]
for i in 0, 1:
if self.exponential_projection:
# Proper projedtion would involve multiplying
# x and y by d / (d-z). But for points with high
# z value that causes weird artifacts, and applying
# the exponential helps smooth it out.
factor = np.exp(zs / distance)
lt0 = zs < 0
factor[lt0] = (distance / (distance - zs[lt0]))
else:
factor = (distance / (distance - zs))
factor[(distance - zs) < 0] = 10**6
# clip_in_place(factor, 0, 10**6)
points[:, i] *= factor
points = points + frame_center
return points
def project_point(self, point):
return self.project_points(point.reshape((1, 3)))[0, :]
def transform_points_pre_display(self, mobject, points):
points = super().transform_points_pre_display(mobject, points)
fixed_orientation = mobject in self.fixed_orientation_mobjects
fixed_in_frame = mobject in self.fixed_in_frame_mobjects
if fixed_in_frame:
return points
if fixed_orientation:
center_func = self.fixed_orientation_mobjects[mobject]
center = center_func()
new_center = self.project_point(center)
return points + (new_center - center)
else:
return self.project_points(points)
def add_fixed_orientation_mobjects(
self, *mobjects,
use_static_center_func=False,
center_func=None):
# This prevents the computation of mobject.get_center
# every single time a projetion happens
def get_static_center_func(mobject):
point = mobject.get_center()
return (lambda: point)
for mobject in mobjects:
if center_func:
func = center_func
elif use_static_center_func:
func = get_static_center_func(mobject)
else:
func = mobject.get_center
for submob in mobject.get_family():
self.fixed_orientation_mobjects[submob] = func
def add_fixed_in_frame_mobjects(self, *mobjects):
for mobject in self.extract_mobject_family_members(mobjects):
self.fixed_in_frame_mobjects.add(mobject)
def remove_fixed_orientation_mobjects(self, *mobjects):
for mobject in self.extract_mobject_family_members(mobjects):
if mobject in self.fixed_orientation_mobjects:
self.fixed_orientation_mobjects.remove(mobject)
def remove_fixed_in_frame_mobjects(self, *mobjects):
for mobject in self.extract_mobject_family_members(mobjects):
if mobject in self.fixed_in_frame_mobjects:
self.fixed_in_frame_mobjects.remove(mobject)

View file

@ -30,9 +30,6 @@ from manimlib.animation.transform import *
from manimlib.animation.update import *
from manimlib.camera.camera import *
from manimlib.camera.mapping_camera import *
from manimlib.camera.moving_camera import *
from manimlib.camera.three_d_camera import *
from manimlib.mobject.coordinate_systems import *
from manimlib.mobject.changing import *
@ -50,10 +47,10 @@ from manimlib.mobject.svg.drawings import *
from manimlib.mobject.svg.svg_mobject import *
from manimlib.mobject.svg.tex_mobject import *
from manimlib.mobject.svg.text_mobject import *
from manimlib.mobject.three_d_utils import *
from manimlib.mobject.three_dimensions import *
from manimlib.mobject.types.image_mobject import *
from manimlib.mobject.types.point_cloud_mobject import *
from manimlib.mobject.types.surface_mobject import *
from manimlib.mobject.types.vectorized_mobject import *
from manimlib.mobject.mobject_update_utils import *
from manimlib.mobject.value_tracker import *

View file

@ -1,58 +0,0 @@
import numpy as np
from manimlib.constants import ORIGIN
from manimlib.utils.space_ops import get_unit_normal
# TODO, these ideas should be deprecated
def get_3d_vmob_gradient_start_and_end_points(vmob):
return (
get_3d_vmob_start_corner(vmob),
get_3d_vmob_end_corner(vmob),
)
def get_3d_vmob_start_corner_index(vmob):
return 0
def get_3d_vmob_end_corner_index(vmob):
return ((len(vmob.points) - 1) // 6) * 3
def get_3d_vmob_start_corner(vmob):
if vmob.get_num_points() == 0:
return np.array(ORIGIN)
return vmob.points[get_3d_vmob_start_corner_index(vmob)]
def get_3d_vmob_end_corner(vmob):
if vmob.get_num_points() == 0:
return np.array(ORIGIN)
return vmob.points[get_3d_vmob_end_corner_index(vmob)]
def get_3d_vmob_unit_normal(vmob, point_index):
n_points = vmob.get_num_points()
if vmob.get_num_points() == 0:
return np.array(ORIGIN)
i = point_index
im1 = i - 1 if i > 0 else (n_points - 2)
ip1 = i + 1 if i < (n_points - 1) else 1
return get_unit_normal(
vmob.points[ip1] - vmob.points[i],
vmob.points[im1] - vmob.points[i],
)
def get_3d_vmob_start_corner_unit_normal(vmob):
return get_3d_vmob_unit_normal(
vmob, get_3d_vmob_start_corner_index(vmob)
)
def get_3d_vmob_end_corner_unit_normal(vmob):
return get_3d_vmob_unit_normal(
vmob, get_3d_vmob_end_corner_index(vmob)
)

View file

@ -1,64 +0,0 @@
import numpy as np
from manimlib.constants import ORIGIN
from manimlib.constants import UP
from manimlib.utils.space_ops import get_norm
from manimlib.utils.space_ops import get_unit_normal
# TODO, these ideas should be deprecated
def get_3d_vmob_gradient_start_and_end_points(vmob):
return (
get_3d_vmob_start_corner(vmob),
get_3d_vmob_end_corner(vmob),
)
def get_3d_vmob_start_corner_index(vmob):
return 0
def get_3d_vmob_end_corner_index(vmob):
return ((len(vmob.points) - 1) // 6) * 3
def get_3d_vmob_start_corner(vmob):
if vmob.get_num_points() == 0:
return np.array(ORIGIN)
return vmob.points[get_3d_vmob_start_corner_index(vmob)]
def get_3d_vmob_end_corner(vmob):
if vmob.get_num_points() == 0:
return np.array(ORIGIN)
return vmob.points[get_3d_vmob_end_corner_index(vmob)]
def get_3d_vmob_unit_normal(vmob, point_index):
n_points = vmob.get_num_points()
if len(vmob.get_anchors()) <= 2:
return np.array(UP)
i = point_index
im3 = i - 3 if i > 2 else (n_points - 4)
ip3 = i + 3 if i < (n_points - 3) else 3
unit_normal = get_unit_normal(
vmob.points[ip3] - vmob.points[i],
vmob.points[im3] - vmob.points[i],
)
if get_norm(unit_normal) == 0:
return np.array(UP)
return unit_normal
def get_3d_vmob_start_corner_unit_normal(vmob):
return get_3d_vmob_unit_normal(
vmob, get_3d_vmob_start_corner_index(vmob)
)
def get_3d_vmob_end_corner_unit_normal(vmob):
return get_3d_vmob_unit_normal(
vmob, get_3d_vmob_end_corner_index(vmob)
)

View file

@ -1,29 +1,14 @@
from manimlib.constants import *
from manimlib.mobject.geometry import Square
from manimlib.mobject.types.surface_mobject import SurfaceMobject
from manimlib.mobject.types.vectorized_mobject import VGroup
from manimlib.mobject.types.vectorized_mobject import VMobject
from manimlib.utils.iterables import listify
from manimlib.utils.space_ops import z_to_vector
##############
# TODO, replace these with a special 3d type, not VMobject
class ThreeDVMobject(VMobject):
class ParametricSurface(SurfaceMobject):
CONFIG = {
"shade_in_3d": True,
}
class ParametricSurface(VGroup):
CONFIG = {
"u_min": 0,
"u_max": 1,
"v_min": 0,
"v_max": 1,
"resolution": 32,
"u_range": (0, 1),
"v_range": (0, 1),
"resolution": (32, 32),
"surface_piece_config": {},
"fill_color": BLUE_D,
"fill_opacity": 1.0,
@ -34,93 +19,72 @@ class ParametricSurface(VGroup):
"pre_function_handle_to_anchor_scale_factor": 0.00001,
}
def __init__(self, func, **kwargs):
VGroup.__init__(self, **kwargs)
self.func = func
self.setup_in_uv_space()
self.apply_function(lambda p: func(p[0], p[1]))
if self.should_make_jagged:
self.make_jagged()
def get_u_values_and_v_values(self):
res = listify(self.resolution)
if len(res) == 1:
u_res = v_res = res[0]
def __init__(self, function=None, **kwargs):
if function is None:
self.uv_func = self.func
else:
u_res, v_res = res
u_min = self.u_min
u_max = self.u_max
v_min = self.v_min
v_max = self.v_max
self.uv_func = function
super().__init__(**kwargs)
u_values = np.linspace(u_min, u_max, u_res + 1)
v_values = np.linspace(v_min, v_max, v_res + 1)
return u_values, v_values
def setup_in_uv_space(self):
u_values, v_values = self.get_u_values_and_v_values()
faces = VGroup()
for i in range(len(u_values) - 1):
for j in range(len(v_values) - 1):
u1, u2 = u_values[i:i + 2]
v1, v2 = v_values[j:j + 2]
face = ThreeDVMobject()
face.set_points_as_corners([
[u1, v1, 0],
[u2, v1, 0],
[u2, v2, 0],
[u1, v2, 0],
[u1, v1, 0],
])
faces.add(face)
face.u_index = i
face.v_index = j
face.u1 = u1
face.u2 = u2
face.v1 = v1
face.v2 = v2
faces.set_fill(
color=self.fill_color,
opacity=self.fill_opacity
def init_points(self):
epsilon = 1e-6 # For differentials
nu, nv = self.resolution
u_range = np.linspace(*self.u_range, nu + 1)
v_range = np.linspace(*self.v_range, nv + 1)
# List of three grids, [Pure uv values, those nudged by du, those nudged by dv]
uv_grids = [
np.array([[[u, v] for v in v_range] for u in u_range])
for (du, dv) in [(0, 0), (epsilon, 0), (0, epsilon)]
]
point_grid, points_nudged_du, points_nudged_dv = [
np.apply_along_axis(lambda p: self.uv_func(*p), 2, uv_grid)
for uv_grid in uv_grids
]
normal_grid = np.cross(
(points_nudged_du - point_grid) / epsilon,
(points_nudged_dv - point_grid) / epsilon,
)
faces.set_stroke(
color=self.stroke_color,
width=self.stroke_width,
opacity=self.stroke_opacity,
self.set_points(
self.get_triangle_ready_array_from_grid(point_grid),
self.get_triangle_ready_array_from_grid(normal_grid),
)
self.add(*faces)
if self.checkerboard_colors:
self.set_fill_by_checkerboard(*self.checkerboard_colors)
def set_fill_by_checkerboard(self, *colors, opacity=None):
n_colors = len(colors)
for face in self:
c_index = (face.u_index + face.v_index) % n_colors
face.set_fill(colors[c_index], opacity=opacity)
# self.points = point_grid[indices]
def get_triangle_ready_array_from_grid(self, grid):
# Given a grid, say of points or normals, this returns an Nx3 array
# whose rows are elements from this grid in such such a way that successive
# triplets of points form triangles covering the grid.
nu = grid.shape[0] - 1
nv = grid.shape[1] - 1
dim = grid.shape[2]
arr = np.zeros((nu * nv * 6, dim))
# To match the triangles covering this surface
arr[0::6] = grid[:-1, :-1].reshape((nu * nv, 3)) # Top left
arr[1::6] = grid[+1:, :-1].reshape((nu * nv, 3)) # Bottom left
arr[2::6] = grid[:-1, +1:].reshape((nu * nv, 3)) # Top right
arr[3::6] = grid[:-1, +1:].reshape((nu * nv, 3)) # Top right
arr[4::6] = grid[+1:, :-1].reshape((nu * nv, 3)) # Bottom left
arr[5::6] = grid[+1:, +1:].reshape((nu * nv, 3)) # Bottom right
return arr
def func(self, u, v):
pass
# Specific shapes
# Sphere, cylinder, cube, prism
class Sphere(ParametricSurface):
CONFIG = {
"resolution": (12, 24),
"radius": 1,
"u_min": 0.001,
"u_max": PI - 0.001,
"v_min": 0,
"v_max": TAU,
"u_range": (0, PI),
"v_range": (0, TAU),
}
def __init__(self, **kwargs):
ParametricSurface.__init__(
self, self.func, **kwargs
)
self.scale(self.radius)
def func(self, u, v):
return np.array([
return self.radius * np.array([
np.cos(v) * np.sin(u),
np.sin(v) * np.sin(u),
np.cos(u)

View file

@ -0,0 +1,76 @@
import numpy as np
import moderngl
# from PIL import Image
from manimlib.constants import *
from manimlib.mobject.mobject import Mobject
from manimlib.utils.color import color_to_rgba
class SurfaceMobject(Mobject):
CONFIG = {
"color": GREY,
"opacity": 1,
"gloss": 1.0,
"render_primative": moderngl.TRIANGLES,
# "render_primative": moderngl.TRIANGLE_STRIP,
"vert_shader_file": "surface_vert.glsl",
"frag_shader_file": "surface_frag.glsl",
"shader_dtype": [
('point', np.float32, (3,)),
('normal', np.float32, (3,)),
('color', np.float32, (4,)),
('gloss', np.float32, (1,)),
# ('im_coords', np.float32, (2,)),
]
}
def __init__(self, **kwargs):
super().__init__(**kwargs)
def init_points(self):
self.points = np.zeros((0, self.dim))
self.normals = np.zeros((0, self.dim))
def init_colors(self):
self.set_color(self.color, self.opacity)
def set_points(self, points, normals=None):
self.points = np.array(points)
if normals is None:
v01 = points[1:-1] - points[:-2]
v02 = points[2:] - points[:-2]
crosses = np.cross(v01, v02)
crosses[1::2] *= -1 # Because of reversed orientation of every other triangle in the strip
self.normals = np.vstack([
crosses,
crosses[-1:].repeat(2, 0) # Repeat last entry twice
])
else:
self.normals = np.array(normals)
def set_color(self, color, opacity):
# TODO, allow for multiple colors
rgba = color_to_rgba(color, opacity)
self.rgbas = np.array([rgba])
def apply_function(self, function, **kwargs):
# Apply it to infinitesimal neighbors to preserve normals
pass
def rotate(self, axis, angle, **kwargs):
# Account for normals
pass
def stretch(self, factor, dim, **kwargs):
# Account for normals
pass
def get_shader_data(self):
data = self.get_blank_shader_data_array(len(self.points))
data["point"] = self.points
data["normal"] = self.normals
data["color"] = self.rgbas
data["gloss"] = self.gloss
return data

View file

@ -8,7 +8,6 @@ from functools import reduce
from manimlib.constants import *
from manimlib.mobject.mobject import Mobject
from manimlib.mobject.mobject import Point
from manimlib.mobject.three_d_utils import get_3d_vmob_gradient_start_and_end_points
from manimlib.utils.bezier import bezier
from manimlib.utils.bezier import get_smooth_handle_points
from manimlib.utils.bezier import get_quadratic_approximation_of_cubic
@ -63,7 +62,7 @@ class VMobject(Mobject):
# Could also be Bevel, Miter, Round
"joint_type": "auto",
# Positive gloss up to 1 makes it reflect the light.
"gloss": 0.0,
"gloss": 0.2,
"render_primative": moderngl.TRIANGLES,
"triangulation_locked": False,
"fill_dtype": [

View file

@ -1,5 +1,4 @@
from manimlib.animation.transform import ApplyMethod
from manimlib.camera.three_d_camera import ThreeDCamera
from manimlib.constants import DEGREES
from manimlib.constants import PRODUCTION_QUALITY_CAMERA_CONFIG
from manimlib.mobject.coordinate_systems import ThreeDAxes
@ -12,9 +11,10 @@ from manimlib.utils.config_ops import digest_config
from manimlib.utils.config_ops import merge_dicts_recursively
# TODO, these seem deprecated.
class ThreeDScene(Scene):
CONFIG = {
"camera_class": ThreeDCamera,
"ambient_camera_rotation": None,
"default_angled_camera_orientation_kwargs": {
"phi": 70 * DEGREES,

View file

@ -7,15 +7,17 @@ vec4 add_light(vec4 raw_color, vec3 point, vec3 unit_normal, vec3 light_coords,
unit_normal *= -1;
}
float camera_distance = 6;
float camera_distance = 6; // TODO, read this in as a uniform?
// Assume everything has already been rotated such that camera is in the z-direction
vec3 to_camera = vec3(0, 0, camera_distance) - point;
vec3 to_light = light_coords - point;
vec3 light_reflection = -to_light + 2 * unit_normal * dot(to_light, unit_normal);
float dot_prod = dot(normalize(light_reflection), normalize(to_camera));
float shine = gloss * exp(-3 * pow(1 - dot_prod, 2));
// float shine = gloss * exp(-3 * pow(1 - dot_prod, 2));
float shine = 2 * gloss * exp(-1 * pow(1 - dot_prod, 2));
float dp2 = dot(normalize(to_light), unit_normal);
return vec4(
mix(raw_color.rgb, vec3(1.0), shine),
mix(0.5, 1.0, max(dp2, 0)) * mix(raw_color.rgb, vec3(1.0), shine),
raw_color.a
);
}

View file

@ -0,0 +1,12 @@
#version 330
// uniform sampler2D Texture;
// in vec2 v_im_coords;
in vec4 v_color;
out vec4 frag_color;
void main() {
frag_color = v_color;
}

View file

@ -0,0 +1,31 @@
#version 330
uniform float aspect_ratio;
uniform float anti_alias_width;
uniform mat4 to_screen_space;
uniform float focal_distance;
uniform vec3 light_source_position;
// uniform sampler2D Texture;
in vec3 point;
in vec3 normal;
// in vec2 im_coords;
in vec4 color;
in float gloss;
// out vec2 v_im_coords;
out vec4 v_color;
// Analog of import for manim only
#INSERT position_point_into_frame.glsl
#INSERT get_gl_Position.glsl
#INSERT add_light.glsl
void main(){
vec3 xyz_coords = position_point_into_frame(point);
vec3 unit_normal = normalize(position_point_into_frame(normal));
// v_im_coords = im_coords;
v_color = add_light(color, xyz_coords, unit_normal, light_source_position, gloss);
gl_Position = get_gl_Position(xyz_coords);
}