3b1b-manim/active_projects/basel.py

1152 lines
36 KiB
Python
Raw Normal View History

2018-01-17 15:18:02 -08:00
#!/usr/bin/env python
from helpers import *
from mobject.tex_mobject import TexMobject
from mobject import Mobject
from mobject.image_mobject import ImageMobject
from mobject.vectorized_mobject import *
from animation.animation import Animation
from animation.transform import *
from animation.simple_animations import *
2018-01-21 18:29:13 -08:00
from animation.continual_animation import *
2018-01-17 15:18:02 -08:00
from animation.playground import *
from topics.geometry import *
from topics.characters import *
from topics.functions import *
from topics.number_line import *
from topics.numerals import *
from topics.combinatorics import *
from scene import Scene
from camera import Camera
from mobject.svg_mobject import *
from mobject.tex_mobject import *
from mobject.vectorized_mobject import *
## To watch one of these scenes, run the following:
## python extract_scene.py -p file_name <SceneName>
2018-01-27 13:30:25 +01:00
inverse_power_law = lambda maxint,scale,cutoff,exponent: \
(lambda r: maxint * (cutoff/(r/scale+cutoff))**exponent)
inverse_quadratic = lambda maxint,scale,cutoff: inverse_power_law(maxint,scale,cutoff,2)
2018-01-17 15:18:02 -08:00
2018-01-18 15:06:38 -08:00
LIGHT_COLOR = YELLOW
INDICATOR_RADIUS = 0.7
INDICATOR_STROKE_WIDTH = 1
2018-01-21 18:29:13 -08:00
INDICATOR_STROKE_COLOR = WHITE
INDICATOR_TEXT_COLOR = WHITE
INDICATOR_UPDATE_TIME = 0.2
FAST_INDICATOR_UPDATE_TIME = 0.1
2018-01-18 15:06:38 -08:00
OPACITY_FOR_UNIT_INTENSITY = 0.2
2018-01-23 10:53:24 -08:00
SWITCH_ON_RUN_TIME = 2.5
FAST_SWITCH_ON_RUN_TIME = 0.1
2018-01-27 13:30:25 +01:00
NUM_LEVELS = 30
2018-01-23 10:53:24 -08:00
NUM_CONES = 50 # in first lighthouse scene
NUM_VISIBLE_CONES = 5 # ibidem
ARC_TIP_LENGTH = 0.2
AMBIENT_FULL = 1.0
AMBIENT_DIMMED = 0.2
2018-01-23 10:53:24 -08:00
2018-01-27 13:30:25 +01:00
DEGREES = TAU/360
2018-01-23 10:53:24 -08:00
def show_line_length(line):
v = line.points[1] - line.points[0]
print v[0]**2 + v[1]**2
class AngleUpdater(ContinualAnimation):
def __init__(self, angle_arc, lc, **kwargs):
self.angle_arc = angle_arc
self.source_point = angle_arc.get_arc_center()
self.lc = lc
#self.angle_decimal = angle_decimal
ContinualAnimation.__init__(self, self.angle_arc, **kwargs)
def update_mobject(self, dt):
# angle arc
new_arc = self.angle_arc.copy().set_bound_angles(
2018-01-27 13:30:25 +01:00
start = self.lc.start_angle(),
2018-01-23 10:53:24 -08:00
stop = self.lc.stop_angle()
)
new_arc.generate_points()
new_arc.move_arc_center_to(self.source_point)
self.angle_arc.points = new_arc.points
self.angle_arc.add_tip(tip_length = ARC_TIP_LENGTH, at_start = True, at_end = True)
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
LIGHT_COLOR = YELLOW
DEGREES = 360/TAU
SWITCH_ON_RUN_TIME = 1.5
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
class AmbientLight(VMobject):
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
# Parameters are:
# * a source point
# * an opacity function
# * a light color
# * a max opacity
# * a radius (larger than the opacity's dropoff length)
# * the number of subdivisions (levels, annuli)
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
CONFIG = {
"source_point" : ORIGIN,
"opacity_function" : lambda r : 1.0/(r+1.0)**2,
"color" : LIGHT_COLOR,
"max_opacity" : 1.0,
"num_levels" : 10,
"radius" : 5.0
}
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
def generate_points(self):
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
# in theory, this method is only called once, right?
# so removing submobs shd not be necessary
for submob in self.submobjects:
self.remove(submob)
# create annuli
self.radius = float(self.radius)
dr = self.radius / self.num_levels
for r in np.arange(0, self.radius, dr):
alpha = self.max_opacity * self.opacity_function(r)
annulus = Annulus(
inner_radius = r,
outer_radius = r + dr,
color = self.color,
fill_opacity = alpha
)
annulus.move_arc_center_to(self.source_point)
self.add(annulus)
2018-01-21 18:29:13 -08:00
2018-01-18 15:06:38 -08:00
2018-01-27 13:30:25 +01:00
def move_source_to(self,point):
self.shift(point - self.source_point)
self.source_point = np.array(point)
# for submob in self.submobjects:
# if type(submob) == Annulus:
# submob.shift(self.source_point - submob.get_center())
def dimming(self,new_alpha):
old_alpha = self.max_opacity
self.max_opacity = new_alpha
for submob in self.submobjects:
old_submob_alpha = submob.fill_opacity
new_submob_alpha = old_submob_alpha * new_alpha/old_alpha
submob.set_fill(opacity = new_submob_alpha)
2018-01-27 13:30:25 +01:00
class Spotlight(VMobject):
2018-01-18 15:06:38 -08:00
CONFIG = {
2018-01-27 13:30:25 +01:00
"source_point" : ORIGIN,
"opacity_function" : lambda r : 1.0/(r/2+1.0)**2,
"color" : LIGHT_COLOR,
"max_opacity" : 1.0,
"num_levels" : 10,
"radius" : 5.0,
"screen" : None,
"shadow" : VMobject(fill_color = BLACK, stroke_width = 0, fill_opacity = 1.0)
2018-01-18 15:06:38 -08:00
}
2018-01-27 13:30:25 +01:00
def track_screen(self):
self.generate_points()
2018-01-18 15:06:38 -08:00
2018-01-27 13:30:25 +01:00
def generate_points(self):
2018-01-21 18:29:13 -08:00
for submob in self.submobjects:
2018-01-27 13:30:25 +01:00
self.remove(submob)
if self.screen != None:
# look for the screen and create annular sectors
lower_angle, upper_angle = self.viewing_angles(self.screen)
self.radius = float(self.radius)
dr = self.radius / self.num_levels
for r in np.arange(0, self.radius, dr):
alpha = self.max_opacity * self.opacity_function(r)
annular_sector = AnnularSector(
inner_radius = r,
outer_radius = r + dr,
color = self.color,
fill_opacity = alpha,
start_angle = lower_angle,
angle = upper_angle - lower_angle
)
annular_sector.move_arc_center_to(self.source_point)
self.add(annular_sector)
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
self.update_shadow(point = self.source_point)
self.add(self.shadow)
2018-01-21 18:29:13 -08:00
2018-01-23 10:53:24 -08:00
2018-01-27 13:30:25 +01:00
def viewing_angle_of_point(self,point):
distance_vector = point - self.source_point
angle = angle_of_vector(distance_vector)
return angle
def viewing_angles(self,screen):
viewing_angles = np.array(map(self.viewing_angle_of_point,
screen.get_anchors()))
lower_angle = upper_angle = 0
if len(viewing_angles) != 0:
lower_angle = np.min(viewing_angles)
upper_angle = np.max(viewing_angles)
return lower_angle, upper_angle
2018-01-23 10:53:24 -08:00
2018-01-27 13:30:25 +01:00
def opening_angle(self):
l,u = self.viewing_angles(self.screen)
return u - l
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
def start_angle(self):
l,u = self.viewing_angles(self.screen)
return l
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
def stop_angle(self):
l,u = self.viewing_angles(self.screen)
return u
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
def move_source_to(self,point):
print "moving source"
self.source_point = np.array(point)
self.recalculate_sectors(point = point, screen = self.screen)
self.update_shadow(point = point)
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
def recalculate_sectors(self, point = ORIGIN, screen = None):
if screen == None:
return
for submob in self.submobject_family():
if type(submob) == AnnularSector:
lower_angle, upper_angle = self.viewing_angles(screen)
new_submob = AnnularSector(
start_angle = lower_angle,
angle = upper_angle - lower_angle,
inner_radius = submob.inner_radius,
outer_radius = submob.outer_radius
)
new_submob.move_arc_center_to(point)
submob.points = new_submob.points
2018-01-18 15:06:38 -08:00
2018-01-27 13:30:25 +01:00
def update_shadow(self,point = ORIGIN):
use_point = point #self.source_point
self.shadow.points = self.screen.points
ray1 = self.screen.points[0] - use_point
ray2 = self.screen.points[-1] - use_point
ray1 = ray1/np.linalg.norm(ray1) * 100
2018-01-27 19:09:29 +01:00
ray1 = rotate_vector(ray1,-TAU/100)
2018-01-27 13:30:25 +01:00
ray2 = ray2/np.linalg.norm(ray2) * 100
2018-01-27 19:09:29 +01:00
ray2 = rotate_vector(ray2,TAU/100)
2018-01-27 13:30:25 +01:00
outpoint1 = self.screen.points[0] + ray1
outpoint2 = self.screen.points[-1] + ray2
self.shadow.add_control_points([outpoint2,outpoint1,self.screen.points[0]])
self.shadow.mark_paths_closed = True
2018-01-18 15:06:38 -08:00
2018-01-27 13:30:25 +01:00
def dimming(self,new_alpha):
old_alpha = self.max_opacity
self.max_opacity = new_alpha
for submob in self.submobjects:
if type(submob) != AnnularSector:
# it's the shadow, don't dim it
continue
old_submob_alpha = submob.fill_opacity
new_submob_alpha = old_submob_alpha * new_alpha/old_alpha
submob.set_fill(opacity = new_submob_alpha)
def change_opacity_function(self,new_f):
self.radius = 120
self.opacity_function = new_f
dr = self.radius/self.num_levels
sectors = []
for submob in self.submobjects:
if type(submob) == AnnularSector:
sectors.append(submob)
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
print self.num_levels, len(sectors)
for (r,submob) in zip(np.arange(0,self.radius,dr),sectors):
if type(submob) != AnnularSector:
# it's the shadow, don't dim it
continue
alpha = self.opacity_function(r)
submob.set_fill(opacity = alpha)
2018-01-18 15:06:38 -08:00
2018-01-23 10:53:24 -08:00
2018-01-18 15:06:38 -08:00
class SwitchOn(LaggedStart):
CONFIG = {
"lag_ratio": 0.2,
2018-01-21 18:29:13 -08:00
"run_time": SWITCH_ON_RUN_TIME
2018-01-18 15:06:38 -08:00
}
def __init__(self, light, **kwargs):
2018-01-27 13:30:25 +01:00
if not isinstance(light,AmbientLight) and not isinstance(light,Spotlight):
2018-01-18 15:06:38 -08:00
raise Exception("Only LightCones and Candles can be switched on")
LaggedStart.__init__(self,
FadeIn, light, **kwargs)
2018-01-27 13:30:25 +01:00
class SwitchOff(LaggedStart):
CONFIG = {
"lag_ratio": 0.2,
"run_time": SWITCH_ON_RUN_TIME
}
def __init__(self, light, **kwargs):
if not isinstance(light,AmbientLight) and not isinstance(light,Spotlight):
raise Exception("Only LightCones and Candles can be switched on")
light.submobjects = light.submobjects[::-1]
LaggedStart.__init__(self,
FadeOut, light, **kwargs)
light.submobjects = light.submobjects[::-1]
class ScreenTracker(ContinualAnimation):
def __init__(self, mobject, **kwargs):
ContinualAnimation.__init__(self, mobject, **kwargs)
def update_mobject(self, dt):
self.mobject.recalculate_sectors(
point = self.mobject.source_point,
screen = self.mobject.screen)
self.mobject.update_shadow(self.mobject.source_point)
2018-01-18 15:06:38 -08:00
class LightHouse(SVGMobject):
CONFIG = {
"file_name" : "lighthouse",
"height" : 0.5
}
class LightIndicator(Mobject):
CONFIG = {
"radius": 0.5,
2018-01-21 18:29:13 -08:00
"intensity": 0,
2018-01-27 19:09:29 +01:00
"opacity_for_unit_intensity": 1,
"precision": 3
2018-01-18 15:06:38 -08:00
}
def generate_points(self):
self.background = Circle(color=BLACK, radius = self.radius)
self.background.set_fill(opacity=1)
self.foreground = Circle(color=self.color, radius = self.radius)
self.foreground.set_stroke(color=INDICATOR_STROKE_COLOR,width=INDICATOR_STROKE_WIDTH)
self.add(self.background, self.foreground)
2018-01-27 19:09:29 +01:00
self.reading = DecimalNumber(self.intensity,num_decimal_points = self.precision)
2018-01-18 15:06:38 -08:00
self.reading.set_fill(color=INDICATOR_TEXT_COLOR)
self.reading.move_to(self.get_center())
self.add(self.reading)
def set_intensity(self, new_int):
self.intensity = new_int
new_opacity = min(1, new_int * self.opacity_for_unit_intensity)
self.foreground.set_fill(opacity=new_opacity)
ChangeDecimalToValue(self.reading, new_int).update(1)
class UpdateLightIndicator(AnimationGroup):
def __init__(self, indicator, intensity, **kwargs):
if not isinstance(indicator,LightIndicator):
raise Exception("This transform applies only to LightIndicator")
target_foreground = indicator.copy().set_intensity(intensity).foreground
change_opacity = Transform(
indicator.foreground, target_foreground
)
changing_decimal = ChangeDecimalToValue(indicator.reading, intensity)
AnimationGroup.__init__(self, changing_decimal, change_opacity, **kwargs)
self.mobject = indicator
2018-01-17 15:18:02 -08:00
class IntroScene(PiCreatureScene):
CONFIG = {
"rect_height" : 0.2,
"duration" : 1.0,
"eq_spacing" : 3 * MED_LARGE_BUFF
}
def construct(self):
2018-01-21 18:29:13 -08:00
randy = self.get_primary_pi_creature()
randy.scale(0.7).to_corner(DOWN+RIGHT)
2018-01-17 15:18:02 -08:00
self.force_skipping()
2018-01-18 15:06:38 -08:00
self.build_up_euler_sum()
2018-01-17 15:18:02 -08:00
self.build_up_sum_on_number_line()
self.show_pi_answer()
self.other_pi_formulas()
self.revert_to_original_skipping_status()
2018-01-18 15:06:38 -08:00
self.refocus_on_euler_sum()
2018-01-17 15:18:02 -08:00
def build_up_euler_sum(self):
self.euler_sum = TexMobject(
"1", "+",
"{1 \\over 4}", "+",
"{1 \\over 9}", "+",
"{1 \\over 16}", "+",
"{1 \\over 25}", "+",
"\\cdots", "=",
arg_separator = " \\, "
)
self.euler_sum.to_edge(UP)
self.euler_sum.shift(2*LEFT)
terms = [1./n**2 for n in range(1,6)]
partial_results_values = np.cumsum(terms)
self.play(
FadeIn(self.euler_sum[0], run_time = self.duration)
)
equals_sign = self.euler_sum.get_part_by_tex("=")
self.partial_sum_decimal = DecimalNumber(partial_results_values[1],
num_decimal_points = 2)
self.partial_sum_decimal.next_to(equals_sign, RIGHT)
for i in range(4):
FadeIn(self.partial_sum_decimal, run_time = self.duration)
if i == 0:
self.play(
FadeIn(self.euler_sum[1], run_time = self.duration),
FadeIn(self.euler_sum[2], run_time = self.duration),
FadeIn(equals_sign, run_time = self.duration),
FadeIn(self.partial_sum_decimal, run_time = self.duration)
)
else:
self.play(
FadeIn(self.euler_sum[2*i+1], run_time = self.duration),
FadeIn(self.euler_sum[2*i+2], run_time = self.duration),
ChangeDecimalToValue(
self.partial_sum_decimal,
partial_results_values[i+1],
run_time = self.duration,
num_decimal_points = 6,
show_ellipsis = True,
position_update_func = lambda m: m.next_to(equals_sign, RIGHT)
)
)
self.wait()
2018-01-18 15:06:38 -08:00
self.q_marks = TextMobject("???").highlight(LIGHT_COLOR)
2018-01-17 15:18:02 -08:00
self.q_marks.move_to(self.partial_sum_decimal)
self.play(
FadeIn(self.euler_sum[-3], run_time = self.duration), # +
FadeIn(self.euler_sum[-2], run_time = self.duration), # ...
ReplacementTransform(self.partial_sum_decimal, self.q_marks)
)
def build_up_sum_on_number_line(self):
self.number_line = NumberLine(
x_min = 0,
color = WHITE,
number_at_center = 1,
stroke_width = 1,
numbers_with_elongated_ticks = [0,1,2,3],
numbers_to_show = np.arange(0,5),
unit_size = 5,
tick_frequency = 0.2,
line_to_number_buff = MED_LARGE_BUFF
)
self.number_line_labels = self.number_line.get_number_mobjects()
self.add(self.number_line,self.number_line_labels)
self.wait()
# create slabs for series terms
max_n = 10
terms = [0] + [1./(n**2) for n in range(1, max_n + 1)]
series_terms = np.cumsum(terms)
lines = VGroup()
self.rects = VGroup()
slab_colors = [YELLOW, BLUE] * (max_n / 2)
for t1, t2, color in zip(series_terms, series_terms[1:], slab_colors):
line = Line(*map(self.number_line.number_to_point, [t1, t2]))
rect = Rectangle()
rect.stroke_width = 0
rect.fill_opacity = 1
rect.highlight(color)
rect.stretch_to_fit_height(
self.rect_height,
)
rect.stretch_to_fit_width(line.get_width())
rect.move_to(line)
self.rects.add(rect)
lines.add(line)
2018-01-18 15:06:38 -08:00
#self.rects.radial_gradient_highlight(ORIGIN, 5, YELLOW, BLUE)
2018-01-17 15:18:02 -08:00
for i in range(5):
self.play(
GrowFromPoint(self.rects[i], self.euler_sum[2*i].get_center(),
run_time = self.duration)
)
for i in range(5, max_n):
self.play(
GrowFromPoint(self.rects[i], self.euler_sum[10].get_center(),
run_time = self.duration)
)
def show_pi_answer(self):
self.pi_answer = TexMobject("{\\pi^2 \\over 6}").highlight(YELLOW)
self.pi_answer.move_to(self.partial_sum_decimal)
self.pi_answer.next_to(self.euler_sum[-1], RIGHT,
submobject_to_align = self.pi_answer[-2])
self.play(ReplacementTransform(self.q_marks, self.pi_answer))
def other_pi_formulas(self):
self.play(
FadeOut(self.rects),
FadeOut(self.number_line_labels),
FadeOut(self.number_line)
)
self.leibniz_sum = TexMobject(
"1-{1\\over 3}+{1\\over 5}-{1\\over 7}+{1\\over 9}-\\cdots",
"=", "{\\pi \\over 4}")
self.wallis_product = TexMobject(
"{2\\over 1} \\cdot {2\\over 3} \\cdot {4\\over 3} \\cdot {4\\over 5}" +
"\\cdot {6\\over 5} \\cdot {6\\over 7} \\cdots",
"=", "{\\pi \\over 2}")
self.leibniz_sum.next_to(self.euler_sum.get_part_by_tex("="), DOWN,
buff = self.eq_spacing,
submobject_to_align = self.leibniz_sum.get_part_by_tex("=")
)
self.wallis_product.next_to(self.leibniz_sum.get_part_by_tex("="), DOWN,
buff = self.eq_spacing,
submobject_to_align = self.wallis_product.get_part_by_tex("=")
)
self.play(
Write(self.leibniz_sum)
)
self.play(
Write(self.wallis_product)
)
def refocus_on_euler_sum(self):
self.euler_sum.add(self.pi_answer)
self.play(
FadeOut(self.leibniz_sum),
FadeOut(self.wallis_product),
ApplyMethod(self.euler_sum.shift,
ORIGIN + 2*UP - self.euler_sum.get_center())
)
# focus on pi squared
pi_squared = self.euler_sum.get_part_by_tex("\\pi")[-3]
self.play(
ScaleInPlace(pi_squared,2,rate_func = wiggle)
)
2018-01-18 15:06:38 -08:00
q_circle = Circle(color=WHITE,radius=0.8)
q_mark = TexMobject("?")
q_mark.next_to(q_circle)
2018-01-17 15:18:02 -08:00
2018-01-18 15:06:38 -08:00
thought = Group(q_circle, q_mark)
q_mark.height *= 2
self.pi_creature_thinks(thought,target_mode = "confused",
bubble_kwargs = { "height" : 1.5, "width" : 2 })
2018-01-17 15:18:02 -08:00
self.wait()
2018-01-21 18:29:13 -08:00
class FirstLightHouseScene(PiCreatureScene):
2018-01-17 15:18:02 -08:00
def construct(self):
2018-01-21 18:29:13 -08:00
self.remove(self.get_primary_pi_creature())
2018-01-17 15:18:02 -08:00
self.show_lighthouses_on_number_line()
def show_lighthouses_on_number_line(self):
self.number_line = NumberLine(
x_min = 0,
color = WHITE,
2018-01-21 18:29:13 -08:00
number_at_center = 1.6,
2018-01-17 15:18:02 -08:00
stroke_width = 1,
numbers_with_elongated_ticks = range(1,5),
numbers_to_show = range(1,5),
2018-01-18 15:06:38 -08:00
unit_size = 2,
2018-01-17 15:18:02 -08:00
tick_frequency = 0.2,
line_to_number_buff = LARGE_BUFF,
label_direction = UP,
2018-01-17 15:18:02 -08:00
)
self.number_line.label_direction = DOWN
2018-01-17 15:18:02 -08:00
self.number_line_labels = self.number_line.get_number_mobjects()
self.add(self.number_line,self.number_line_labels)
self.wait()
2018-01-21 18:29:13 -08:00
origin_point = self.number_line.number_to_point(0)
self.default_pi_creature_class = Randolph
randy = self.get_primary_pi_creature()
randy.scale(0.5)
randy.flip()
right_pupil = randy.pupils[1]
randy.next_to(origin_point, LEFT, buff = 0, submobject_to_align = right_pupil)
2018-01-18 15:06:38 -08:00
light_indicator = LightIndicator(radius = INDICATOR_RADIUS,
2018-01-21 18:29:13 -08:00
opacity_for_unit_intensity = OPACITY_FOR_UNIT_INTENSITY,
color = LIGHT_COLOR)
light_indicator.reading.scale(0.8)
2018-01-17 15:18:02 -08:00
2018-01-21 18:29:13 -08:00
bubble = ThoughtBubble(direction = RIGHT,
width = 2.5, height = 3.5)
bubble.next_to(randy,LEFT+UP)
bubble.add_content(light_indicator)
self.play(
randy.change, "wave_2",
ShowCreation(bubble),
FadeIn(light_indicator)
)
2018-01-18 15:06:38 -08:00
lighthouses = []
lighthouse_pos = []
2018-01-27 13:30:25 +01:00
ambient_lights = []
2018-01-18 15:06:38 -08:00
euler_sum_above = TexMobject("1", "+", "{1\over 4}",
2018-01-23 10:53:24 -08:00
"+", "{1\over 9}", "+", "{1\over 16}", "+", "{1\over 25}", "+", "{1\over 36}")
for (i,term) in zip(range(len(euler_sum_above)),euler_sum_above):
#horizontal alignment with tick marks
term.next_to(self.number_line.number_to_point(0.5*i+1),UP,buff = 2)
# vertical alignment with light indicator
old_y = term.get_center()[1]
new_y = light_indicator.get_center()[1]
term.shift([0,new_y - old_y,0])
2018-01-23 10:53:24 -08:00
for i in range(1,NUM_CONES+1):
2018-01-18 15:06:38 -08:00
lighthouse = LightHouse()
point = self.number_line.number_to_point(i)
2018-01-27 13:30:25 +01:00
ambient_light = AmbientLight(
opacity_function = inverse_quadratic(1,2,1),
num_levels = NUM_LEVELS,
radius = 12.0)
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
ambient_light.move_source_to(point)
2018-01-18 15:06:38 -08:00
lighthouse.next_to(point,DOWN,0)
lighthouses.append(lighthouse)
2018-01-27 13:30:25 +01:00
ambient_lights.append(ambient_light)
2018-01-18 15:06:38 -08:00
lighthouse_pos.append(point)
for lh in lighthouses:
self.add_foreground_mobject(lh)
light_indicator.set_intensity(0)
intensities = np.cumsum(np.array([1./n**2 for n in range(1,NUM_CONES+1)]))
2018-01-18 15:06:38 -08:00
opacities = intensities * light_indicator.opacity_for_unit_intensity
self.remove_foreground_mobjects(light_indicator)
# slowly switch on visible light cones and increment indicator
2018-01-27 13:30:25 +01:00
for (i,ambient_light) in zip(range(NUM_VISIBLE_CONES),ambient_lights[:NUM_VISIBLE_CONES]):
indicator_start_time = 0.4 * (i+1) * SWITCH_ON_RUN_TIME/ambient_light.radius * self.number_line.unit_size
2018-01-21 18:29:13 -08:00
indicator_stop_time = indicator_start_time + INDICATOR_UPDATE_TIME
2018-01-23 10:53:24 -08:00
indicator_rate_func = squish_rate_func(
2018-01-21 18:29:13 -08:00
smooth,indicator_start_time,indicator_stop_time)
2018-01-18 15:06:38 -08:00
self.play(
2018-01-27 13:30:25 +01:00
SwitchOn(ambient_light),
FadeIn(euler_sum_above[2*i], run_time = SWITCH_ON_RUN_TIME,
rate_func = indicator_rate_func),
FadeIn(euler_sum_above[2*i - 1], run_time = SWITCH_ON_RUN_TIME,
rate_func = indicator_rate_func),
2018-01-21 18:29:13 -08:00
ChangeDecimalToValue(light_indicator.reading,intensities[i],
rate_func = indicator_rate_func, run_time = SWITCH_ON_RUN_TIME),
2018-01-18 15:06:38 -08:00
ApplyMethod(light_indicator.foreground.set_fill,None,opacities[i])
)
2018-01-17 15:18:02 -08:00
2018-01-21 18:29:13 -08:00
if i == 0:
# move a copy out of the thought bubble for comparison
2018-01-21 18:29:13 -08:00
light_indicator_copy = light_indicator.copy()
old_y = light_indicator_copy.get_center()[1]
new_y = self.number_line.get_center()[1]
2018-01-21 18:29:13 -08:00
self.play(
light_indicator_copy.shift,[0, new_y - old_y,0]
2018-01-21 18:29:13 -08:00
)
# quickly switch on off-screen light cones and increment indicator
2018-01-27 13:30:25 +01:00
for (i,ambient_light) in zip(range(NUM_VISIBLE_CONES,NUM_CONES),ambient_lights[NUM_VISIBLE_CONES:NUM_CONES]):
indicator_start_time = 0.5 * (i+1) * FAST_SWITCH_ON_RUN_TIME/ambient_light.radius * self.number_line.unit_size
indicator_stop_time = indicator_start_time + FAST_INDICATOR_UPDATE_TIME
indicator_rate_func = squish_rate_func(#smooth, 0.8, 0.9)
smooth,indicator_start_time,indicator_stop_time)
self.play(
2018-01-27 13:30:25 +01:00
SwitchOn(ambient_light, run_time = FAST_SWITCH_ON_RUN_TIME),
ChangeDecimalToValue(light_indicator.reading,intensities[i],
rate_func = indicator_rate_func, run_time = FAST_SWITCH_ON_RUN_TIME),
ApplyMethod(light_indicator.foreground.set_fill,None,opacities[i])
)
# show limit value in light indicator and an equals sign
limit_reading = TexMobject("{\pi^2 \over 6}")
limit_reading.move_to(light_indicator.reading)
2018-01-23 10:53:24 -08:00
equals_sign = TexMobject("=")
equals_sign.next_to(randy, UP)
old_y = equals_sign.get_center()[1]
new_y = euler_sum_above.get_center()[1]
equals_sign.shift([0,new_y - old_y,0])
self.play(
2018-01-23 10:53:24 -08:00
FadeOut(light_indicator.reading),
FadeIn(limit_reading),
FadeIn(equals_sign),
)
2018-01-17 15:18:02 -08:00
2018-01-18 15:06:38 -08:00
2018-01-17 15:18:02 -08:00
self.wait()
2018-01-21 18:29:13 -08:00
class SingleLightHouseScene(PiCreatureScene):
def construct(self):
self.create_light_source_and_creature()
def create_light_source_and_creature(self):
SCREEN_SIZE = 3.0
DISTANCE_FROM_LIGHTHOUSE = 10.0
source_point = [-DISTANCE_FROM_LIGHTHOUSE/2,0,0]
observer_point = [DISTANCE_FROM_LIGHTHOUSE/2,0,0]
lighthouse = LightHouse()
2018-01-27 13:30:25 +01:00
ambient_light = AmbientLight(
opacity_function = inverse_quadratic(AMBIENT_FULL,2,1),
2018-01-27 13:30:25 +01:00
num_levels = NUM_LEVELS,
2018-01-23 10:53:24 -08:00
radius = 10,
brightness = 1,
2018-01-21 18:29:13 -08:00
)
lighthouse.scale(2).next_to(source_point, DOWN, buff = 0)
2018-01-27 13:30:25 +01:00
ambient_light.move_to(source_point)
2018-01-21 18:29:13 -08:00
morty = self.get_primary_pi_creature()
morty.scale(0.5)
morty.move_to(observer_point)
2018-01-23 10:53:24 -08:00
self.add(lighthouse)
2018-01-21 18:29:13 -08:00
self.play(
2018-01-27 13:30:25 +01:00
SwitchOn(ambient_light)
2018-01-21 18:29:13 -08:00
)
2018-01-27 13:30:25 +01:00
screen = Line([0,-1,0],[0,1,0])
screen.rotate(-TAU/6)
screen.next_to(morty, LEFT, buff = 1)
spotlight = Spotlight(
opacity_function = inverse_quadratic(1,2,1),
num_levels = NUM_LEVELS,
2018-01-23 10:53:24 -08:00
radius = 10,
brightness = 5,
2018-01-27 13:30:25 +01:00
screen = screen
2018-01-23 10:53:24 -08:00
)
2018-01-27 13:30:25 +01:00
spotlight.move_source_to(source_point)
2018-01-23 10:53:24 -08:00
2018-01-27 13:30:25 +01:00
self.play(
ApplyMethod(ambient_light.dimming,AMBIENT_DIMMED),
2018-01-27 13:30:25 +01:00
FadeIn(spotlight))
self.add(spotlight.shadow)
2018-01-21 18:29:13 -08:00
self.add_foreground_mobject(morty)
2018-01-27 13:30:25 +01:00
screen_tracker = ScreenTracker(spotlight)
# activate ONLY when spotlight is moving!
self.add(screen_tracker)
pointing_screen_at_source = ApplyMethod(spotlight.screen.rotate,TAU/6)
self.play(pointing_screen_at_source)
2018-01-23 10:53:24 -08:00
2018-01-27 13:30:25 +01:00
arc_angle = spotlight.opening_angle()
2018-01-23 10:53:24 -08:00
# draw arc arrows to show the opening angle
2018-01-27 13:30:25 +01:00
angle_arc = Arc(radius = 5, start_angle = spotlight.start_angle(),
angle = spotlight.opening_angle(), tip_length = ARC_TIP_LENGTH)
2018-01-23 10:53:24 -08:00
#angle_arc.add_tip(at_start = True, at_end = True)
angle_arc.move_arc_center_to(source_point)
self.add(angle_arc)
angle_indicator = DecimalNumber(arc_angle/TAU*360,
num_decimal_points = 0,
unit = "^\\circ")
angle_indicator.next_to(angle_arc,RIGHT)
self.add_foreground_mobject(angle_indicator)
2018-01-27 13:30:25 +01:00
angle_update_func = lambda x: spotlight.opening_angle()/TAU * 360
2018-01-23 10:53:24 -08:00
ca3 = ContinualChangingDecimal(angle_indicator,angle_update_func)
self.add(ca3)
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
ca4 = AngleUpdater(angle_arc, spotlight)
2018-01-23 10:53:24 -08:00
self.add(ca4)
2018-01-27 13:30:25 +01:00
rotating_screen = ApplyMethod(spotlight.screen.rotate,
TAU/8, run_time=1.5)
#self.wait(2)
2018-01-27 13:30:25 +01:00
rotating_screen_2 = ApplyMethod(spotlight.screen.rotate,
-TAU/4, run_time=3, rate_func = there_and_back)
#self.wait(2)
2018-01-27 13:30:25 +01:00
rotating_screen_3 = ApplyMethod(spotlight.screen.rotate,
TAU/8, run_time=1.5)
2018-01-27 13:30:25 +01:00
self.play(rotating_screen)
self.play(rotating_screen_2)
self.play(rotating_screen_3)
2018-01-23 10:53:24 -08:00
2018-01-27 13:30:25 +01:00
#self.wait()
2018-01-23 10:53:24 -08:00
2018-01-27 19:09:29 +01:00
### The following is supposed to morph the scene into the Earth scene,
### but it doesn't work
2018-01-23 10:53:24 -08:00
# # morph into Earth scene
2018-01-23 10:53:24 -08:00
# globe = Circle(radius = 3)
# globe.move_to([2,0,0])
# sun_position = [-100,0,0]
# #self.add(screen_tracker)
# print "tuet"
# self.remove(screen_tracker)
# new_opacity_function = lambda r: 0.5
# self.play(
# ApplyMethod(lighthouse.move_to,sun_position),
# ApplyMethod(ambient_light.move_to,sun_position),
# ApplyMethod(spotlight.move_source_to,sun_position),
2018-01-27 13:30:25 +01:00
# )
# self.play(
# ApplyMethod(spotlight.change_opacity_function,new_opacity_function))
# self.add(screen_tracker)
2018-01-27 13:30:25 +01:00
class EarthScene(Scene):
def construct(self):
DEGREES = TAU/360
radius = 2.5
center_x = 3
theta0 = 80 * DEGREES
dtheta = 10 * DEGREES
theta1 = theta0 + dtheta
screen = Line([center_x - radius * np.cos(theta0),radius * np.sin(theta0),0],
[center_x - radius * np.cos(theta1),radius * np.sin(theta1),0])
screen.set_stroke(color = RED, width = 5)
globe = Circle(radius = radius, stroke_width = 0)
globe.move_to([center_x,0,0])
foreground_globe = globe.copy() # above the shadow
foreground_globe.radius -= 0.2
foreground_globe.set_stroke(color = WHITE, width = 1)
self.add_foreground_mobject(foreground_globe)
globe.add(screen)
morty = Mortimer().scale(0.3).next_to(screen, RIGHT, buff = 0.5)
self.add_foreground_mobject(morty)
sun = Spotlight(
opacity_function = lambda r : 0.5,
num_levels = NUM_LEVELS,
radius = 100,
brightness = 5,
screen = screen
)
sun.move_source_to([-90,0,0])
self.add(globe,sun,screen)
screen_tracker = ScreenTracker(sun)
self.add(screen_tracker)
self.play(
ApplyMethod(globe.rotate,theta0 + dtheta/2),
ApplyMethod(morty.move_to,[1.5,0,0])
)
class ScreenShapingScene(Scene):
def construct(self):
DEGREES = TAU / 360
screen_height = 1.0
brightness_rect_height = 1.0
screen = Line([3,-screen_height/2,0],[3,screen_height/2,0], path_arc = 0, num_arc_anchors = 10)
2018-01-27 13:30:25 +01:00
source = Spotlight(
opacity_function = inverse_quadratic(1,5,1),
num_levels = NUM_LEVELS,
radius = 10,
brightness = 5,
screen = screen
)
source.move_source_to([-5,0,0])
lighthouse = LightHouse()
ambient_light = AmbientLight(
opacity_function = inverse_quadratic(AMBIENT_DIMMED,1,1),
2018-01-27 13:30:25 +01:00
num_levels = NUM_LEVELS,
radius = 10,
brightness = 1,
)
lighthouse.scale(2).next_to(source.source_point,DOWN,buff=0)
ambient_light.move_source_to(source.source_point)
self.add(lighthouse, ambient_light,source,screen)
morty = Mortimer().scale(0.3).next_to(screen, RIGHT, buff = 0.5)
self.add_foreground_mobject(morty)
self.wait()
screen_tracker = ScreenTracker(source)
self.add(screen_tracker)
self.play(
ApplyMethod(screen.set_path_arc, 45 * DEGREES),
)
self.play(
ApplyMethod(screen.set_path_arc, -90 * DEGREES),
)
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
self.play(
ApplyMethod(screen.set_path_arc, 0),
)
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
# in preparation for the slanting, create a rectangle that show the brightness
2018-01-21 18:29:13 -08:00
rect_origin = Rectangle(width = 0, height = screen_height).move_to(screen.get_center())
2018-01-27 13:30:25 +01:00
self.add_foreground_mobject(rect_origin)
2018-01-21 18:29:13 -08:00
brightness_rect = Rectangle(width = brightness_rect_height,
height = brightness_rect_height, fill_color = YELLOW, fill_opacity = 0.5)
2018-01-21 18:29:13 -08:00
brightness_rect.next_to(screen, UP, buff = 1)
2018-01-27 13:30:25 +01:00
self.play(
ReplacementTransform(rect_origin,brightness_rect)
)
2018-01-21 18:29:13 -08:00
original_screen = screen.copy()
original_brightness_rect = brightness_rect.copy()
# for unslanting the screen later
2018-01-27 13:30:25 +01:00
lower_screen_point, upper_screen_point = screen.get_start_and_end()
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
lower_slanted_screen_point = interpolate(
lower_screen_point, source.source_point, 0.2
)
upper_slanted_screen_point = interpolate(
upper_screen_point, source.source_point, -0.2
)
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
slanted_brightness_rect = brightness_rect.copy()
slanted_brightness_rect.width *= 2
slanted_brightness_rect.generate_points()
slanted_brightness_rect.set_fill(opacity = 0.25)
2018-01-21 18:29:13 -08:00
slanted_screen = Line(lower_slanted_screen_point,upper_slanted_screen_point,
path_arc = 0, num_arc_anchors = 10)
slanted_brightness_rect.move_to(brightness_rect.get_center())
2018-01-21 18:29:13 -08:00
2018-01-27 13:30:25 +01:00
self.play(
ReplacementTransform(screen,slanted_screen),
ReplacementTransform(brightness_rect,slanted_brightness_rect),
2018-01-27 13:30:25 +01:00
)
2018-01-21 18:29:13 -08:00
self.wait()
2018-01-21 18:29:13 -08:00
2018-01-27 19:09:29 +01:00
screen = slanted_screen
source.screen = screen
self.remove(slanted_screen)
2018-01-21 18:29:13 -08:00
brightness_rect = slanted_brightness_rect
self.remove(slanted_brightness_rect)
2018-01-21 18:29:13 -08:00
self.play(
ReplacementTransform(screen,original_screen),
ReplacementTransform(brightness_rect,original_brightness_rect),
)
2018-01-21 18:29:13 -08:00
self.remove(original_brightness_rect)
2018-01-21 18:29:13 -08:00
2018-01-27 19:09:29 +01:00
# Scene 5: constant screen size, changing opening angle
# let's use an actual light indicator instead of just rects
indicator_intensity = 0.25
indicator_height = 1.25 * screen_height
# indicator_origin = Ellipse(width = 0, height = screen_height).move_to(screen.get_center())
# indicator_origin.set_fill(opacity = 0)
# self.add_foreground_mobject(indicator_origin)
indicator = LightIndicator(radius = indicator_height/2,
opacity_for_unit_intensity = OPACITY_FOR_UNIT_INTENSITY,
color = LIGHT_COLOR,
precision = 2)
indicator.set_intensity(indicator_intensity)
indicator.move_to(slanted_brightness_rect.get_center())
2018-01-21 18:29:13 -08:00
self.play(
2018-01-27 19:09:29 +01:00
FadeOut(slanted_brightness_rect),
FadeIn(indicator)
)
2018-01-21 18:29:13 -08:00
2018-01-27 19:09:29 +01:00
self.add_foreground_mobject(indicator.reading)
new_indicator_intensity = 1.0
# shifted_brightness_rect = brightness_rect.copy()
# shifted_brightness_rect.shift([-3,0,0]).set_fill(opacity = 0.8)
left_shift = (screen.get_center()[0] - source.source_point[0])/2
2018-01-27 19:09:29 +01:00
self.play(
ApplyMethod(screen.shift,[-left_shift,0,0]),
ApplyMethod(morty.shift,[-left_shift,0,0]),
ApplyMethod(indicator.shift,[-left_shift,0,0]),
ApplyMethod(indicator.set_intensity,new_indicator_intensity),
)
self.remove(original_screen) # was still hiding behind the shadow
# add distance indicator
left_x = source.source_point[0]
right_x = screen.get_center()[0]
2018-01-27 19:09:29 +01:00
line_y = -2
line1 = Arrow([left_x,line_y,0],[right_x,line_y,0])
line2 = Arrow([right_x,line_y,0],[left_x,line_y,0])
line1.set_fill(color = WHITE)
line2.set_fill(color = WHITE)
distance_decimal = Integer(1).next_to(line1,DOWN)
line = VGroup(line1, line2,distance_decimal)
self.add(line)
# move everything away
distance_to_source = right_x - left_x
new_right_x = left_x + 2*distance_to_source
2018-01-27 19:09:29 +01:00
new_line1 = Arrow([left_x,line_y,0],[new_right_x,line_y,0])
new_line2 = Arrow([new_right_x,line_y,0],[left_x,line_y,0])
new_line1.set_fill(color = WHITE)
new_line2.set_fill(color = WHITE)
new_distance_decimal = Integer(2).next_to(new_line1,DOWN)
2018-01-27 19:09:29 +01:00
new_line = VGroup(new_line1, new_line2, new_distance_decimal)
2018-01-21 18:29:13 -08:00
self.play(
ReplacementTransform(line,new_line),
ApplyMethod(screen.shift,[distance_to_source,0,0]),
2018-01-27 19:09:29 +01:00
ApplyMethod(indicator.shift,[left_shift,0,0]),
ApplyMethod(indicator.set_intensity,indicator_intensity),
ApplyMethod(morty.shift,[distance_to_source,0,0]),
)
2018-01-21 18:29:13 -08:00
2018-01-17 15:18:02 -08:00