3b1b-manim/active_projects/basel.py

699 lines
20 KiB
Python
Raw Normal View History

2018-01-17 15:18:02 -08:00
#!/usr/bin/env python
from helpers import *
from mobject.tex_mobject import TexMobject
from mobject import Mobject
from mobject.image_mobject import ImageMobject
from mobject.vectorized_mobject import *
from animation.animation import Animation
from animation.transform import *
from animation.simple_animations import *
2018-01-21 18:29:13 -08:00
from animation.continual_animation import *
2018-01-17 15:18:02 -08:00
from animation.playground import *
from topics.geometry import *
from topics.characters import *
from topics.functions import *
from topics.number_line import *
from topics.numerals import *
from topics.combinatorics import *
from scene import Scene
from camera import Camera
from mobject.svg_mobject import *
from mobject.tex_mobject import *
from mobject.vectorized_mobject import *
## To watch one of these scenes, run the following:
## python extract_scene.py -p file_name <SceneName>
2018-01-18 15:06:38 -08:00
inverse_power_law = lambda maxint,cutoff,exponent: \
(lambda r: maxint * (cutoff/(r+cutoff))**exponent)
inverse_quadratic = lambda maxint,cutoff: inverse_power_law(maxint,cutoff,2)
2018-01-17 15:18:02 -08:00
2018-01-18 15:06:38 -08:00
LIGHT_COLOR = YELLOW
INDICATOR_RADIUS = 0.7
INDICATOR_STROKE_WIDTH = 1
2018-01-21 18:29:13 -08:00
INDICATOR_STROKE_COLOR = WHITE
INDICATOR_TEXT_COLOR = WHITE
INDICATOR_UPDATE_TIME = 0.2
2018-01-18 15:06:38 -08:00
OPACITY_FOR_UNIT_INTENSITY = 0.2
2018-01-21 18:29:13 -08:00
SWITCH_ON_RUN_TIME = 2.0
LIGHT_CONE_NUM_SECTORS = 50
class LightScreen(VMobject):
# A light screen is composed of a VMobject and a light cone.
# It has knowledge of the light source point.
# As the screen changes, it calculates the viewing angle from
# the source and updates the light cone.
def __init__(self, light_source = ORIGIN, screen = None, light_cone = None):
Mobject.__init__(self)
self.light_cone = light_cone
self.light_source = light_source
self.screen = screen
self.light_cone.move_source_to(self.light_source)
self.shadow = VMobject(fill_color = BLACK, stroke_width = 0, fill_opacity = 1.0)
self.add(self.light_cone, self.screen, self.shadow)
self.update_shadow(self.shadow)
def update_light_cone(self,lc):
lower_angle, upper_angle = self.viewing_angles()
self.light_cone.update_opening(start_angle = lower_angle,
stop_angle = upper_angle)
return self
def viewing_angle_of_point(self,point):
distance_vector = point - self.light_source
angle = angle_of_vector(distance_vector)
return angle
def viewing_angles(self):
all_points = []
for submob in self.family_members_with_points():
all_points.extend(submob.get_anchors())
viewing_angles = np.array(map(self.viewing_angle_of_point, self.screen.get_anchors()))
if len(viewing_angles) == 0:
lower_angle = upper_angle = 0
else:
lower_angle = np.min(viewing_angles)
upper_angle = np.max(viewing_angles)
return lower_angle, upper_angle
def update_shadow(self,sh):
self.shadow.points = self.screen.points
ray1 = self.screen.points[0] - self.light_source
ray2 = self.screen.points[-1] - self.light_source
ray1 = ray1/np.linalg.norm(ray1) * 100
ray1 = rotate_vector(ray1,TAU/16)
ray2 = ray2/np.linalg.norm(ray2) * 100
ray2 = rotate_vector(ray2,-TAU/16)
outpoint1 = self.screen.points[0] + ray1
outpoint2 = self.screen.points[-1] + ray2
self.shadow.add_control_points([outpoint2,outpoint1,self.screen.points[0]])
self.shadow.mark_paths_closed = True
2018-01-18 15:06:38 -08:00
class LightCone(VGroup):
CONFIG = {
2018-01-21 18:29:13 -08:00
"start_angle": 0,
2018-01-18 15:06:38 -08:00
"angle" : TAU/8,
2018-01-21 18:29:13 -08:00
"radius" : 10,
2018-01-18 15:06:38 -08:00
"opacity_function" : lambda r : 1./max(r, 0.01),
"num_sectors" : 10,
"color": LIGHT_COLOR,
}
def generate_points(self):
radii = np.linspace(0, self.radius, self.num_sectors+1)
sectors = [
AnnularSector(
2018-01-21 18:29:13 -08:00
start_angle = self.start_angle,
2018-01-18 15:06:38 -08:00
angle = self.angle,
inner_radius = r1,
outer_radius = r2,
stroke_width = 0,
stroke_color = self.color,
fill_color = self.color,
fill_opacity = self.opacity_function(r1),
)
for r1, r2 in zip(radii, radii[1:])
]
self.add(*sectors)
2018-01-21 18:29:13 -08:00
def get_source_point(self):
if len(self.submobjects) == 0:
return None
source = self.submobjects[0].get_arc_center()
return source
def move_source_to(self,point):
if len(self.submobjects) == 0:
return
source = self.submobjects[0].get_arc_center()
self.shift(point - source)
def update_opening(self, start_angle, stop_angle):
self.start_angle = start_angle
self.angle = stop_angle - start_angle
source_point = self.get_source_point()
for submob in self.submobjects:
if type(submob) == AnnularSector:
submob.start_angle = self.start_angle
submob.angle = self.angle
submob.generate_points()
submob.shift(source_point - submob.get_arc_center())
2018-01-18 15:06:38 -08:00
class Candle(VGroup):
CONFIG = {
"radius" : 5,
"opacity_function" : lambda r : 1./max(r, 0.01),
"num_sectors" : 10,
"color": LIGHT_COLOR,
}
def generate_points(self):
radii = np.linspace(0, self.radius, self.num_sectors+1)
annuli = [
Annulus(
inner_radius = r1,
outer_radius = r2,
stroke_width = 0,
stroke_color = self.color,
fill_color = self.color,
fill_opacity = self.opacity_function(r1),
)
for r1, r2 in zip(radii, radii[1:])
]
self.add(*annuli)
2018-01-21 18:29:13 -08:00
def get_source_point(self):
if len(self.submobjects) == 0:
return None
source = self.submobjects[0].get_center()
return source
def move_source_to(self,point):
if len(self.submobjects) == 0:
return
source = self.submobjects[0].get_center()
self.shift(point - source)
2018-01-18 15:06:38 -08:00
class SwitchOn(LaggedStart):
CONFIG = {
"lag_ratio": 0.2,
2018-01-21 18:29:13 -08:00
"run_time": SWITCH_ON_RUN_TIME
2018-01-18 15:06:38 -08:00
}
def __init__(self, light, **kwargs):
if not isinstance(light,LightCone) and not isinstance(light,Candle):
raise Exception("Only LightCones and Candles can be switched on")
LaggedStart.__init__(self,
FadeIn, light, **kwargs)
class LightHouse(SVGMobject):
CONFIG = {
"file_name" : "lighthouse",
"height" : 0.5
}
class LightIndicator(Mobject):
CONFIG = {
"radius": 0.5,
2018-01-21 18:29:13 -08:00
"intensity": 0,
2018-01-18 15:06:38 -08:00
"opacity_for_unit_intensity": 1
}
def generate_points(self):
self.background = Circle(color=BLACK, radius = self.radius)
self.background.set_fill(opacity=1)
self.foreground = Circle(color=self.color, radius = self.radius)
self.foreground.set_stroke(color=INDICATOR_STROKE_COLOR,width=INDICATOR_STROKE_WIDTH)
self.add(self.background, self.foreground)
2018-01-21 18:29:13 -08:00
self.reading = DecimalNumber(self.intensity,num_decimal_points = 3)
2018-01-18 15:06:38 -08:00
self.reading.set_fill(color=INDICATOR_TEXT_COLOR)
self.reading.move_to(self.get_center())
self.add(self.reading)
def set_intensity(self, new_int):
self.intensity = new_int
new_opacity = min(1, new_int * self.opacity_for_unit_intensity)
self.foreground.set_fill(opacity=new_opacity)
ChangeDecimalToValue(self.reading, new_int).update(1)
class UpdateLightIndicator(AnimationGroup):
def __init__(self, indicator, intensity, **kwargs):
if not isinstance(indicator,LightIndicator):
raise Exception("This transform applies only to LightIndicator")
target_foreground = indicator.copy().set_intensity(intensity).foreground
change_opacity = Transform(
indicator.foreground, target_foreground
)
changing_decimal = ChangeDecimalToValue(indicator.reading, intensity)
AnimationGroup.__init__(self, changing_decimal, change_opacity, **kwargs)
self.mobject = indicator
2018-01-17 15:18:02 -08:00
class IntroScene(PiCreatureScene):
CONFIG = {
"rect_height" : 0.2,
"duration" : 1.0,
"eq_spacing" : 3 * MED_LARGE_BUFF
}
def construct(self):
2018-01-21 18:29:13 -08:00
randy = self.get_primary_pi_creature()
randy.scale(0.7).to_corner(DOWN+RIGHT)
2018-01-17 15:18:02 -08:00
self.force_skipping()
2018-01-18 15:06:38 -08:00
self.build_up_euler_sum()
2018-01-17 15:18:02 -08:00
self.build_up_sum_on_number_line()
self.show_pi_answer()
self.other_pi_formulas()
self.revert_to_original_skipping_status()
2018-01-18 15:06:38 -08:00
self.refocus_on_euler_sum()
2018-01-17 15:18:02 -08:00
def build_up_euler_sum(self):
self.euler_sum = TexMobject(
"1", "+",
"{1 \\over 4}", "+",
"{1 \\over 9}", "+",
"{1 \\over 16}", "+",
"{1 \\over 25}", "+",
"\\cdots", "=",
arg_separator = " \\, "
)
self.euler_sum.to_edge(UP)
self.euler_sum.shift(2*LEFT)
terms = [1./n**2 for n in range(1,6)]
partial_results_values = np.cumsum(terms)
self.play(
FadeIn(self.euler_sum[0], run_time = self.duration)
)
equals_sign = self.euler_sum.get_part_by_tex("=")
self.partial_sum_decimal = DecimalNumber(partial_results_values[1],
num_decimal_points = 2)
self.partial_sum_decimal.next_to(equals_sign, RIGHT)
for i in range(4):
FadeIn(self.partial_sum_decimal, run_time = self.duration)
if i == 0:
self.play(
FadeIn(self.euler_sum[1], run_time = self.duration),
FadeIn(self.euler_sum[2], run_time = self.duration),
FadeIn(equals_sign, run_time = self.duration),
FadeIn(self.partial_sum_decimal, run_time = self.duration)
)
else:
self.play(
FadeIn(self.euler_sum[2*i+1], run_time = self.duration),
FadeIn(self.euler_sum[2*i+2], run_time = self.duration),
ChangeDecimalToValue(
self.partial_sum_decimal,
partial_results_values[i+1],
run_time = self.duration,
num_decimal_points = 6,
show_ellipsis = True,
position_update_func = lambda m: m.next_to(equals_sign, RIGHT)
)
)
self.wait()
2018-01-18 15:06:38 -08:00
self.q_marks = TextMobject("???").highlight(LIGHT_COLOR)
2018-01-17 15:18:02 -08:00
self.q_marks.move_to(self.partial_sum_decimal)
self.play(
FadeIn(self.euler_sum[-3], run_time = self.duration), # +
FadeIn(self.euler_sum[-2], run_time = self.duration), # ...
ReplacementTransform(self.partial_sum_decimal, self.q_marks)
)
def build_up_sum_on_number_line(self):
self.number_line = NumberLine(
x_min = 0,
color = WHITE,
number_at_center = 1,
stroke_width = 1,
numbers_with_elongated_ticks = [0,1,2,3],
numbers_to_show = np.arange(0,5),
unit_size = 5,
tick_frequency = 0.2,
line_to_number_buff = MED_LARGE_BUFF
)
self.number_line_labels = self.number_line.get_number_mobjects()
self.add(self.number_line,self.number_line_labels)
self.wait()
# create slabs for series terms
max_n = 10
terms = [0] + [1./(n**2) for n in range(1, max_n + 1)]
series_terms = np.cumsum(terms)
lines = VGroup()
self.rects = VGroup()
slab_colors = [YELLOW, BLUE] * (max_n / 2)
for t1, t2, color in zip(series_terms, series_terms[1:], slab_colors):
line = Line(*map(self.number_line.number_to_point, [t1, t2]))
rect = Rectangle()
rect.stroke_width = 0
rect.fill_opacity = 1
rect.highlight(color)
rect.stretch_to_fit_height(
self.rect_height,
)
rect.stretch_to_fit_width(line.get_width())
rect.move_to(line)
self.rects.add(rect)
lines.add(line)
2018-01-18 15:06:38 -08:00
#self.rects.radial_gradient_highlight(ORIGIN, 5, YELLOW, BLUE)
2018-01-17 15:18:02 -08:00
for i in range(5):
self.play(
GrowFromPoint(self.rects[i], self.euler_sum[2*i].get_center(),
run_time = self.duration)
)
for i in range(5, max_n):
self.play(
GrowFromPoint(self.rects[i], self.euler_sum[10].get_center(),
run_time = self.duration)
)
def show_pi_answer(self):
self.pi_answer = TexMobject("{\\pi^2 \\over 6}").highlight(YELLOW)
self.pi_answer.move_to(self.partial_sum_decimal)
self.pi_answer.next_to(self.euler_sum[-1], RIGHT,
submobject_to_align = self.pi_answer[-2])
self.play(ReplacementTransform(self.q_marks, self.pi_answer))
def other_pi_formulas(self):
self.play(
FadeOut(self.rects),
FadeOut(self.number_line_labels),
FadeOut(self.number_line)
)
self.leibniz_sum = TexMobject(
"1-{1\\over 3}+{1\\over 5}-{1\\over 7}+{1\\over 9}-\\cdots",
"=", "{\\pi \\over 4}")
self.wallis_product = TexMobject(
"{2\\over 1} \\cdot {2\\over 3} \\cdot {4\\over 3} \\cdot {4\\over 5}" +
"\\cdot {6\\over 5} \\cdot {6\\over 7} \\cdots",
"=", "{\\pi \\over 2}")
self.leibniz_sum.next_to(self.euler_sum.get_part_by_tex("="), DOWN,
buff = self.eq_spacing,
submobject_to_align = self.leibniz_sum.get_part_by_tex("=")
)
self.wallis_product.next_to(self.leibniz_sum.get_part_by_tex("="), DOWN,
buff = self.eq_spacing,
submobject_to_align = self.wallis_product.get_part_by_tex("=")
)
self.play(
Write(self.leibniz_sum)
)
self.play(
Write(self.wallis_product)
)
def refocus_on_euler_sum(self):
self.euler_sum.add(self.pi_answer)
self.play(
FadeOut(self.leibniz_sum),
FadeOut(self.wallis_product),
ApplyMethod(self.euler_sum.shift,
ORIGIN + 2*UP - self.euler_sum.get_center())
)
# focus on pi squared
pi_squared = self.euler_sum.get_part_by_tex("\\pi")[-3]
self.play(
ScaleInPlace(pi_squared,2,rate_func = wiggle)
)
2018-01-18 15:06:38 -08:00
q_circle = Circle(color=WHITE,radius=0.8)
q_mark = TexMobject("?")
q_mark.next_to(q_circle)
2018-01-17 15:18:02 -08:00
2018-01-18 15:06:38 -08:00
thought = Group(q_circle, q_mark)
q_mark.height *= 2
self.pi_creature_thinks(thought,target_mode = "confused",
bubble_kwargs = { "height" : 1.5, "width" : 2 })
2018-01-17 15:18:02 -08:00
self.wait()
2018-01-21 18:29:13 -08:00
class FirstLightHouseScene(PiCreatureScene):
2018-01-17 15:18:02 -08:00
def construct(self):
2018-01-21 18:29:13 -08:00
self.remove(self.get_primary_pi_creature())
2018-01-17 15:18:02 -08:00
self.show_lighthouses_on_number_line()
def show_lighthouses_on_number_line(self):
self.number_line = NumberLine(
x_min = 0,
color = WHITE,
2018-01-21 18:29:13 -08:00
number_at_center = 1.6,
2018-01-17 15:18:02 -08:00
stroke_width = 1,
numbers_with_elongated_ticks = [0,1,2,3],
2018-01-21 18:29:13 -08:00
numbers_to_show = np.arange(1,5),
2018-01-18 15:06:38 -08:00
unit_size = 2,
2018-01-17 15:18:02 -08:00
tick_frequency = 0.2,
2018-01-18 15:06:38 -08:00
line_to_number_buff = LARGE_BUFF
2018-01-17 15:18:02 -08:00
)
self.number_line_labels = self.number_line.get_number_mobjects()
self.add(self.number_line,self.number_line_labels)
self.wait()
2018-01-21 18:29:13 -08:00
origin_point = self.number_line.number_to_point(0)
self.default_pi_creature_class = Randolph
randy = self.get_primary_pi_creature()
randy.scale(0.5)
randy.flip()
right_pupil = randy.pupils[1]
randy.next_to(origin_point, LEFT, buff = 0, submobject_to_align = right_pupil)
2018-01-18 15:06:38 -08:00
light_indicator = LightIndicator(radius = INDICATOR_RADIUS,
2018-01-21 18:29:13 -08:00
opacity_for_unit_intensity = OPACITY_FOR_UNIT_INTENSITY,
color = LIGHT_COLOR)
light_indicator.reading.scale(0.8)
2018-01-17 15:18:02 -08:00
2018-01-21 18:29:13 -08:00
bubble = ThoughtBubble(direction = RIGHT,
width = 2.5, height = 3.5)
bubble.next_to(randy,LEFT+UP)
bubble.add_content(light_indicator)
self.play(
randy.change, "wave_2",
ShowCreation(bubble),
FadeIn(light_indicator)
)
2018-01-18 15:06:38 -08:00
lighthouses = []
lighthouse_pos = []
light_cones = []
2018-01-21 18:29:13 -08:00
num_cones = 6
2018-01-18 15:06:38 -08:00
for i in range(1,num_cones+1):
lighthouse = LightHouse()
point = self.number_line.number_to_point(i)
2018-01-21 18:29:13 -08:00
light_cone = Candle(
opacity_function = inverse_quadratic(1,1),
num_sectors = LIGHT_CONE_NUM_SECTORS,
2018-01-18 15:06:38 -08:00
radius = 10)
2018-01-21 18:29:13 -08:00
light_cone.move_source_to(point)
2018-01-18 15:06:38 -08:00
lighthouse.next_to(point,DOWN,0)
lighthouses.append(lighthouse)
light_cones.append(light_cone)
lighthouse_pos.append(point)
for lh in lighthouses:
self.add_foreground_mobject(lh)
light_indicator.set_intensity(0)
intensities = np.cumsum(np.array([1./n**2 for n in range(1,num_cones+1)]))
opacities = intensities * light_indicator.opacity_for_unit_intensity
self.remove_foreground_mobjects(light_indicator)
2018-01-21 18:29:13 -08:00
2018-01-18 15:06:38 -08:00
for (i,lc) in zip(range(num_cones),light_cones):
2018-01-21 18:29:13 -08:00
indicator_start_time = 0.5 * (i+1) * SWITCH_ON_RUN_TIME/lc.radius * self.number_line.unit_size
indicator_stop_time = indicator_start_time + INDICATOR_UPDATE_TIME
indicator_rate_func = squish_rate_func(#smooth, 0.8, 0.9)
smooth,indicator_start_time,indicator_stop_time)
2018-01-18 15:06:38 -08:00
self.play(
SwitchOn(lc),
2018-01-21 18:29:13 -08:00
ChangeDecimalToValue(light_indicator.reading,intensities[i],
rate_func = indicator_rate_func, run_time = SWITCH_ON_RUN_TIME),
2018-01-18 15:06:38 -08:00
ApplyMethod(light_indicator.foreground.set_fill,None,opacities[i])
)
2018-01-17 15:18:02 -08:00
2018-01-21 18:29:13 -08:00
if i == 0:
# mvoe a copy out of the thought bubble for comparison
light_indicator_copy = light_indicator.copy()
self.play(
light_indicator_copy.shift,[2,0,0]
)
2018-01-17 15:18:02 -08:00
2018-01-18 15:06:38 -08:00
2018-01-17 15:18:02 -08:00
self.wait()
2018-01-21 18:29:13 -08:00
class SingleLightHouseScene(PiCreatureScene):
def construct(self):
self.create_light_source_and_creature()
def create_light_source_and_creature(self):
SCREEN_SIZE = 3.0
DISTANCE_FROM_LIGHTHOUSE = 10.0
source_point = [-DISTANCE_FROM_LIGHTHOUSE/2,0,0]
observer_point = [DISTANCE_FROM_LIGHTHOUSE/2,0,0]
lighthouse = LightHouse()
candle = Candle(
opacity_function = inverse_quadratic(0.3,1),
num_sectors = LIGHT_CONE_NUM_SECTORS,
radius = 10
)
lighthouse.scale(2).next_to(source_point, DOWN, buff = 0)
candle.move_to(source_point)
morty = self.get_primary_pi_creature()
morty.scale(0.5)
morty.move_to(observer_point)
self.add(lighthouse, candle)
self.wait()
self.play(
SwitchOn(candle)
)
light_cone = LightCone()
light_cone.move_source_to(source_point)
screen = Arc(TAU/4).rotate_in_place(TAU/2).shift(3*RIGHT)
screen.radius = 4
screen.start_angle = -TAU/5
screen.next_to(morty, LEFT)
light_screen = LightScreen(light_source = source_point,
screen = screen, light_cone = light_cone)
light_screen.screen.color = WHITE
light_screen.screen.fill_opacity = 1
light_screen.update_light_cone(light_cone)
self.add(light_screen)
lc_updater = lambda lc: light_screen.update_light_cone(lc)
sh_updater = lambda sh: light_screen.update_shadow(sh)
ca1 = ContinualUpdateFromFunc(light_screen.light_cone,
lc_updater)
ca2 = ContinualUpdateFromFunc(light_screen.shadow,
sh_updater)
self.add(ca1, ca2)
self.add_foreground_mobject(morty)
moving_screen = ApplyMethod(screen.move_to, [1,0,0], run_time=3)
self.play(moving_screen)
2018-01-17 15:18:02 -08:00