3b1b-manim/manimlib/utils/rate_functions.py

92 lines
2 KiB
Python
Raw Normal View History

import numpy as np
from manimlib.utils.bezier import bezier
from manimlib.utils.simple_functions import sigmoid
2018-05-08 16:19:42 +02:00
def linear(t):
return t
2018-05-30 12:02:35 -07:00
def smooth(t, inflection=10.0):
error = sigmoid(-inflection / 2)
return (sigmoid(inflection * (t - 0.5)) - error) / (1 - 2 * error)
def rush_into(t):
return 2 * smooth(t / 2.0)
def rush_from(t):
return 2 * smooth(t / 2.0 + 0.5) - 1
def slow_into(t):
return np.sqrt(1 - (1 - t) * (1 - t))
def double_smooth(t):
if t < 0.5:
return 0.5 * smooth(2 * t)
else:
return 0.5 * (1 + smooth(2 * t - 1))
def there_and_back(t, inflection=10.0):
new_t = 2 * t if t < 0.5 else 2 * (1 - t)
return smooth(new_t, inflection)
2018-05-02 08:17:34 -07:00
def there_and_back_with_pause(t, pause_ratio=1. / 3):
a = 1. / pause_ratio
if t < 0.5 - pause_ratio / 2:
return smooth(a * t)
elif t < 0.5 + pause_ratio / 2:
return 1
else:
2018-05-02 08:17:34 -07:00
return smooth(a - a * t)
def running_start(t, pull_factor=-0.5):
return bezier([0, 0, pull_factor, pull_factor, 1, 1, 1])(t)
def not_quite_there(func=smooth, proportion=0.7):
def result(t):
return proportion * func(t)
return result
def wiggle(t, wiggles=2):
return there_and_back(t) * np.sin(wiggles * np.pi * t)
def squish_rate_func(func, a=0.4, b=0.6):
def result(t):
if a == b:
return a
if t < a:
return func(0)
elif t > b:
return func(1)
else:
return func((t - a) / (b - a))
return result
# Stylistically, should this take parameters (with default values)?
# Ultimately, the functionality is entirely subsumed by squish_rate_func,
# but it may be useful to have a nice name for with nice default params for
# "lingering", different from squish_rate_func's default params
def lingering(t):
return squish_rate_func(lambda t: t, 0, 0.8)(t)
2018-05-10 00:00:15 +02:00
2018-07-14 10:31:56 -07:00
def exponential_decay(t, half_life=0.1):
# The half-life should be rather small to minimize
# the cut-off error at the end
return 1 - np.exp(-t / half_life)