2018-03-30 18:19:23 -07:00
|
|
|
import numpy as np
|
2018-03-31 15:11:35 -07:00
|
|
|
|
2018-03-30 18:42:32 -07:00
|
|
|
from utils.bezier import bezier
|
2018-03-31 15:11:35 -07:00
|
|
|
from utils.simple_functions import sigmoid
|
2018-03-30 18:19:23 -07:00
|
|
|
|
|
|
|
def smooth(t, inflection = 10.0):
|
|
|
|
error = sigmoid(-inflection / 2)
|
|
|
|
return (sigmoid(inflection*(t - 0.5)) - error) / (1 - 2*error)
|
|
|
|
|
|
|
|
def rush_into(t):
|
|
|
|
return 2*smooth(t/2.0)
|
|
|
|
|
|
|
|
def rush_from(t):
|
|
|
|
return 2*smooth(t/2.0+0.5) - 1
|
|
|
|
|
|
|
|
def slow_into(t):
|
|
|
|
return np.sqrt(1-(1-t)*(1-t))
|
|
|
|
|
|
|
|
def double_smooth(t):
|
|
|
|
if t < 0.5:
|
|
|
|
return 0.5*smooth(2*t)
|
|
|
|
else:
|
|
|
|
return 0.5*(1 + smooth(2*t - 1))
|
|
|
|
|
|
|
|
def there_and_back(t, inflection = 10.0):
|
|
|
|
new_t = 2*t if t < 0.5 else 2*(1 - t)
|
|
|
|
return smooth(new_t, inflection)
|
|
|
|
|
|
|
|
def there_and_back_with_pause(t):
|
|
|
|
if t < 1./3:
|
|
|
|
return smooth(3*t)
|
|
|
|
elif t < 2./3:
|
|
|
|
return 1
|
|
|
|
else:
|
|
|
|
return smooth(3 - 3*t)
|
|
|
|
|
|
|
|
def running_start(t, pull_factor = -0.5):
|
|
|
|
return bezier([0, 0, pull_factor, pull_factor, 1, 1, 1])(t)
|
|
|
|
|
|
|
|
def not_quite_there(func = smooth, proportion = 0.7):
|
|
|
|
def result(t):
|
|
|
|
return proportion*func(t)
|
|
|
|
return result
|
|
|
|
|
|
|
|
def wiggle(t, wiggles = 2):
|
|
|
|
return there_and_back(t) * np.sin(wiggles*np.pi*t)
|
|
|
|
|
|
|
|
def squish_rate_func(func, a = 0.4, b = 0.6):
|
|
|
|
def result(t):
|
|
|
|
if a == b:
|
|
|
|
return a
|
|
|
|
|
|
|
|
if t < a:
|
|
|
|
return func(0)
|
|
|
|
elif t > b:
|
|
|
|
return func(1)
|
|
|
|
else:
|
|
|
|
return func((t-a)/(b-a))
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
# Stylistically, should this take parameters (with default values)?
|
|
|
|
# Ultimately, the functionality is entirely subsumed by squish_rate_func,
|
|
|
|
# but it may be useful to have a nice name for with nice default params for
|
|
|
|
# "lingering", different from squish_rate_func's default params
|
|
|
|
def lingering(t):
|
|
|
|
return squish_rate_func(lambda t: t, 0, 0.8)(t)
|
|
|
|
|
|
|
|
|