3b1b-manim/mobject.py

462 lines
14 KiB
Python
Raw Normal View History

2015-06-10 22:00:35 -07:00
import numpy as np
import itertools as it
2015-10-01 17:20:17 -07:00
import operator as op
2015-06-10 22:00:35 -07:00
import os
from PIL import Image
from random import random
from copy import deepcopy
from colour import Color
import inspect
2015-06-10 22:00:35 -07:00
import displayer as disp
from helpers import *
2015-06-10 22:00:35 -07:00
class Mobject(object):
"""
Mathematical Object
"""
#Number of numbers used to describe a point (3 for pos, 3 for normal vector)
DEFAULT_CONFIG = {
2015-10-20 21:55:46 -07:00
"color" : WHITE,
"point_thickness" : DEFAULT_POINT_THICKNESS,
"name" : None,
}
2015-06-10 22:00:35 -07:00
DIM = 3
def __init__(self, **kwargs):
digest_config(self, Mobject, kwargs)
self.color = Color(self.color)
if self.name is None:
self.name = self.__class__.__name__
2015-06-10 22:00:35 -07:00
self.has_normals = hasattr(self, 'unit_normal')
2015-09-24 10:54:59 -07:00
self.init_points()
self.generate_points()
def init_points(self):
2015-06-10 22:00:35 -07:00
self.points = np.zeros((0, 3))
self.rgbs = np.zeros((0, 3))
if self.has_normals:
self.unit_normals = np.zeros((0, 3))
def __str__(self):
return self.name
def show(self):
Image.fromarray(disp.paint_mobject(self)).show()
def save_image(self, name = None):
Image.fromarray(disp.paint_mobject(self)).save(
os.path.join(MOVIE_DIR, (name or str(self)) + ".png")
)
def add_points(self, points, rgbs = None, color = None):
"""
points must be a Nx3 numpy array, as must rgbs if it is not None
"""
points = np.array(points)
num_new_points = points.shape[0]
self.points = np.append(self.points, points)
self.points = self.points.reshape((self.points.size / 3, 3))
if rgbs is None:
color = Color(color) if color else self.color
rgbs = np.array([color.get_rgb()] * num_new_points)
else:
if rgbs.shape != points.shape:
raise Exception("points and rgbs must have same shape")
self.rgbs = np.append(self.rgbs, rgbs)
self.rgbs = self.rgbs.reshape((self.rgbs.size / 3, 3))
2015-06-10 22:00:35 -07:00
if self.has_normals:
self.unit_normals = np.append(
self.unit_normals,
np.array([self.unit_normal(point) for point in points])
).reshape(self.points.shape)
return self
def add(self, *mobjects):
for mobject in mobjects:
self.add_points(mobject.points, mobject.rgbs)
return self
2015-09-24 10:54:59 -07:00
def repeat(self, count):
#Can make transition animations nicer
points, rgbs = deepcopy(self.points), deepcopy(self.rgbs)
for x in range(count - 1):
self.add_points(points, rgbs)
return self
2015-09-24 10:54:59 -07:00
def do_in_place(self, method, *args, **kwargs):
center = self.get_center()
self.shift(-center)
method(*args, **kwargs)
self.shift(center)
return self
def rotate(self, angle, axis = OUT):
2015-06-10 22:00:35 -07:00
t_rotation_matrix = np.transpose(rotation_matrix(angle, axis))
self.points = np.dot(self.points, t_rotation_matrix)
if self.has_normals:
self.unit_normals = np.dot(self.unit_normals, t_rotation_matrix)
return self
def rotate_in_place(self, angle, axis = OUT):
2015-09-24 10:54:59 -07:00
self.do_in_place(self.rotate, angle, axis)
2015-06-10 22:00:35 -07:00
return self
def shift(self, vector):
self.points += vector
2015-06-10 22:00:35 -07:00
return self
2015-06-22 10:14:53 -07:00
def wag(self, wag_direction = RIGHT, wag_axis = DOWN,
wag_factor = 1.0):
2015-06-13 19:00:23 -07:00
alphas = np.dot(self.points, np.transpose(wag_axis))
alphas -= min(alphas)
alphas /= max(alphas)
2015-06-22 10:14:53 -07:00
alphas = alphas**wag_factor
2015-06-13 19:00:23 -07:00
self.points += np.dot(
alphas.reshape((len(alphas), 1)),
np.array(wag_direction).reshape((1, self.DIM))
2015-06-13 19:00:23 -07:00
)
return self
2015-06-10 22:00:35 -07:00
def center(self):
self.shift(-self.get_center())
return self
#Wrapper functions for better naming
def to_corner(self, corner = LEFT+DOWN, buff = DEFAULT_MOBJECT_TO_EDGE_BUFFER):
2015-06-19 08:31:02 -07:00
return self.align_on_border(corner, buff)
def to_edge(self, edge = LEFT, buff = DEFAULT_MOBJECT_TO_EDGE_BUFFER):
2015-06-19 08:31:02 -07:00
return self.align_on_border(edge, buff)
def align_on_border(self, direction, buff = DEFAULT_MOBJECT_TO_EDGE_BUFFER):
2015-06-19 08:31:02 -07:00
"""
Direction just needs to be a vector pointing towards side or
corner in the 2d plane.
"""
2015-09-18 14:22:59 -07:00
shift_val = np.zeros(3)
2015-06-19 08:31:02 -07:00
space_dim = (SPACE_WIDTH, SPACE_HEIGHT)
for i in [0, 1]:
if direction[i] == 0:
continue
elif direction[i] > 0:
shift_val[i] = space_dim[i]-buff-max(self.points[:,i])
else:
shift_val[i] = -space_dim[i]+buff-min(self.points[:,i])
self.shift(shift_val)
return self
def next_to(self, mobject,
direction = RIGHT,
buff = DEFAULT_MOBJECT_TO_MOBJECT_BUFFER,
aligned_edge = None):
2015-10-20 21:55:46 -07:00
direction = direction / np.linalg.norm(direction)
if aligned_edge is not None:
anchor_point = self.get_corner(aligned_edge-direction)
target_point = mobject.get_corner(aligned_edge+direction)
elif list(direction) in map(list, [LEFT, RIGHT, UP, DOWN]):
anchor_point = self.get_edge_center(-direction)
target_point = mobject.get_edge_center(direction)
else:
anchor_point = self.get_boundary_point(-direction)
target_point = mobject.get_boundary_point(direction)
self.shift(target_point - anchor_point + buff*direction)
2015-09-24 10:54:59 -07:00
return self
2015-06-10 22:00:35 -07:00
def scale(self, scale_factor):
self.points *= scale_factor
return self
def scale_in_place(self, scale_factor):
2015-09-24 10:54:59 -07:00
self.do_in_place(self.scale, scale_factor)
return self
2015-06-10 22:00:35 -07:00
def stretch(self, factor, dim):
self.points[:,dim] *= factor
return self
def stretch_to_fit(self, length, dim):
center = self.get_center()
old_length = max(self.points[:,dim]) - min(self.points[:,dim])
self.center()
self.stretch(length/old_length, dim)
self.shift(center)
return self
def stretch_to_fit_width(self, width):
return self.stretch_to_fit(width, 0)
def stretch_to_fit_height(self, height):
return self.stretch_to_fit(height, 1)
2015-10-20 21:55:46 -07:00
def scale_to_fit_width(self, width):
return self.scale(width/self.get_width())
def scale_to_fit_height(self, height):
return self.scale(height/self.get_height())
2015-06-10 22:00:35 -07:00
def pose_at_angle(self):
self.rotate(np.pi / 7)
self.rotate(np.pi / 7, [1, 0, 0])
return self
2015-08-03 22:23:00 -07:00
def replace(self, mobject, stretch = False):
if mobject.get_num_points() == 0:
raise Warning("Attempting to replace mobject with no points")
return self
2015-08-03 22:23:00 -07:00
if stretch:
self.stretch_to_fit_width(mobject.get_width())
self.stretch_to_fit_height(mobject.get_height())
else:
self.scale(mobject.get_width()/self.get_width())
self.center().shift(mobject.get_center())
return self
2015-06-10 22:00:35 -07:00
def apply_function(self, function):
self.points = np.apply_along_axis(function, 1, self.points)
return self
def apply_complex_function(self, function):
2015-10-20 21:55:46 -07:00
return self.apply_function(
lambda (x, y, z) : complex_to_R3(function(complex(x, y)))
)
2015-06-10 22:00:35 -07:00
2015-08-13 18:15:05 -07:00
def highlight(self, color = "yellow", condition = None):
2015-06-10 22:00:35 -07:00
"""
Condition is function which takes in one arguments, (x, y, z).
"""
2015-06-27 04:49:10 -07:00
rgb = Color(color).get_rgb()
if condition:
to_change = np.apply_along_axis(condition, 1, self.points)
self.rgbs[to_change, :] = rgb
else:
self.rgbs[:,:] = rgb
2015-06-10 22:00:35 -07:00
return self
def set_color(self, color):
self.highlight(color)
self.color = Color(color)
return self
def to_original_color(self):
self.highlight(self.color)
return self
def fade_to(self, color, alpha):
self.rgbs = interpolate(self.rgbs, Color(color).rgb, alpha)
return self
2015-06-19 08:31:02 -07:00
def fade(self, brightness = 0.5):
2015-10-20 21:55:46 -07:00
self.rgbs *= brightness
2015-06-10 22:00:35 -07:00
return self
def filter_out(self, condition):
to_eliminate = ~np.apply_along_axis(condition, 1, self.points)
self.points = self.points[to_eliminate]
self.rgbs = self.rgbs[to_eliminate]
return self
2015-06-27 04:49:10 -07:00
def sort_points(self, function = lambda p : p[0]):
"""
function is any map from R^3 to R
"""
indices = range(self.get_num_points())
indices.sort(
lambda *pair : cmp(*map(function, self.points[pair, :]))
)
self.points = self.points[indices]
self.rgbs = self.rgbs[indices]
return self
2015-06-27 04:49:10 -07:00
2015-06-10 22:00:35 -07:00
### Getters ###
2015-06-13 19:00:23 -07:00
def get_num_points(self):
return len(self.points)
2015-06-13 19:00:23 -07:00
2015-06-10 22:00:35 -07:00
def get_center(self):
2015-10-20 21:55:46 -07:00
if self.get_num_points() == 0:
return ORIGIN
return (np.max(self.points, 0) + np.min(self.points, 0))/2.0
def get_center_of_mass(self):
2015-06-10 22:00:35 -07:00
return np.apply_along_axis(np.mean, 0, self.points)
def get_boundary_point(self, direction):
return self.points[np.argmax(np.dot(self.points, direction))]
def get_edge_center(self, direction):
dim = np.argmax(map(abs, direction))
max_or_min_func = np.max if direction[dim] > 0 else np.min
result = self.get_center()
result[dim] = max_or_min_func(self.points[:,dim])
return result
def get_corner(self, direction):
return sum([
self.get_edge_center(RIGHT*direction[0]),
self.get_edge_center(UP*direction[1]),
-self.get_center()
])
def get_top(self):
return self.get_edge_center(UP)
def get_bottom(self):
return self.get_edge_center(DOWN)
def get_right(self):
return self.get_edge_center(RIGHT)
def get_left(self):
return self.get_edge_center(LEFT)
2015-06-10 22:00:35 -07:00
def get_width(self):
return np.max(self.points[:, 0]) - np.min(self.points[:, 0])
def get_height(self):
return np.max(self.points[:, 1]) - np.min(self.points[:, 1])
2015-06-19 08:31:02 -07:00
def get_color(self):
color = Color()
color.set_rgb(self.rgbs[0, :])
return color
2015-06-10 22:00:35 -07:00
### Stuff subclasses should deal with ###
def generate_points(self):
#Typically implemented in subclass, unless purposefully left blank
pass
2015-10-12 19:39:46 -07:00
def align_data(self, mobject):
count1, count2 = self.get_num_points(), mobject.get_num_points()
2015-06-10 22:00:35 -07:00
if count1 == 0:
2015-10-12 19:39:46 -07:00
self.add_points([(0, 0, 0)])
2015-06-10 22:00:35 -07:00
if count2 == 0:
2015-10-12 19:39:46 -07:00
mobject.add_points([(0, 0, 0)])
2015-06-10 22:00:35 -07:00
if count1 == count2:
return
for attr in ['points', 'rgbs']:
2015-10-12 19:39:46 -07:00
new_arrays = make_even(getattr(self, attr), getattr(mobject, attr))
for array, mobject in zip(new_arrays, [self, mobject]):
2015-06-10 22:00:35 -07:00
setattr(mobject, attr, np.array(array))
def interpolate(mobject1, mobject2, target_mobject, alpha):
"""
Turns target_mobject into an interpolation between mobject1
and mobject2.
"""
Mobject.align_data(mobject1, mobject2)
for attr in ['points', 'rgbs']:
2015-10-12 19:39:46 -07:00
setattr(target_mobject, attr, interpolate(
getattr(mobject1, attr),
getattr(mobject2, attr),
alpha))
2015-06-10 22:00:35 -07:00
#TODO, Make the two implementations bellow not redundant
2015-06-10 22:00:35 -07:00
class Mobject1D(Mobject):
DEFAULT_CONFIG = {
"density" : DEFAULT_POINT_DENSITY_1D,
}
def __init__(self, **kwargs):
digest_config(self, Mobject1D, kwargs)
self.epsilon = 1.0 / self.density
Mobject.__init__(self, **kwargs)
2015-06-10 22:00:35 -07:00
def add_line(self, start, end, min_density = 0.1, color = None):
2015-10-08 11:50:49 -07:00
length = np.linalg.norm(end - start)
epsilon = self.epsilon / max(length, min_density)
self.add_points([
interpolate(start, end, t)
for t in np.arange(0, 1, epsilon)
], color = color)
2015-10-08 11:50:49 -07:00
2015-06-10 22:00:35 -07:00
class Mobject2D(Mobject):
DEFAULT_CONFIG = {
"density" : DEFAULT_POINT_DENSITY_2D,
}
def __init__(self, **kwargs):
digest_config(self, Mobject2D, kwargs)
self.epsilon = 1.0 / self.density
Mobject.__init__(self, **kwargs)
2015-06-10 22:00:35 -07:00
class CompoundMobject(Mobject):
def __init__(self, *mobjects):
Mobject.__init__(self)
self.original_mobs_num_points = []
for mobject in mobjects:
self.original_mobs_num_points.append(mobject.points.shape[0])
self.add_points(mobject.points, mobject.rgbs)
self.point_thickness = max([
m.point_thickness
for m in mobjects
])
2015-06-10 22:00:35 -07:00
def split(self):
result = []
curr = 0
for num_points in self.original_mobs_num_points:
result.append(Mobject().add_points(
self.points[curr:curr+num_points, :],
self.rgbs[curr:curr+num_points, :]
))
curr += num_points
return result
# class CompoundMobject(Mobject):
# """
# Treats a collection of mobjects as if they were one.
# A weird form of inhertance is at play here...
# """
# def __init__(self, *mobjects):
# Mobject.__init__(self)
# self.mobjects = mobjects
# name_to_method = dict(
# inspect.getmembers(Mobject, predicate = inspect.ismethod)
# )
# names = name_to_method.keys()
# #Most reductions take the form of mapping a given method across
# #all constituent mobjects, then just returning self.
# name_to_reduce = dict([
# (name, lambda list : self)
# for name in names
# ])
# name_to_reduce.update(self.get_special_reduce_functions())
# def make_pseudo_method(name):
# return lambda *args, **kwargs : name_to_reduce[name]([
# name_to_method[name](mob, *args, **kwargs)
# for mob in self.mobjects
# ])
# for name in names:
# setattr(self, name, make_pseudo_method(name))
# def show(self):
# def get_special_reduce_functions(self):
# return {}
# def handle_method(self, method_name, *args, **kwargs):
# pass
2015-06-10 22:00:35 -07:00