3b1b-manim/active_projects/clacks_solution1.py

2529 lines
76 KiB
Python
Raw Normal View History

from big_ol_pile_of_manim_imports import *
from active_projects.clacks import *
# TODO, add solution image
class FromPuzzleToSolution(MovingCameraScene):
def construct(self):
big_rect = FullScreenFadeRectangle()
big_rect.set_fill(DARK_GREY, 0.5)
self.add(big_rect)
rects = VGroup(ScreenRectangle(), ScreenRectangle())
rects.set_height(3)
rects.arrange_submobjects(RIGHT, buff=2)
titles = VGroup(
TextMobject("Puzzle"),
TextMobject("Solution"),
)
images = Group(
ImageMobject("BlocksAndWallExampleMass16"),
2019-01-15 12:19:34 -08:00
ImageMobject("SphereSurfaceProof2"), # TODO
)
for title, rect, image in zip(titles, rects, images):
title.scale(1.5)
title.next_to(rect, UP)
image.replace(rect)
self.add(image, rect, title)
frame = self.camera_frame
frame.save_state()
self.play(
frame.replace, images[0],
run_time=3
)
self.wait()
self.play(Restore(frame, run_time=3))
self.play(
frame.replace, images[1],
run_time=3,
)
self.wait()
class BlocksAndWallExampleMass16(BlocksAndWallExample):
CONFIG = {
"sliding_blocks_config": {
"block1_config": {
"mass": 16,
"velocity": -1.5,
},
},
"wait_time": 25,
}
class Mass16WithElasticLabel(Mass1e1WithElasticLabel):
CONFIG = {
"sliding_blocks_config": {
"block1_config": {
"mass": 16,
}
},
}
class BlocksAndWallExampleMass64(BlocksAndWallExample):
CONFIG = {
"sliding_blocks_config": {
"block1_config": {
"mass": 64,
"velocity": -1.5,
},
},
"wait_time": 25,
}
class BlocksAndWallExampleMass1e4(BlocksAndWallExample):
CONFIG = {
"sliding_blocks_config": {
"block1_config": {
"mass": 1e4,
"velocity": -1.5,
},
},
"wait_time": 25,
}
class BlocksAndWallExampleMassMillion(BlocksAndWallExample):
CONFIG = {
"sliding_blocks_config": {
"block1_config": {
"mass": 1e6,
"velocity": -0.9,
"label_text": "$100^{3}$ kg"
},
},
"wait_time": 30,
"million_fade_time": 4,
"min_time_between_sounds": 0.002,
}
def setup(self):
super().setup()
self.add_million_label()
def add_million_label(self):
first_label = self.blocks.block1.label
brace = Brace(first_label[:-2], UP, buff=SMALL_BUFF)
new_label = TexMobject("1{,}000{,}000")
new_label.next_to(brace, UP, buff=SMALL_BUFF)
new_label.add(brace)
new_label.set_color(YELLOW)
def update_label(label):
d_time = self.get_time() - self.million_fade_time
opacity = smooth(d_time)
label.set_fill(opacity=d_time)
new_label.add_updater(update_label)
first_label.add(new_label)
class BlocksAndWallExampleMassTrillion(BlocksAndWallExample):
CONFIG = {
"sliding_blocks_config": {
"block1_config": {
"mass": 1e12,
"velocity": -1,
},
},
"wait_time": 30,
"min_time_between_sounds": 0.001,
}
2019-01-15 12:19:34 -08:00
class AskAboutFindingNewVelocities(Scene):
CONFIG = {
"floor_y": -3,
"wall_x": -6.5,
"wall_height": 7,
"block1_config": {
"mass": 10,
"fill_color": BLUE_E,
"velocity": -1,
},
"block2_config": {"mass": 1},
"block1_start_x": 7,
"block2_start_x": 3,
"v_arrow_scale_value": 1.0,
"is_halted": False,
}
def setup(self):
self.add_clack_sound_file()
2019-01-15 12:19:34 -08:00
def construct(self):
self.add_clack_sound_file()
2019-01-15 12:19:34 -08:00
self.add_floor()
self.add_wall()
self.add_blocks()
self.add_velocity_labels()
self.ask_about_transfer()
self.show_ms_and_vs()
self.show_value_on_equations()
def add_clack_sound_file(self):
self.clack_file = os.path.join(
VIDEO_DIR, "active_projects",
"clacks", "sounds", "clack.wav"
)
2019-01-15 12:19:34 -08:00
def add_floor(self):
floor = self.floor = Line(
self.wall_x * RIGHT,
(FRAME_WIDTH / 2) * RIGHT,
)
floor.shift(self.floor_y * UP)
self.add(floor)
def add_wall(self):
wall = self.wall = Wall(height=self.wall_height)
wall.move_to(
self.wall_x * RIGHT + self.floor_y * UP,
DR,
)
self.add(wall)
def add_blocks(self):
block1 = self.block1 = Block(**self.block1_config)
block2 = self.block2 = Block(**self.block2_config)
blocks = self.blocks = VGroup(block1, block2)
block1.move_to(self.block1_start_x * RIGHT + self.floor_y * UP, DOWN)
block2.move_to(self.block2_start_x * RIGHT + self.floor_y * UP, DOWN)
self.add_velocity_phase_space_point()
# Add arrows
for block in blocks:
arrow = Vector(self.block_to_v_vector(block))
arrow.set_color(RED)
arrow.set_stroke(BLACK, 1, background=True)
arrow.move_to(block.get_center(), RIGHT)
block.arrow = arrow
block.add(arrow)
block.v_label = DecimalNumber(
block.velocity,
num_decimal_places=2,
background_stroke_width=2,
)
block.v_label.set_color(RED)
block.add(block.v_label)
# Add updater
blocks.add_updater(self.update_blocks)
self.add(
blocks,
block2.arrow, block1.arrow,
block2.v_label, block1.v_label,
)
def add_velocity_phase_space_point(self):
self.vps_point = VectorizedPoint([
np.sqrt(self.block1.mass) * self.block1.velocity,
np.sqrt(self.block2.mass) * self.block2.velocity,
0
])
def add_velocity_labels(self):
v_labels = self.get_next_velocity_labels()
self.add(v_labels)
def ask_about_transfer(self):
energy_expression, momentum_expression = \
self.get_energy_and_momentum_expressions()
energy_words = TextMobject("Conservation of energy:")
energy_words.move_to(UP)
energy_words.to_edge(LEFT, buff=1.5)
momentum_words = TextMobject("Conservation of momentum:")
momentum_words.next_to(
energy_words, DOWN,
buff=0.7,
)
energy_expression.next_to(energy_words, RIGHT, MED_LARGE_BUFF)
momentum_expression.next_to(energy_expression, DOWN)
momentum_expression.next_to(momentum_words, RIGHT)
velocity_labels = self.all_velocity_labels
randy = Randolph(height=2)
randy.next_to(velocity_labels, DR)
randy.save_state()
randy.fade(1)
# Up to collisions
self.go_through_next_collision(include_velocity_label_animation=True)
2019-01-15 12:19:34 -08:00
self.play(
randy.restore,
randy.change, "pondering", velocity_labels[0],
)
self.halt()
self.play(randy.look_at, velocity_labels[-1])
self.play(Blink(randy))
self.play(
FadeInFrom(energy_words, RIGHT),
FadeInFromDown(energy_expression),
FadeOut(randy),
)
self.wait()
self.play(
FadeInFrom(momentum_words, RIGHT),
FadeInFromDown(momentum_expression)
)
self.wait()
self.energy_expression = energy_expression
self.energy_words = energy_words
self.momentum_expression = momentum_expression
self.momentum_words = momentum_words
def show_ms_and_vs(self):
block1 = self.block1
block2 = self.block2
energy_expression = self.energy_expression
momentum_expression = self.momentum_expression
for block in self.blocks:
block.shift_onto_screen()
m1_labels = VGroup(
block1.label,
energy_expression.get_part_by_tex("m_1"),
momentum_expression.get_part_by_tex("m_1"),
)
m2_labels = VGroup(
block2.label,
energy_expression.get_part_by_tex("m_2"),
momentum_expression.get_part_by_tex("m_2"),
)
v1_labels = VGroup(
block1.v_label,
energy_expression.get_part_by_tex("v_1"),
momentum_expression.get_part_by_tex("v_1"),
)
v2_labels = VGroup(
block2.v_label,
energy_expression.get_part_by_tex("v_2"),
momentum_expression.get_part_by_tex("v_2"),
)
label_groups = VGroup(
m1_labels, m2_labels,
v1_labels, v2_labels,
)
for group in label_groups:
group.rects = VGroup(*map(
SurroundingRectangle,
group
))
for group in label_groups:
self.play(LaggedStart(
ShowCreation, group.rects,
lag_ratio=0.8,
run_time=1,
))
self.play(FadeOut(group.rects))
def show_value_on_equations(self):
energy_expression = self.energy_expression
momentum_expression = self.momentum_expression
energy_text = VGroup(energy_expression, self.energy_words)
momentum_text = VGroup(momentum_expression, self.momentum_words)
block1 = self.block1
block2 = self.block2
block1.save_state()
block2.save_state()
v_terms, momentum_v_terms = [
VGroup(*[
expr.get_part_by_tex("v_{}".format(d))
for d in [1, 2]
])
for expr in [energy_expression, momentum_expression]
]
v_braces = VGroup(*[
Brace(term, UP, buff=SMALL_BUFF)
for term in v_terms
])
v_decimals = VGroup(*[DecimalNumber(0) for x in range(2)])
def update_v_decimals(v_decimals):
values = self.get_velocities()
for decimal, value, brace in zip(v_decimals, values, v_braces):
decimal.set_value(value)
decimal.next_to(brace, UP, SMALL_BUFF)
update_v_decimals(v_decimals)
energy_const_brace, momentum_const_brace = [
Brace(
expr.get_part_by_tex("const"), UP,
buff=SMALL_BUFF,
)
for expr in [energy_expression, momentum_expression]
]
sqrt_m_vect = np.array([
np.sqrt(self.block1.mass),
np.sqrt(self.block2.mass),
0
])
def get_energy():
return 0.5 * get_norm(self.vps_point.get_location())**2
def get_momentum():
return np.dot(self.vps_point.get_location(), sqrt_m_vect)
energy_decimal = DecimalNumber(get_energy())
energy_decimal.next_to(energy_const_brace, UP, SMALL_BUFF)
momentum_decimal = DecimalNumber(get_momentum())
momentum_decimal.next_to(momentum_const_brace, UP, SMALL_BUFF)
VGroup(
energy_const_brace, energy_decimal,
momentum_const_brace, momentum_decimal,
).set_color(YELLOW)
self.play(
ShowCreationThenFadeAround(energy_expression),
2019-01-15 12:19:34 -08:00
momentum_text.set_fill, {"opacity": 0.25},
FadeOut(self.all_velocity_labels),
)
self.play(*[
*map(GrowFromCenter, v_braces),
*map(VFadeIn, v_decimals),
GrowFromCenter(energy_const_brace),
FadeIn(energy_decimal),
])
energy_decimal.add_updater(
lambda m: m.set_value(get_energy())
)
v_decimals.add_updater(update_v_decimals)
self.add(v_decimals)
self.unhalt()
for x in range(4):
self.go_through_next_collision()
2019-01-15 12:19:34 -08:00
energy_decimal.clear_updaters()
momentum_decimal.set_value(get_momentum())
self.halt()
self.play(*[
momentum_text.set_fill, {"opacity": 1},
FadeOut(energy_text),
FadeOut(energy_const_brace),
FadeOut(energy_decimal),
GrowFromCenter(momentum_const_brace),
FadeIn(momentum_decimal),
*[
ApplyMethod(b.next_to, vt, UP, SMALL_BUFF)
for b, vt in zip(v_braces, momentum_v_terms)
],
])
self.unhalt()
momentum_decimal.add_updater(
lambda m: m.set_value(get_momentum())
)
momentum_decimal.add_updater(
lambda m: m.next_to(momentum_const_brace, UP, SMALL_BUFF)
)
for x in range(4):
self.go_through_next_collision()
2019-01-15 12:19:34 -08:00
self.wait(10)
# Helpers
def get_energy_and_momentum_expressions(self):
tex_to_color_map = {
"v_1": RED_B,
"v_2": RED_B,
"m_1": BLUE_C,
"m_2": BLUE_C,
}
energy_expression = TexMobject(
"\\frac{1}{2} m_1 (v_1)^2 + ",
"\\frac{1}{2} m_2 (v_2)^2 = ",
"\\text{const.}",
tex_to_color_map=tex_to_color_map,
)
momentum_expression = TexMobject(
"m_1 v_1 + m_2 v_2 =", "\\text{const.}",
tex_to_color_map=tex_to_color_map
)
return VGroup(
energy_expression,
momentum_expression,
)
def go_through_next_collision(self, include_velocity_label_animation=False):
2019-01-15 12:19:34 -08:00
block2 = self.block2
if block2.velocity >= 0:
self.wait_until(self.blocks_are_hitting)
self.add_sound(self.clack_file)
2019-01-15 12:19:34 -08:00
self.transfer_momentum()
edge = RIGHT
else:
self.wait_until(self.block2_is_hitting_wall)
self.add_sound(self.clack_file)
2019-01-15 12:19:34 -08:00
self.reflect_block2()
edge = LEFT
anims = [Flash(block2.get_edge_center(edge))]
if include_velocity_label_animation:
anims.append(self.get_next_velocity_labels_animation())
self.play(*anims, run_time=0.5)
def get_next_velocity_labels_animation(self):
return FadeInFrom(
self.get_next_velocity_labels(),
LEFT,
run_time=0.5
)
def get_next_velocity_labels(self, v1=None, v2=None):
new_labels = self.get_velocity_labels(v1, v2)
if hasattr(self, "all_velocity_labels"):
arrow = Vector(RIGHT)
arrow.next_to(self.all_velocity_labels)
new_labels.next_to(arrow, RIGHT)
new_labels.add(arrow)
else:
self.all_velocity_labels = VGroup()
self.all_velocity_labels.add(new_labels)
return new_labels
def get_velocity_labels(self, v1=None, v2=None):
default_vs = self.get_velocities()
v1 = v1 or default_vs[0]
v2 = v2 or default_vs[1]
labels = VGroup(
TexMobject("v_1 = {:.2f}".format(v1)),
TexMobject("v_2 = {:.2f}".format(v2)),
)
labels.arrange_submobjects(
DOWN,
buff=MED_SMALL_BUFF,
aligned_edge=LEFT,
)
labels.scale(0.9)
for label in labels:
label[:2].set_color(RED)
labels.next_to(self.wall, RIGHT)
labels.to_edge(UP, buff=MED_SMALL_BUFF)
return labels
def update_blocks(self, blocks, dt):
for block, velocity in zip(blocks, self.get_velocities()):
block.velocity = velocity
if not self.is_halted:
block.shift(block.velocity * dt * RIGHT)
center = block.get_center()
block.arrow.put_start_and_end_on(
center,
center + self.block_to_v_vector(block),
)
max_height = 0.25
block.v_label.set_value(block.velocity)
if block.v_label.get_height() > max_height:
block.v_label.set_height(max_height)
block.v_label.next_to(
block.arrow.get_start(), UP,
2019-01-15 12:19:34 -08:00
buff=SMALL_BUFF,
)
return blocks
def block_to_v_vector(self, block):
return block.velocity * self.v_arrow_scale_value * RIGHT
def blocks_are_hitting(self):
x1 = self.block1.get_left()[0]
x2 = self.block2.get_right()[0]
buff = 0.01
return (x1 < x2 + buff)
def block2_is_hitting_wall(self):
x2 = self.block2.get_left()[0]
buff = 0.01
return (x2 < self.wall_x + buff)
def get_velocities(self):
m1 = self.block1.mass
m2 = self.block2.mass
vps_coords = self.vps_point.get_location()
return [
vps_coords[0] / np.sqrt(m1),
vps_coords[1] / np.sqrt(m2),
]
def transfer_momentum(self):
m1 = self.block1.mass
m2 = self.block2.mass
theta = np.arctan(np.sqrt(m2 / m1))
self.reflect_block2()
self.vps_point.rotate(2 * theta, about_point=ORIGIN)
def reflect_block2(self):
self.vps_point.points[:, 1] *= -1
def halt(self):
self.is_halted = True
def unhalt(self):
self.is_halted = False
class IntroduceVelocityPhaseSpace(AskAboutFindingNewVelocities):
CONFIG = {
"wall_height": 1.5,
"floor_y": -3.5,
"block1_start_x": 5,
"block2_start_x": 0,
"axes_config": {
"x_axis_config": {
"x_min": -5.5,
"x_max": 6,
},
"y_axis_config": {
"x_min": -3.5,
"x_max": 4,
},
"number_line_config": {
"unit_size": 0.7,
},
},
2019-01-15 12:19:34 -08:00
}
def construct(self):
self.add_wall_floor_and_blocks()
self.show_two_equations()
self.draw_axes()
self.draw_ellipse()
self.rescale_axes()
self.show_starting_point()
self.show_initial_collide()
self.ask_about_where_to_land()
self.show_conservation_of_momentum_equation()
self.show_momentum_line()
self.reiterate_meaning_of_line_and_circle()
self.reshow_first_jump()
2019-01-15 12:19:34 -08:00
self.show_bounce_off_wall()
self.show_reflection_about_x()
self.show_remaining_collisions()
def add_wall_floor_and_blocks(self):
self.add_floor()
self.add_wall()
self.add_blocks()
self.halt()
def show_two_equations(self):
equations = self.get_energy_and_momentum_expressions()
equations.arrange_submobjects(DOWN, buff=LARGE_BUFF)
equations.shift(UP)
v1_terms, v2_terms = v_terms = VGroup(*[
2019-01-15 12:19:34 -08:00
VGroup(*[
expr.get_parts_by_tex(tex)
for expr in equations
])
for tex in ("v_1", "v_2")
])
for eq in equations:
eq.highlighted_copy = eq.copy()
eq.highlighted_copy.set_fill(opacity=0)
eq.highlighted_copy.set_stroke(YELLOW, 3)
2019-01-15 12:19:34 -08:00
self.add(equations)
self.play(
ShowCreation(equations[0].highlighted_copy),
run_time=0.75,
)
self.play(
FadeOut(equations[0].highlighted_copy),
ShowCreation(equations[1].highlighted_copy),
run_time=0.75,
)
self.play(
FadeOut(equations[1].highlighted_copy),
run_time=0.75,
)
2019-01-15 12:19:34 -08:00
self.play(LaggedStart(
Indicate, v_terms,
lag_ratio=0.75,
rate_func=there_and_back,
2019-01-15 12:19:34 -08:00
))
self.wait()
self.equations = equations
def draw_axes(self):
equations = self.equations
energy_expression, momentum_expression = equations
axes = self.axes = Axes(**self.axes_config)
axes.to_edge(UP, buff=SMALL_BUFF)
axes.set_stroke(width=2)
# Axes labels
x_axis_labels = VGroup(
TexMobject("x = ", "v_1"),
TexMobject("x = ", "\\sqrt{m_1}", "\\cdot", "v_1"),
)
y_axis_labels = VGroup(
TexMobject("y = ", "v_2"),
TexMobject("y = ", "\\sqrt{m_2}", "\\cdot", "v_2"),
)
axis_labels = self.axis_labels = VGroup(x_axis_labels, y_axis_labels)
for label_group in axis_labels:
for label in label_group:
label.set_color_by_tex("v_", RED)
label.set_color_by_tex("m_", BLUE)
for label in x_axis_labels:
label.next_to(axes.x_axis.get_right(), UP)
for label in y_axis_labels:
label.next_to(axes.y_axis.get_top(), DR)
# Introduce axes and labels
self.play(
equations.scale, 0.8,
equations.to_corner, UL, {"buff": MED_SMALL_BUFF},
Write(axes),
)
self.wait()
self.play(
momentum_expression.set_fill, {"opacity": 0.2},
Indicate(energy_expression, scale_factor=1.05),
)
self.wait()
for n in range(2):
tex = "v_{}".format(n + 1)
self.play(
TransformFromCopy(
energy_expression.get_part_by_tex(tex),
axis_labels[n][0].get_part_by_tex(tex),
),
FadeInFromDown(axis_labels[n][0][0]),
)
# Show vps_dot
vps_dot = self.vps_dot = Dot(color=RED)
vps_dot.set_stroke(BLACK, 2, background=True)
vps_dot.add_updater(
lambda m: m.move_to(axes.coords_to_point(
*self.get_velocities()
))
)
vps_point = self.vps_point
vps_point.save_state()
kwargs = {
"path_arc": PI / 3,
"run_time": 2,
}
target_locations = [
6 * RIGHT + 2 * UP,
6 * RIGHT + 2 * DOWN,
6 * LEFT + 1 * UP,
]
self.add(vps_dot)
for target_location in target_locations:
self.play(
vps_point.move_to, target_location,
**kwargs,
)
self.play(Restore(vps_point, **kwargs))
self.wait()
2019-01-15 12:19:34 -08:00
def draw_ellipse(self):
vps_dot = self.vps_dot
vps_point = self.vps_point
axes = self.axes
energy_expression = self.equations[0]
ellipse = self.ellipse = Circle(color=YELLOW)
ellipse.set_stroke(BLACK, 5, background=True)
ellipse.rotate(PI)
ellipse.replace(
Polygon(*[
axes.coords_to_point(x, y * np.sqrt(10))
for x, y in [(1, 0), (0, 1), (-1, 0), (0, -1)]
]),
stretch=True
)
self.play(Indicate(energy_expression, scale_factor=1.05))
self.add(ellipse, vps_dot)
self.play(
ShowCreation(ellipse),
Rotating(vps_point, about_point=ORIGIN),
run_time=6,
rate_func=lambda t: smooth(t, 3),
)
self.wait()
2019-01-15 12:19:34 -08:00
def rescale_axes(self):
ellipse = self.ellipse
axis_labels = self.axis_labels
equations = self.equations
vps_point = self.vps_point
vps_dot = self.vps_dot
vps_dot.clear_updaters()
vps_dot.add_updater(
lambda m: m.move_to(ellipse.get_left())
)
brief_circle = ellipse.copy()
brief_circle.stretch(np.sqrt(10), 0)
brief_circle.set_stroke(WHITE, 2)
xy_equation = self.xy_equation = TexMobject(
"\\frac{1}{2}",
"\\left(", "x^2", "+", "y^2", "\\right)",
"=", "\\text{const.}"
)
xy_equation.scale(0.8)
xy_equation.next_to(equations[0], DOWN)
self.play(ShowCreationThenFadeOut(brief_circle))
for i, labels, block in zip(it.count(), axis_labels, self.blocks):
self.play(ShowCreationThenFadeAround(labels[0]))
self.play(
ReplacementTransform(labels[0][0], labels[1][0]),
ReplacementTransform(labels[0][-1], labels[1][-1]),
FadeInFromDown(labels[1][1:-1]),
ellipse.stretch, np.sqrt(block.mass), i,
)
self.wait()
vps_dot.clear_updaters()
vps_dot.add_updater(
lambda m: m.move_to(self.axes.coords_to_point(
*self.vps_point.get_location()[:2]
))
)
self.play(
FadeInFrom(xy_equation, UP),
FadeOut(equations[1])
)
self.wait()
curr_x = vps_point.get_location()[0]
for x in [0.5 * curr_x, 2 * curr_x, curr_x]:
axes_center = self.axes.coords_to_point(0, 0)
self.play(
vps_point.move_to, x * RIGHT,
UpdateFromFunc(
ellipse,
lambda m: m.set_width(
2 * get_norm(
vps_dot.get_center() - axes_center,
),
).move_to(axes_center)
),
run_time=2,
)
self.wait()
2019-01-15 12:19:34 -08:00
def show_starting_point(self):
vps_dot = self.vps_dot
block1, block2 = self.blocks
self.unhalt()
self.wait(3)
self.halt()
self.play(ShowCreationThenFadeAround(vps_dot))
self.wait()
2019-01-15 12:19:34 -08:00
def show_initial_collide(self):
self.unhalt()
self.go_through_next_collision()
self.wait()
self.halt()
self.wait()
2019-01-15 12:19:34 -08:00
def ask_about_where_to_land(self):
self.play(
Rotating(
self.vps_point,
about_point=ORIGIN,
run_time=6,
rate_func=lambda t: smooth(t, 3),
),
)
self.wait(2)
2019-01-15 12:19:34 -08:00
def show_conservation_of_momentum_equation(self):
equations = self.equations
energy_expression, momentum_expression = equations
momentum_expression.set_fill(opacity=1)
momentum_expression.shift(MED_SMALL_BUFF * UP)
momentum_expression.shift(MED_SMALL_BUFF * LEFT)
xy_equation = self.xy_equation
momentum_xy_equation = self.momentum_xy_equation = TexMobject(
"\\sqrt{m_1}", "x", "+",
"\\sqrt{m_2}", "y", "=",
"\\text{const.}",
)
momentum_xy_equation.set_color_by_tex("m_", BLUE)
momentum_xy_equation.scale(0.8)
momentum_xy_equation.next_to(
momentum_expression, DOWN,
buff=MED_LARGE_BUFF,
aligned_edge=RIGHT,
)
self.play(
FadeOut(xy_equation),
energy_expression.set_fill, {"opacity": 0.2},
FadeInFromDown(momentum_expression)
)
self.play(ShowCreationThenFadeAround(momentum_expression))
self.wait()
self.play(FadeInFrom(momentum_xy_equation, UP))
self.wait()
2019-01-15 12:19:34 -08:00
def show_momentum_line(self):
vps_dot = self.vps_dot
m1 = self.block1.mass
m2 = self.block2.mass
line = Line(np.sqrt(m2) * LEFT, np.sqrt(m1) * DOWN)
line.scale(4)
line.set_stroke(GREEN, 3)
line.move_to(vps_dot)
slope_label = TexMobject(
"\\text{Slope =}", "-\\sqrt{\\frac{m_1}{m_2}}"
)
slope_label.scale(0.8)
slope_label.next_to(vps_dot, LEFT, LARGE_BUFF)
slope_arrow = Arrow(
slope_label.get_right(),
line.point_from_proportion(0.45),
buff=SMALL_BUFF,
)
slope_group = VGroup(line, slope_label, slope_arrow)
foreground_mobs = VGroup(
self.equations[1], self.momentum_xy_equation,
self.blocks, self.vps_dot
)
for mob in foreground_mobs:
if isinstance(mob, TexMobject):
mob.set_stroke(BLACK, 3, background=True)
self.add(line, *foreground_mobs)
self.play(ShowCreation(line))
self.play(
FadeInFrom(slope_label, RIGHT),
GrowArrow(slope_arrow),
)
self.wait()
self.add(slope_group, *foreground_mobs)
self.play(slope_group.shift, 4 * RIGHT, run_time=3)
self.play(slope_group.shift, 5 * LEFT, run_time=3)
self.play(
slope_group.shift, RIGHT,
run_time=1,
rate_func=lambda t: t**4,
)
self.wait()
self.momentum_line = line
self.slope_group = slope_group
2019-01-15 12:19:34 -08:00
def reiterate_meaning_of_line_and_circle(self):
line_vect = self.momentum_line.get_vector()
vps_point = self.vps_point
for x in [0.25, -0.5, 0.25]:
self.play(
vps_point.shift, x * line_vect,
run_time=2
)
self.wait()
self.play(Rotating(
vps_point,
about_point=ORIGIN,
rate_func=lambda t: smooth(t, 3),
))
self.wait()
2019-01-15 12:19:34 -08:00
def reshow_first_jump(self):
vps_point = self.vps_point
curr_point = vps_point.get_location()
start_point = get_norm(curr_point) * LEFT
for n in range(8):
vps_point.move_to(
[start_point, curr_point][n % 2]
)
self.wait(0.5)
self.wait()
2019-01-15 12:19:34 -08:00
def show_bounce_off_wall(self):
self.unhalt()
self.go_through_next_collision()
self.halt()
2019-01-15 12:19:34 -08:00
def show_reflection_about_x(self):
vps_point = self.vps_point
curr_location = vps_point.get_location()
old_location = np.array(curr_location)
old_location[1] *= -1
# self.play(
# ApplyMethod(
# self.block2.move_to, self.wall.get_corner(DR), DL,
# path_arc=30 * DEGREES,
# )
# )
for n in range(4):
self.play(
vps_point.move_to,
[old_location, curr_location][n % 2]
)
self.wait()
2019-01-15 12:19:34 -08:00
def show_remaining_collisions(self):
line = self.momentum_line
# slope_group = self.slope_group
vps_dot = self.vps_dot
axes = self.axes
slope = np.sqrt(self.block2.mass / self.block1.mass)
end_region = Polygon(
axes.coords_to_point(0, 0),
axes.coords_to_point(10, 0),
axes.coords_to_point(10, slope * 10),
stroke_width=0,
fill_color=GREEN,
fill_opacity=0.3
)
self.unhalt()
for x in range(7):
self.go_through_next_collision()
if x == 0:
self.halt()
self.play(line.move_to, vps_dot)
self.wait()
self.unhalt()
self.play(FadeIn(end_region))
self.go_through_next_collision()
self.wait(5)
# Helpers
def add_update_line(self, func):
if hasattr(self, "vps_dot"):
old_vps_point = self.vps_dot.get_center()
func()
self.vps_dot.update()
new_vps_point = self.vps_dot.get_center()
line = Line(old_vps_point, new_vps_point)
line.set_stroke(WHITE, 2)
self.add(line)
else:
func()
def transfer_momentum(self):
self.add_update_line(super().transfer_momentum)
def reflect_block2(self):
self.add_update_line(super().reflect_block2)
class CircleDiagramFromSlidingBlocks(Scene):
CONFIG = {
"BlocksAndWallSceneClass": BlocksAndWallExampleMass1e1,
"circle_config": {
"radius": 2,
"stroke_color": YELLOW,
"stroke_width": 2,
},
2019-01-17 14:12:14 -08:00
"lines_style": {
"stroke_color": WHITE,
"stroke_width": 1,
2019-01-17 14:12:14 -08:00
},
"axes_config": {
"style": {
"stroke_color": LIGHT_GREY,
"stroke_width": 1,
},
"width": 5,
"height": 4.5,
},
"end_zone_style": {
"stroke_width": 0,
"fill_color": GREEN,
"fill_opacity": 0.3,
},
}
def construct(self):
sliding_blocks_scene = self.BlocksAndWallSceneClass(
show_flash_animations=False,
write_to_movie=False,
wait_time=0,
)
blocks = sliding_blocks_scene.blocks
times = [pair[1] for pair in blocks.clack_data]
2019-01-17 14:12:14 -08:00
self.mass_ratio = 1 / blocks.mass_ratio
self.show_circle_lines(
times=times,
slope=(-1 / np.sqrt(blocks.mass_ratio))
)
def show_circle_lines(self, times, slope):
2019-01-17 14:12:14 -08:00
circle = self.get_circle()
axes = self.get_axes()
lines = self.get_lines(circle.radius, slope)
end_zone = self.get_end_zone()
dot = Dot(color=RED, radius=0.06)
dot.move_to(lines[0].get_start())
self.add(end_zone, axes, circle, dot)
last_time = 0
for time, line in zip(times, lines):
if time > 300:
time = last_time + 1
self.wait(time - last_time)
last_time = time
dot.move_to(line.get_end())
self.add(line, dot)
def get_circle(self):
circle = Circle(**self.circle_config)
2019-01-17 14:12:14 -08:00
circle.rotate(PI) # Nice to have start point on left
return circle
def get_axes(self):
config = self.axes_config
axes = VGroup(
Line(LEFT, RIGHT).set_width(config["width"]),
Line(DOWN, UP).set_height(config["height"])
)
axes.set_style(**config["style"])
return axes
2019-01-17 14:12:14 -08:00
def get_lines(self, radius, slope):
theta = np.arctan(-1 / slope)
n_clacks = int(PI / theta)
points = []
for n in range(n_clacks + 1):
theta_mult = (n + 1) // 2
angle = 2 * theta * theta_mult
if n % 2 == 0:
angle *= -1
new_point = radius * np.array([
-np.cos(angle), -np.sin(angle), 0
])
points.append(new_point)
2019-01-17 14:12:14 -08:00
lines = VGroup(*[
Line(p1, p2)
for p1, p2 in zip(points, points[1:])
])
lines.set_style(**self.lines_style)
return lines
def get_end_zone(self):
slope = 1 / np.sqrt(self.mass_ratio)
x = self.axes_config["width"] / 2
zone = Polygon(
ORIGIN, x * RIGHT, x * RIGHT + slope * x * UP,
)
zone.set_style(**self.end_zone_style)
return zone
class CircleDiagramFromSlidingBlocksSameMass(CircleDiagramFromSlidingBlocks):
CONFIG = {
"BlocksAndWallSceneClass": BlocksAndWallExampleSameMass
}
class CircleDiagramFromSlidingBlocksSameMass1e1(CircleDiagramFromSlidingBlocks):
CONFIG = {
"BlocksAndWallSceneClass": BlocksAndWallExampleMass1e1
}
class CircleDiagramFromSlidingBlocks1e2(CircleDiagramFromSlidingBlocks):
CONFIG = {
"BlocksAndWallSceneClass": BlocksAndWallExampleMass1e2
}
class CircleDiagramFromSlidingBlocks1e4(CircleDiagramFromSlidingBlocks):
CONFIG = {
"BlocksAndWallSceneClass": BlocksAndWallExampleMass1e4
}
2019-01-17 14:12:14 -08:00
class AnnouncePhaseDiagram(CircleDiagramFromSlidingBlocks):
def construct(self):
pd_words = TextMobject("Phase diagram")
pd_words.scale(1.5)
pd_words.move_to(self.hold_up_spot, DOWN)
pd_words_border = pd_words.copy()
pd_words_border.set_stroke(YELLOW, 2)
pd_words_border.set_fill(opacity=0)
simple_words = TextMobject("Simple but powerful")
simple_words.next_to(pd_words, UP, LARGE_BUFF)
simple_words.shift(LEFT)
simple_words.set_color(BLUE)
simple_arrow = Arrow(
simple_words.get_bottom(),
pd_words.get_top(),
color=simple_words.get_color(),
)
self.play(
self.teacher.change, "raise_right_hand",
FadeInFromDown(pd_words)
)
self.change_student_modes(
"pondering", "thinking", "pondering",
added_anims=[ShowCreationThenFadeOut(pd_words_border)]
)
self.wait()
self.play(
FadeInFrom(simple_words, RIGHT),
GrowArrow(simple_arrow),
self.teacher.change, "hooray",
)
self.change_student_modes(
"thinking", "happy", "thinking",
)
self.wait(3)
class AnalyzeCircleGeometry(CircleDiagramFromSlidingBlocks, MovingCameraScene):
CONFIG = {
"mass_ratio": 16,
"circle_config": {
"radius": 3,
},
"axes_config": {
"width": FRAME_WIDTH,
"height": FRAME_HEIGHT,
},
"lines_style": {
"stroke_width": 2,
},
}
def construct(self):
self.add_mass_ratio_label()
self.add_circle_with_lines()
self.show_equal_arc_lengths()
self.use_arc_lengths_to_count()
self.focus_on_three_points()
self.show_likewise_for_all_jumps()
self.drop_arc_for_each_hop()
self.try_adding_one_more_arc()
self.zoom_out()
def add_mass_ratio_label(self, mass_ratio=None):
mass_ratio = mass_ratio or self.mass_ratio
mass_ratio_label = TextMobject(
"Mass ratio =", "{:,} : 1".format(mass_ratio)
)
mass_ratio_label.to_corner(UL, buff=MED_SMALL_BUFF)
self.add(mass_ratio_label)
self.mass_ratio_label = mass_ratio_label
def add_circle_with_lines(self):
circle = self.get_circle()
axes = self.get_axes()
axes_labels = self.get_axes_labels(axes)
slope = -np.sqrt(self.mass_ratio)
lines = self.get_lines(
radius=circle.radius,
slope=slope,
)
end_zone = self.get_end_zone()
end_zone_words = TextMobject("End zone")
end_zone_words.set_height(0.25)
end_zone_words.next_to(ORIGIN, UP, SMALL_BUFF)
end_zone_words.to_edge(RIGHT, buff=MED_SMALL_BUFF)
end_zone_words.set_color(GREEN)
self.add(
axes, axes_labels,
circle, end_zone, end_zone_words,
)
self.play(ShowCreation(lines, run_time=3, rate_func=None))
self.wait()
self.set_variables_as_attrs(
circle, axes, lines,
end_zone, end_zone_words,
)
def show_equal_arc_lengths(self):
circle = self.circle
radius = circle.radius
theta = self.theta = np.arctan(1 / np.sqrt(self.mass_ratio))
n_arcs = int(PI / (2 * theta))
lower_arcs = VGroup(*[
Arc(
start_angle=(PI + n * 2 * theta),
angle=(2 * theta),
radius=radius
)
for n in range(n_arcs + 1)
])
lower_arcs[0::2].set_color(RED)
lower_arcs[1::2].set_color(BLUE)
upper_arcs = lower_arcs.copy()
upper_arcs.rotate(PI, axis=RIGHT, about_point=ORIGIN)
upper_arcs[0::2].set_color(BLUE)
upper_arcs[1::2].set_color(RED)
all_arcs = VGroup(*it.chain(*zip(lower_arcs, upper_arcs)))
if int(PI / theta) % 2 == 1:
all_arcs.remove(all_arcs[-1])
arc_copies = lower_arcs.copy()
for arc_copy in arc_copies:
arc_copy.generate_target()
for arc in arc_copies:
arc.target.rotate(-(arc.start_angle - PI + theta))
equal_signs = VGroup(*[
TexMobject("=") for x in range(len(lower_arcs))
])
equal_signs.scale(0.8)
for sign in equal_signs:
sign.generate_target()
movers = VGroup(*it.chain(*zip(
arc_copies, equal_signs
)))
movers.remove(movers[-1])
mover_targets = VGroup(*[mover.target for mover in movers])
mover_targets.arrange_submobjects(RIGHT, buff=SMALL_BUFF)
mover_targets.next_to(ORIGIN, DOWN)
mover_targets.to_edge(LEFT)
equal_signs.scale(0)
equal_signs.fade(1)
equal_signs.move_to(mover_targets)
all_arcs.save_state()
for arc in all_arcs:
arc.rotate(90 * DEGREES)
arc.fade(1)
arc.set_stroke(width=20)
self.play(Restore(
all_arcs, submobject_mode="lagged_start",
run_time=2,
))
self.wait()
self.play(LaggedStart(MoveToTarget, movers))
self.wait()
self.arcs_equation = movers
self.lower_arcs = lower_arcs
self.upper_arcs = upper_arcs
self.all_arcs = all_arcs
def use_arc_lengths_to_count(self):
all_arcs = self.all_arcs
lines = self.lines
arc_counts = VGroup()
for n, arc in enumerate(all_arcs):
count_mob = Integer(n + 1)
count_mob.scale(0.75)
point = arc.point_from_proportion(0.5)
count_mob.next_to(point, normalize(point), SMALL_BUFF)
arc_counts.add(count_mob)
self.play(
FadeOut(lines),
FadeOut(all_arcs),
FadeOut(self.arcs_equation),
)
self.play(
ShowIncreasingSubsets(all_arcs),
ShowIncreasingSubsets(lines),
ShowIncreasingSubsets(arc_counts),
run_time=5,
rate_func=bezier([0, 0, 1, 1])
)
self.wait()
for group in all_arcs, arc_counts:
targets = VGroup()
for elem in group:
elem.generate_target()
targets.add(elem.target)
targets.space_out_submobjects(1.2)
kwargs = {
"rate_func": there_and_back,
"run_time": 3,
}
self.play(
LaggedStart(MoveToTarget, all_arcs, **kwargs),
LaggedStart(MoveToTarget, arc_counts, **kwargs),
)
self.arc_counts = arc_counts
def focus_on_three_points(self):
lines = self.lines
arcs = self.all_arcs
arc_counts = self.arc_counts
theta = self.theta
arc = arcs[4]
lines.save_state()
line_pair = lines[3:5]
lines_to_fade = VGroup(*lines[:3], *lines[5:])
three_points = [
line_pair[0].get_start(),
line_pair[1].get_start(),
line_pair[1].get_end(),
]
three_dots = VGroup(*map(Dot, three_points))
three_dots.set_color(RED)
theta_arc = Arc(
radius=1,
start_angle=-90 * DEGREES,
angle=theta
)
theta_arc.shift(three_points[1])
theta_label = TexMobject("\\theta")
theta_label.next_to(theta_arc, DOWN, SMALL_BUFF)
center_lines = VGroup(
Line(three_points[0], ORIGIN),
Line(ORIGIN, three_points[2]),
)
center_lines.match_style(line_pair)
two_theta_arc = Arc(
radius=1,
start_angle=(center_lines[0].get_angle() + PI),
angle=2 * theta
)
two_theta_label = TexMobject("2\\theta")
arc_center = two_theta_arc.point_from_proportion(0.5)
two_theta_label.next_to(
arc_center, normalize(arc_center), SMALL_BUFF
)
two_theta_label.shift(SMALL_BUFF * RIGHT)
to_fade = VGroup(arc_counts, arcs, lines_to_fade)
self.play(
LaggedStart(
FadeOut, VGroup(*to_fade.family_members_with_points())
)
)
lines_to_fade.fade(1)
self.play(FadeInFromLarge(three_dots[0]))
self.play(TransformFromCopy(*three_dots[:2]))
self.play(TransformFromCopy(*three_dots[1:3]))
self.wait()
self.play(
ShowCreation(theta_arc),
FadeInFrom(theta_label, UP)
)
self.wait()
self.play(
line_pair.set_stroke, WHITE, 1,
TransformFromCopy(line_pair, center_lines),
TransformFromCopy(theta_arc, two_theta_arc),
TransformFromCopy(theta_label, two_theta_label),
)
self.wait()
self.play(
TransformFromCopy(two_theta_arc, arc),
two_theta_label.move_to, 2.7 * arc_center,
)
self.wait()
self.three_dots = three_dots
self.theta_group = VGroup(theta_arc, theta_label)
self.center_lines_group = VGroup(
center_lines, two_theta_arc,
)
self.two_theta_label = two_theta_label
def show_likewise_for_all_jumps(self):
lines = self.lines
arcs = self.all_arcs
every_other_line = lines[::2]
self.play(
Restore(
lines,
submobject_mode="lagged_start",
run_time=2
),
FadeOut(self.center_lines_group),
FadeOut(self.three_dots),
)
self.play(LaggedStart(
ApplyFunction, every_other_line,
lambda line: (
lambda l: l.scale(10 / l.get_length()).set_stroke(BLUE, 3),
line
)
))
self.play(Restore(lines))
self.wait()
# Shift theta label
last_point = lines[3].get_end()
last_arc = arcs[4]
two_theta_label = self.two_theta_label
theta_group_copy = self.theta_group.copy()
for line, arc in zip(lines[5:10:2], arcs[6:11:2]):
new_point = line.get_end()
arc_point = arc.point_from_proportion(0.5)
self.play(
theta_group_copy.shift, new_point - last_point,
two_theta_label.move_to, 1.1 * arc_point,
FadeIn(arc),
FadeOut(last_arc),
)
self.wait()
last_point = new_point
last_arc = arc
self.play(
FadeOut(theta_group_copy),
FadeOut(two_theta_label),
FadeOut(last_arc),
)
self.wait()
def drop_arc_for_each_hop(self):
lines = self.lines
arcs = self.all_arcs
two_theta_labels = VGroup()
wedges = VGroup()
for arc in arcs:
label = TexMobject("2\\theta")
label.scale(0.8)
label.move_to(1.1 * arc.point_from_proportion(0.5))
two_theta_labels.add(label)
wedge = arc.copy()
wedge.add_control_points([
*3 * [ORIGIN],
*3 * [wedge.points[0]]
])
wedge.set_stroke(width=0)
wedge.set_fill(arc.get_color(), 0.2)
wedges.add(wedge)
self.remove(lines)
for line, arc, label, wedge in zip(lines, arcs, two_theta_labels, wedges):
self.play(
ShowCreation(line),
FadeInFrom(arc, normalize(arc.get_center())),
FadeInFrom(label, normalize(arc.get_center())),
FadeIn(wedge),
)
self.wedges = wedges
self.two_theta_labels = two_theta_labels
def try_adding_one_more_arc(self):
wedges = self.wedges
theta = self.theta
last_wedge = wedges[-1]
new_wedge = last_wedge.copy()
new_wedge.set_color(PURPLE)
new_wedge.set_stroke(WHITE, 1)
self.play(FadeIn(new_wedge))
for angle in [-2 * theta, 4 * DEGREES, -2 * DEGREES]:
self.play(Rotate(new_wedge, angle, about_point=ORIGIN))
self.wait()
self.play(
new_wedge.shift, 10 * RIGHT,
rate_func=running_start,
path_arc=-30 * DEGREES,
)
self.remove(new_wedge)
def zoom_out(self):
frame = self.camera_frame
self.play(
frame.scale, 2, {"about_point": (TOP + RIGHT_SIDE)},
run_time=3
)
self.wait()
# Helpers
def get_axes_labels(self, axes):
axes_labels = VGroup(
TexMobject("x = ", "\\sqrt{m_1}", "\\cdot", "v_1"),
TexMobject("y = ", "\\sqrt{m_2}", "\\cdot", "v_2"),
)
for label in axes_labels:
label.set_height(0.4)
axes_labels[0].next_to(ORIGIN, DOWN, SMALL_BUFF)
axes_labels[0].to_edge(RIGHT, MED_SMALL_BUFF)
axes_labels[1].next_to(ORIGIN, RIGHT, SMALL_BUFF)
axes_labels[1].to_edge(UP, SMALL_BUFF)
return axes_labels
class InscribedAngleTheorem(Scene):
def construct(self):
self.add_title()
self.show_circle()
self.let_point_vary()
def add_title(self):
title = TextMobject("Inscribed angle theorem")
title.scale(1.5)
title.to_edge(UP)
self.add(title)
self.title = title
def show_circle(self):
# Boy is this over engineered...
circle = self.circle = Circle(
color=BLUE,
radius=2,
)
center_dot = Dot(circle.get_center(), color=WHITE)
self.add(circle, center_dot)
angle_trackers = self.angle_trackers = VGroup(
ValueTracker(TAU / 8),
ValueTracker(PI),
ValueTracker(-TAU / 8),
)
def get_point(angle):
return circle.point_from_proportion(
(angle % TAU) / TAU
)
def get_dot(angle):
dot = Dot(get_point(angle))
dot.set_color(RED)
dot.set_stroke(BLACK, 3, background=True)
return dot
def get_dots():
return VGroup(*[
get_dot(at.get_value())
for at in angle_trackers
])
def update_labels(labels):
center = circle.get_center()
for dot, label in zip(dots, labels):
label.move_to(
center + 1.2 * (dot.get_center() - center)
)
def get_lines():
lines = VGroup(*[
Line(d1.get_center(), d2.get_center())
for d1, d2 in zip(dots, dots[1:])
])
lines.set_stroke(WHITE, 3)
return lines
def get_center_lines():
points = [
dots[0].get_center(),
circle.get_center(),
dots[2].get_center(),
]
lines = VGroup(*[
Line(p1, p2)
for p1, p2 in zip(points, points[1:])
])
lines.set_stroke(LIGHT_GREY, 3)
return lines
def get_angle_label(lines, tex, reduce_angle=True):
a1 = (lines[0].get_angle() + PI) % TAU
a2 = lines[1].get_angle()
diff = (a2 - a1)
if reduce_angle:
diff = ((diff + PI) % TAU) - PI
point = lines[0].get_end()
arc = Arc(
start_angle=a1,
angle=diff,
radius=0.5,
)
arc.shift(point)
arc_center = arc.point_from_proportion(0.5)
label = TexMobject(tex)
vect = (arc_center - point)
vect = (0.3 + get_norm(vect)) * normalize(vect)
label.move_to(point + vect)
return VGroup(arc, label)
def get_theta_label():
return get_angle_label(lines, "\\theta")
def get_2theta_label():
return get_angle_label(center_lines, "2\\theta", False)
dots = get_dots()
lines = get_lines()
center_lines = get_center_lines()
labels = VGroup(*[
TexMobject("P_{}".format(n + 1))
for n in range(3)
])
update_labels(labels)
theta_label = get_theta_label()
two_theta_label = get_2theta_label()
self.play(
FadeInFromDown(labels[0]),
FadeInFromLarge(dots[0]),
)
self.play(
TransformFromCopy(*labels[:2]),
TransformFromCopy(*dots[:2]),
ShowCreation(lines[0]),
)
self.play(
ShowCreation(lines[1]),
TransformFromCopy(*labels[1:3]),
TransformFromCopy(*dots[1:3]),
Write(theta_label),
)
self.wait()
self.play(
TransformFromCopy(lines, center_lines),
TransformFromCopy(theta_label, two_theta_label),
)
self.wait()
# Add updaters
labels.add_updater(update_labels)
dots.add_updater(lambda m: m.become(get_dots()))
lines.add_updater(lambda m: m.become(get_lines()))
center_lines.add_updater(lambda m: m.become(get_center_lines()))
theta_label.add_updater(lambda m: m.become(get_theta_label()))
two_theta_label.add_updater(lambda m: m.become(get_2theta_label()))
self.add(
labels, lines, center_lines, dots,
theta_label, two_theta_label,
)
def let_point_vary(self):
p1_tracker, p2_tracker, p3_tracker = self.angle_trackers
kwargs = {"run_time": 2}
for angle in [TAU / 4, 3 * TAU / 4]:
self.play(
p2_tracker.set_value, angle,
**kwargs
)
self.wait()
self.play(
p1_tracker.set_value, PI,
**kwargs
)
self.wait()
self.play(
p3_tracker.set_value, TAU / 3,
**kwargs
)
self.wait()
self.play(
p2_tracker.set_value, 7 * TAU / 8,
**kwargs
)
self.wait()
class AddTwoThetaManyTimes(Scene):
def construct(self):
expression = TexMobject(
"2\\theta", "+",
"2\\theta", "+",
"2\\theta", "+",
"\\cdots", "+",
"2\\theta",
"<", "2\\pi",
)
expression.to_corner(UL)
brace = Brace(expression[:-2], DOWN)
question = brace.get_text("Max number of times?")
question.set_color(YELLOW)
central_question_group = self.get_central_question()
simplified, lil_brace, new_question = central_question_group
central_question_group.next_to(question, DOWN, LARGE_BUFF)
new_question.align_to(question, LEFT)
for n in range(5):
self.add(expression[:2 * n + 1])
self.wait(0.25)
self.play(
FadeInFrom(expression[-2:], LEFT),
GrowFromCenter(brace),
FadeInFrom(question, UP)
)
self.wait(3)
self.play(
TransformFromCopy(expression[:-2], simplified[:3]),
TransformFromCopy(expression[-2:], simplified[3:]),
TransformFromCopy(brace, lil_brace),
)
self.play(Write(new_question))
self.wait()
self.central_question_group = central_question_group
self.show_example()
def get_central_question(self, brace_vect=DOWN):
expression = TexMobject(
"N", "\\cdot", "\\theta", "<", "\\pi"
)
N = expression[0]
N.set_color(BLUE)
brace = Brace(N, brace_vect, buff=SMALL_BUFF)
question = brace.get_text(
"Maximal integer?",
)
question.set_color(YELLOW)
result = VGroup(expression, brace, question)
result.to_corner(UL)
return result
def show_example(self):
expression, brace, question = self.central_question_group
N_mob = Integer(1)
N_mob.match_height(expression[0])
N_mob.set_color(BLUE)
dot_theta_eq = TexMobject("\\cdot", "(0.01)", "=")
rhs = DecimalNumber(0, num_decimal_places=2)
rhs.set_color(RED)
dot_theta_eq.move_to(expression[1:4])
dot_theta_eq.shift(2 * DOWN)
def align_value(mob):
mob.align_to(dot_theta_eq[1][1:-1], DOWN)
N_mob.add_updater(
lambda m: m.next_to(dot_theta_eq, LEFT, SMALL_BUFF)
)
N_mob.add_updater(align_value)
rhs.add_updater(
lambda m: m.set_value(0.01 * N_mob.get_value())
)
rhs.add_updater(
lambda m: m.next_to(dot_theta_eq, RIGHT, 2 * SMALL_BUFF)
)
rhs.add_updater(align_value)
self.play(
TransformFromCopy(expression[0], N_mob),
TransformFromCopy(expression[1:4], dot_theta_eq),
TransformFromCopy(expression[4], rhs),
)
self.wait()
self.play(
ChangeDecimalToValue(N_mob, 314, run_time=5)
)
self.wait()
self.play(ChangeDecimalToValue(N_mob, 315))
self.wait()
self.play(ChangeDecimalToValue(N_mob, 314))
self.wait()
self.play(ShowCreationThenFadeAround(N_mob))
class AskAboutTheta(TeacherStudentsScene):
def construct(self):
self.student_says(
"But what is $\\theta$?",
target_mode="raise_left_hand",
)
self.change_student_modes(
"confused", "sassy", "raise_left_hand",
added_anims=[self.teacher.change, "happy"]
)
self.wait(3)
class ComputeThetaFor1e4(AnalyzeCircleGeometry):
CONFIG = {
"mass_ratio": 100,
}
def construct(self):
self.add_mass_ratio_label()
self.add_circle_with_three_lines()
self.write_slope()
self.show_tangent()
def add_circle_with_three_lines(self):
circle = self.get_circle()
axes = self.get_axes()
slope = -np.sqrt(self.mass_ratio)
lines = self.get_lines(
radius=circle.radius,
slope=slope,
)
end_zone = self.get_end_zone()
axes_labels = self.get_axes_labels(axes)
axes.add(axes_labels)
lines_to_fade = VGroup(*lines[:11], *lines[13:])
two_lines = lines[11:13]
theta = self.theta = np.arctan(-1 / slope)
arc = Arc(
start_angle=(-90 * DEGREES),
angle=theta,
radius=2,
arc_center=two_lines[0].get_end(),
)
theta_label = TexMobject("\\theta")
theta_label.scale(0.8)
theta_label.next_to(arc, DOWN, SMALL_BUFF)
self.add(end_zone, axes, circle)
self.play(ShowCreation(lines, rate_func=None))
self.play(
lines_to_fade.set_stroke, WHITE, 1, 0.3,
ShowCreation(arc),
FadeInFrom(theta_label, UP)
)
self.two_lines = two_lines
self.lines = lines
self.circle = circle
self.axes = axes
self.theta_label_group = VGroup(theta_label, arc)
def write_slope(self):
line = self.two_lines[1]
slope_label = TexMobject(
"\\text{Slope}", "=",
"\\frac{\\text{rise}}{\\text{run}}", "=",
"\\frac{-\\sqrt{m_1}}{\\sqrt{m_2}}", "=", "-10"
)
for mob in slope_label:
mob.add_to_back(mob.copy().set_stroke(BLACK, 6))
slope_label.next_to(line.get_center(), UR, buff=1)
slope_arrow = Arrow(
slope_label[0].get_bottom(),
line.point_from_proportion(0.45),
color=RED,
buff=SMALL_BUFF,
)
new_line = line.copy().set_color(RED)
self.play(
FadeInFromDown(slope_label[:3]),
ShowCreation(new_line),
GrowArrow(slope_arrow),
)
self.remove(new_line)
line.match_style(new_line)
self.play(
FadeInFrom(slope_label[3:5], LEFT)
)
self.wait()
self.play(
Write(slope_label[5]),
TransformFromCopy(
self.mass_ratio_label[1][:3],
slope_label[6]
)
)
self.wait()
self.slope_label = slope_label
self.slope_arrow = slope_arrow
def show_tangent(self):
l1, l2 = self.two_lines
theta = self.theta
theta_label_group = self.theta_label_group
tan_equation = TexMobject(
"\\tan", "(", "\\theta", ")", "=",
"{\\text{run}", "\\over", "-\\text{rise}}", "=",
"\\frac{1}{10}",
)
tan_equation.scale(0.9)
tan_equation.to_edge(LEFT, buff=MED_SMALL_BUFF)
tan_equation.shift(2 * UP)
run_word = tan_equation.get_part_by_tex("run")
rise_word = tan_equation.get_part_by_tex("rise")
p1, p2 = l1.get_start(), l1.get_end()
p3 = p1 + get_norm(p2 - p1) * np.tan(theta) * RIGHT
triangle = Polygon(p1, p2, p3)
triangle.set_stroke(width=0)
triangle.set_fill(GREEN, 0.5)
opposite = Line(p1, p3)
adjacent = Line(p1, p2)
opposite.set_stroke(BLUE, 3)
adjacent.set_stroke(PINK, 3)
arctan_equation = TexMobject(
"\\theta", "=", "\\arctan", "(", "1 / 10", ")"
)
arctan_equation.next_to(tan_equation, DOWN, MED_LARGE_BUFF)
self.play(
FadeInFromDown(tan_equation[:8]),
)
self.play(
TransformFromCopy(theta_label_group[1], opposite),
run_word.set_color, opposite.get_color()
)
self.play(WiggleOutThenIn(run_word))
self.play(
TransformFromCopy(opposite, adjacent),
rise_word.set_color, adjacent.get_color()
)
self.play(WiggleOutThenIn(rise_word))
self.wait()
self.play(TransformFromCopy(
self.slope_label[-1],
tan_equation[-2:],
))
self.wait(2)
indices = [2, 4, 0, 1, -1, 3]
movers = VGroup(*[tan_equation[i] for i in indices]).copy()
for mover, target in zip(movers, arctan_equation):
mover.target = target
# Swap last two
sm = movers.submobjects
sm[-1], sm[-2] = sm[-2], sm[-1]
self.play(LaggedStart(
Transform, movers,
lambda m: (m, m.target),
lag_ratio=0.3,
run_time=2,
))
self.remove(movers)
self.add(arctan_equation)
self.play(ShowCreationThenFadeAround(arctan_equation))
self.wait()
class ThetaChart(Scene):
def construct(self):
self.create_columns()
self.populate_columns()
self.show_values()
self.highlight_example(2)
self.highlight_example(3)
def create_columns(self):
titles = VGroup(*[
TextMobject("Mass ratio"),
TextMobject("$\\theta$ formula"),
TextMobject("$\\theta$ value"),
])
titles.scale(1.5)
titles.arrange_submobjects(RIGHT, buff=1.5)
titles[-1].shift(MED_SMALL_BUFF * RIGHT)
titles.to_corner(UL)
lines = VGroup()
for t1, t2 in zip(titles, titles[1:]):
line = Line(TOP, BOTTOM)
x = np.mean([t1.get_center()[0], t2.get_center()[0]])
line.shift(x * RIGHT)
lines.add(line)
h_line = Line(LEFT_SIDE, RIGHT_SIDE)
h_line.next_to(titles, DOWN)
h_line.to_edge(LEFT, buff=0)
lines.add(h_line)
lines.set_stroke(WHITE, 1)
self.play(
LaggedStart(FadeInFromDown, titles),
LaggedStart(ShowCreation, lines, lag_ratio=0.8),
)
self.h_line = h_line
self.titles = titles
def populate_columns(self):
top_h_line = self.h_line
x_vals = [t.get_center()[0] for t in self.titles]
entries = [
(
"$m_1$ : $m_2$",
"$\\arctan(\\sqrt{m2} / \\sqrt{m1})$",
""
)
] + [
(
"{:,} : 1".format(10**(2 * exp)),
"$\\arctan(1 / {:,})$".format(10**exp),
"{:0.10f}".format(np.arctan(10**(-exp)))
)
for exp in [1, 2, 3, 4, 5]
]
h_lines = VGroup(top_h_line)
entry_mobs = VGroup()
for entry in entries:
mobs = VGroup(*map(TextMobject, entry))
for mob, x in zip(mobs, x_vals):
mob.shift(x * RIGHT)
delta_y = (mobs.get_height() / 2) + MED_SMALL_BUFF
y = h_lines[-1].get_center()[1] - delta_y
mobs.shift(y * UP)
mobs[0].set_color(BLUE)
mobs[2].set_color(YELLOW)
entry_mobs.add(mobs)
h_line = DashedLine(LEFT_SIDE, RIGHT_SIDE)
h_line.shift((y - delta_y) * UP)
h_lines.add(h_line)
self.play(
LaggedStart(
FadeInFromDown,
VGroup(*[em[:2] for em in entry_mobs])
),
LaggedStart(ShowCreation, h_lines[1:])
)
self.entry_mobs = entry_mobs
self.h_lines = h_lines
def show_values(self):
values = VGroup(*[em[2] for em in self.entry_mobs])
for value in values:
self.play(LaggedStart(
FadeIn, value,
lag_ratio=0.1,
run_time=0.5
))
self.wait(0.5)
def highlight_example(self, exp):
entry_mobs = self.entry_mobs
example = entry_mobs[exp]
other_entries = VGroup(*entry_mobs[:exp], *entry_mobs[exp + 1:])
value = example[-1]
rhs = TexMobject("\\approx {:}".format(10**(-exp)))
rhs.next_to(value, RIGHT)
rhs.to_edge(RIGHT, buff=MED_SMALL_BUFF)
value.generate_target()
value.target.set_fill(opacity=1)
value.target.next_to(rhs, LEFT, SMALL_BUFF)
self.play(
other_entries.set_fill, {"opacity": 0.25},
example.set_fill, {"opacity": 1},
ShowCreationThenFadeAround(example)
)
self.wait()
self.play(
MoveToTarget(value),
Write(rhs),
)
self.wait()
value.add(rhs)
class CentralQuestionFor1e2(AddTwoThetaManyTimes):
CONFIG = {
"exp": 2,
}
def construct(self):
exp = self.exp
question = self.get_central_question(UP)
pi_value = TexMobject(" = {:0.10f}\\dots".format(PI))
pi_value.next_to(question[0][-1], RIGHT, SMALL_BUFF)
pi_value.shift(0.3 * SMALL_BUFF * UP)
question.add(pi_value)
max_count = int(PI * 10**exp)
question.center().to_edge(UP)
self.add(question)
b10_equation = self.get_changable_equation(
10**(-exp), n_decimal_places=exp
)
b10_equation.next_to(question, DOWN, buff=1.5)
arctan_equation = self.get_changable_equation(
np.arctan(10**(-exp)), n_decimal_places=10,
)
arctan_equation.next_to(b10_equation, DOWN, MED_LARGE_BUFF)
eq_centers = [
eq[1][2].get_center()
for eq in [b10_equation, arctan_equation]
]
arctan_equation.shift((eq_centers[1][0] - eq_centers[1][0]) * RIGHT)
# b10_brace = Brace(b10_equation[1][1][1:-1], UP)
arctan_brace = Brace(arctan_equation[1][1][1:-1], DOWN)
# b10_tex = b10_brace.get_tex("1 / 10")
arctan_tex = arctan_brace.get_tex(
"\\theta = \\arctan(1 / {:,})".format(10**exp)
)
int_mobs = b10_equation[0], arctan_equation[0]
self.add(*b10_equation, *arctan_equation)
# self.add(b10_brace, b10_tex)
self.add(arctan_brace, arctan_tex)
self.wait()
self.play(*[
ChangeDecimalToValue(int_mob, max_count, run_time=3)
for int_mob in int_mobs
])
self.wait()
self.play(*[
ChangeDecimalToValue(int_mob, max_count + 1, run_time=1)
for int_mob in int_mobs
])
self.wait()
self.play(*[
ChangeDecimalToValue(int_mob, max_count, run_time=1)
for int_mob in int_mobs
])
self.play(ShowCreationThenFadeAround(int_mobs[1]))
self.wait()
#
def get_changable_equation(self, value, tex_string=None, n_decimal_places=10):
int_mob = Integer(1)
int_mob.set_color(BLUE)
formatter = "({:0." + str(n_decimal_places) + "f})"
tex_string = tex_string or formatter.format(value)
tex_mob = TexMobject("\\cdot", tex_string, "=")
rhs = DecimalNumber(value, num_decimal_places=n_decimal_places)
def align_number(mob):
y0 = mob[0].get_center()[1]
y1 = tex_mob[1][1:-1].get_center()[1]
mob.shift((y1 - y0) * UP)
int_mob.add_updater(
lambda m: m.next_to(tex_mob, LEFT, SMALL_BUFF)
)
int_mob.add_updater(align_number)
rhs.add_updater(
lambda m: m.set_value(value * int_mob.get_value())
)
rhs.add_updater(
lambda m: m.next_to(tex_mob, RIGHT, SMALL_BUFF)
)
rhs.add_updater(align_number)
def get_comp_pi():
if rhs.get_value() < np.pi:
result = TexMobject("< \\pi")
result.set_color(GREEN)
elif rhs.get_value() > np.pi:
result = TexMobject("> \\pi")
result.set_color(RED)
else:
result = TexMobject("= \\pi")
result.next_to(rhs, RIGHT, 2 * SMALL_BUFF)
result[1].scale(1.5, about_edge=LEFT)
return result
comp_pi = updating_mobject_from_func(get_comp_pi)
return VGroup(int_mob, tex_mob, rhs, comp_pi)
class AnalyzeCircleGeometry1e2(AnalyzeCircleGeometry):
CONFIG = {
"mass_ratio": 100,
}
class CentralQuestionFor1e3(CentralQuestionFor1e2):
CONFIG = {"exp": 3}
2019-01-18 09:07:50 -08:00
class AskAboutArctanOfSmallValues(TeacherStudentsScene):
def construct(self):
self.add_title()
equation1 = TexMobject(
"\\arctan", "(", "x", ")", "\\approx", "x"
)
equation1.set_color_by_tex("arctan", YELLOW)
equation2 = TexMobject(
"x", "\\approx", "\\tan", "(", "x", ")",
)
equation2.set_color_by_tex("tan", BLUE)
for mob in equation1, equation2:
mob.move_to(self.hold_up_spot, DOWN)
self.play(
FadeInFromDown(equation1),
self.teacher.change, "raise_right_hand",
self.get_student_changes(
"erm", "sassy", "confused"
)
)
self.wait()
self.play(equation1.shift, UP)
self.play(
TransformFromCopy(
VGroup(*[equation1[i] for i in (2, 4, 5)]),
VGroup(*[equation2[i] for i in (0, 1, 4)]),
)
)
self.play(
TransformFromCopy(
VGroup(*[equation1[i] for i in (0, 1, 3)]),
VGroup(*[equation2[i] for i in (2, 3, 5)]),
),
self.get_student_changes(
"confused", "erm", "sassy"
),
)
self.wait()
self.student_says("Why?", target_mode="maybe")
self.wait(3)
def add_title(self):
title = TextMobject("For small $x$")
subtitle = TextMobject("(e.g. $x = 0.001$)")
title.scale(1.5)
title.to_edge(UP, buff=MED_SMALL_BUFF)
subtitle.next_to(title, DOWN)
self.add(title, subtitle)
class UnitCircleIntuition(Scene):
def construct(self):
self.draw_unit_circle()
self.show_angle()
self.show_fraction()
self.show_fraction_approximation()
def draw_unit_circle(self):
unit_size = 2.5
axes = Axes(
number_line_config={"unit_size": unit_size},
x_min=-2.5, x_max=2.5,
y_min=-1.5, y_max=1.5,
)
axes.set_stroke(width=1)
self.add(axes)
radius_line = Line(ORIGIN, axes.coords_to_point(1, 0))
radius_line.set_color(BLUE)
r_label = TexMobject("1")
r_label.add_updater(
lambda m: m.next_to(radius_line.get_center(), DOWN, SMALL_BUFF)
)
circle = Circle(radius=unit_size, color=WHITE)
self.add(radius_line, r_label)
self.play(
Rotating(radius_line, about_point=ORIGIN),
ShowCreation(circle),
run_time=2,
rate_func=smooth,
)
self.radius_line = radius_line
self.r_label = r_label
self.circle = circle
self.axes = axes
def show_angle(self):
circle = self.circle
tan_eq = TexMobject(
"\\tan", "(", "\\theta", ")", "=",
tex_to_color_map={"\\theta": RED},
)
tan_eq.next_to(ORIGIN, RIGHT, LARGE_BUFF)
tan_eq.to_edge(UP, buff=LARGE_BUFF)
theta_tracker = ValueTracker(0)
get_theta = theta_tracker.get_value
def get_r_line():
return Line(
circle.get_center(),
circle.get_point_from_angle(get_theta())
)
r_line = updating_mobject_from_func(get_r_line)
def get_arc(radius=None, **kwargs):
if radius is None:
alpha = inverse_interpolate(0, 20 * DEGREES, get_theta())
radius = interpolate(2, 1, alpha)
return Arc(
radius=radius,
start_angle=0,
angle=get_theta(),
arc_center=circle.get_center(),
**kwargs
)
arc = updating_mobject_from_func(get_arc)
self.circle_arc = updating_mobject_from_func(
lambda: get_arc(radius=circle.radius, color=RED)
)
def get_theta_label():
label = TexMobject("\\theta")
label.set_height(min(arc.get_height(), 0.3))
label.set_color(RED)
center = circle.get_center()
vect = arc.point_from_proportion(0.5) - center
vect = (get_norm(vect) + 2 * SMALL_BUFF) * normalize(vect)
label.move_to(center + vect)
return label
theta_label = updating_mobject_from_func(get_theta_label)
def get_height_line():
p2 = circle.get_point_from_angle(get_theta())
p1 = np.array(p2)
p1[1] = circle.get_center()[1]
return Line(
p1, p2,
stroke_color=YELLOW,
stroke_width=3,
)
self.height_line = updating_mobject_from_func(get_height_line)
def get_width_line():
p2 = circle.get_center()
p1 = circle.get_point_from_angle(get_theta())
p1[1] = p2[1]
return Line(
p1, p2,
stroke_color=PINK,
stroke_width=3,
)
self.width_line = updating_mobject_from_func(get_width_line)
def get_h_label():
label = TexMobject("h")
height_line = self.height_line
label.match_color(height_line)
label.set_height(min(height_line.get_height(), 0.3))
label.set_stroke(BLACK, 3, background=True)
label.next_to(height_line, RIGHT, SMALL_BUFF)
return label
self.h_label = updating_mobject_from_func(get_h_label)
def get_w_label():
label = TexMobject("w")
width_line = self.width_line
label.match_color(width_line)
label.next_to(width_line, DOWN, SMALL_BUFF)
return label
self.w_label = updating_mobject_from_func(get_w_label)
self.add(r_line, theta_label, arc, self.radius_line)
self.play(
FadeInFromDown(tan_eq),
theta_tracker.set_value, 20 * DEGREES,
)
self.wait()
self.tan_eq = tan_eq
self.theta_tracker = theta_tracker
def show_fraction(self):
height_line = self.height_line
width_line = self.width_line
h_label = self.h_label
w_label = self.w_label
tan_eq = self.tan_eq
rhs = TexMobject(
"{\\text{height}", "\\over", "\\text{width}}"
)
rhs.next_to(tan_eq, RIGHT)
rhs.get_part_by_tex("height").match_color(height_line)
rhs.get_part_by_tex("width").match_color(width_line)
for mob in [height_line, width_line, h_label, w_label]:
mob.update()
self.play(
ShowCreation(height_line.copy().clear_updaters(), remover=True),
FadeInFrom(h_label.copy().clear_updaters(), RIGHT, remover=True),
Write(rhs[:2])
)
self.add(height_line, h_label)
self.play(
ShowCreation(width_line.copy().clear_updaters(), remover=True),
FadeInFrom(w_label.copy().clear_updaters(), UP, remover=True),
self.r_label.fade, 1,
Write(rhs[2])
)
self.add(width_line, w_label)
self.wait()
self.rhs = rhs
def show_fraction_approximation(self):
theta_tracker = self.theta_tracker
approx_rhs = TexMobject(
"\\approx", "{\\theta", "\\over", "1}",
)
height, over1, width = self.rhs
approx, theta, over2, one = approx_rhs
approx_rhs.set_color_by_tex("\\theta", RED)
approx_rhs.next_to(self.rhs, RIGHT, MED_SMALL_BUFF)
self.play(theta_tracker.set_value, 5 * DEGREES)
self.play(Write(VGroup(approx, over2)))
self.wait()
self.play(Indicate(width))
self.play(TransformFromCopy(width, one))
self.wait()
self.play(Indicate(height))
self.play(TransformFromCopy(height, theta))
self.wait()
class TangentTaylorSeries(Scene):
def construct(self):
pass