mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 d175222f5e
			
		
	
	
		d175222f5e
		
	
	
	
	
		
			
			Add the edma error interrupt handler because it's useful to debug issue. i.MX8ULP edma has per channel error interrupt. i.MX91/93/95 and i.MX8QM/QXP/DXL edma share one error interrupt. Signed-off-by: Joy Zou <joy.zou@nxp.com> Signed-off-by: Frank Li <Frank.Li@nxp.com> Link: https://lore.kernel.org/r/20250407-edma_err-v2-2-9d7e5b77fcc4@nxp.com Signed-off-by: Vinod Koul <vkoul@kernel.org>
		
			
				
	
	
		
			937 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			937 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| //
 | |
| // Copyright (c) 2013-2014 Freescale Semiconductor, Inc
 | |
| // Copyright (c) 2017 Sysam, Angelo Dureghello  <angelo@sysam.it>
 | |
| 
 | |
| #include <linux/cleanup.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/dmapool.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/pm_domain.h>
 | |
| 
 | |
| #include "fsl-edma-common.h"
 | |
| 
 | |
| #define EDMA_CR			0x00
 | |
| #define EDMA_ES			0x04
 | |
| #define EDMA_ERQ		0x0C
 | |
| #define EDMA_EEI		0x14
 | |
| #define EDMA_SERQ		0x1B
 | |
| #define EDMA_CERQ		0x1A
 | |
| #define EDMA_SEEI		0x19
 | |
| #define EDMA_CEEI		0x18
 | |
| #define EDMA_CINT		0x1F
 | |
| #define EDMA_CERR		0x1E
 | |
| #define EDMA_SSRT		0x1D
 | |
| #define EDMA_CDNE		0x1C
 | |
| #define EDMA_INTR		0x24
 | |
| #define EDMA_ERR		0x2C
 | |
| 
 | |
| #define EDMA64_ERQH		0x08
 | |
| #define EDMA64_EEIH		0x10
 | |
| #define EDMA64_SERQ		0x18
 | |
| #define EDMA64_CERQ		0x19
 | |
| #define EDMA64_SEEI		0x1a
 | |
| #define EDMA64_CEEI		0x1b
 | |
| #define EDMA64_CINT		0x1c
 | |
| #define EDMA64_CERR		0x1d
 | |
| #define EDMA64_SSRT		0x1e
 | |
| #define EDMA64_CDNE		0x1f
 | |
| #define EDMA64_INTH		0x20
 | |
| #define EDMA64_INTL		0x24
 | |
| #define EDMA64_ERRH		0x28
 | |
| #define EDMA64_ERRL		0x2c
 | |
| 
 | |
| void fsl_edma_tx_chan_handler(struct fsl_edma_chan *fsl_chan)
 | |
| {
 | |
| 	spin_lock(&fsl_chan->vchan.lock);
 | |
| 
 | |
| 	if (!fsl_chan->edesc) {
 | |
| 		/* terminate_all called before */
 | |
| 		spin_unlock(&fsl_chan->vchan.lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!fsl_chan->edesc->iscyclic) {
 | |
| 		list_del(&fsl_chan->edesc->vdesc.node);
 | |
| 		vchan_cookie_complete(&fsl_chan->edesc->vdesc);
 | |
| 		fsl_chan->edesc = NULL;
 | |
| 		fsl_chan->status = DMA_COMPLETE;
 | |
| 	} else {
 | |
| 		vchan_cyclic_callback(&fsl_chan->edesc->vdesc);
 | |
| 	}
 | |
| 
 | |
| 	if (!fsl_chan->edesc)
 | |
| 		fsl_edma_xfer_desc(fsl_chan);
 | |
| 
 | |
| 	spin_unlock(&fsl_chan->vchan.lock);
 | |
| }
 | |
| 
 | |
| static void fsl_edma3_enable_request(struct fsl_edma_chan *fsl_chan)
 | |
| {
 | |
| 	u32 val, flags;
 | |
| 
 | |
| 	flags = fsl_edma_drvflags(fsl_chan);
 | |
| 	val = edma_readl_chreg(fsl_chan, ch_sbr);
 | |
| 	if (fsl_chan->is_rxchan)
 | |
| 		val |= EDMA_V3_CH_SBR_RD;
 | |
| 	else
 | |
| 		val |= EDMA_V3_CH_SBR_WR;
 | |
| 
 | |
| 	if (fsl_chan->is_remote)
 | |
| 		val &= ~(EDMA_V3_CH_SBR_RD | EDMA_V3_CH_SBR_WR);
 | |
| 
 | |
| 	edma_writel_chreg(fsl_chan, val, ch_sbr);
 | |
| 
 | |
| 	if (flags & FSL_EDMA_DRV_HAS_CHMUX) {
 | |
| 		/*
 | |
| 		 * ch_mux: With the exception of 0, attempts to write a value
 | |
| 		 * already in use will be forced to 0.
 | |
| 		 */
 | |
| 		if (!edma_readl(fsl_chan->edma, fsl_chan->mux_addr))
 | |
| 			edma_writel(fsl_chan->edma, fsl_chan->srcid, fsl_chan->mux_addr);
 | |
| 	}
 | |
| 
 | |
| 	val = edma_readl_chreg(fsl_chan, ch_csr);
 | |
| 	val |= EDMA_V3_CH_CSR_ERQ | EDMA_V3_CH_CSR_EEI;
 | |
| 	edma_writel_chreg(fsl_chan, val, ch_csr);
 | |
| }
 | |
| 
 | |
| static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan)
 | |
| {
 | |
| 	struct edma_regs *regs = &fsl_chan->edma->regs;
 | |
| 	u32 ch = fsl_chan->vchan.chan.chan_id;
 | |
| 
 | |
| 	if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_SPLIT_REG)
 | |
| 		return fsl_edma3_enable_request(fsl_chan);
 | |
| 
 | |
| 	if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_WRAP_IO) {
 | |
| 		edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), regs->seei);
 | |
| 		edma_writeb(fsl_chan->edma, ch, regs->serq);
 | |
| 	} else {
 | |
| 		/* ColdFire is big endian, and accesses natively
 | |
| 		 * big endian I/O peripherals
 | |
| 		 */
 | |
| 		iowrite8(EDMA_SEEI_SEEI(ch), regs->seei);
 | |
| 		iowrite8(ch, regs->serq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void fsl_edma3_disable_request(struct fsl_edma_chan *fsl_chan)
 | |
| {
 | |
| 	u32 val = edma_readl_chreg(fsl_chan, ch_csr);
 | |
| 	u32 flags;
 | |
| 
 | |
| 	flags = fsl_edma_drvflags(fsl_chan);
 | |
| 
 | |
| 	if (flags & FSL_EDMA_DRV_HAS_CHMUX)
 | |
| 		edma_writel(fsl_chan->edma, 0, fsl_chan->mux_addr);
 | |
| 
 | |
| 	val &= ~EDMA_V3_CH_CSR_ERQ;
 | |
| 	edma_writel_chreg(fsl_chan, val, ch_csr);
 | |
| }
 | |
| 
 | |
| void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan)
 | |
| {
 | |
| 	struct edma_regs *regs = &fsl_chan->edma->regs;
 | |
| 	u32 ch = fsl_chan->vchan.chan.chan_id;
 | |
| 
 | |
| 	if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_SPLIT_REG)
 | |
| 		return fsl_edma3_disable_request(fsl_chan);
 | |
| 
 | |
| 	if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_WRAP_IO) {
 | |
| 		edma_writeb(fsl_chan->edma, ch, regs->cerq);
 | |
| 		edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), regs->ceei);
 | |
| 	} else {
 | |
| 		/* ColdFire is big endian, and accesses natively
 | |
| 		 * big endian I/O peripherals
 | |
| 		 */
 | |
| 		iowrite8(ch, regs->cerq);
 | |
| 		iowrite8(EDMA_CEEI_CEEI(ch), regs->ceei);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mux_configure8(struct fsl_edma_chan *fsl_chan, void __iomem *addr,
 | |
| 			   u32 off, u32 slot, bool enable)
 | |
| {
 | |
| 	u8 val8;
 | |
| 
 | |
| 	if (enable)
 | |
| 		val8 = EDMAMUX_CHCFG_ENBL | slot;
 | |
| 	else
 | |
| 		val8 = EDMAMUX_CHCFG_DIS;
 | |
| 
 | |
| 	iowrite8(val8, addr + off);
 | |
| }
 | |
| 
 | |
| static void mux_configure32(struct fsl_edma_chan *fsl_chan, void __iomem *addr,
 | |
| 			    u32 off, u32 slot, bool enable)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (enable)
 | |
| 		val = EDMAMUX_CHCFG_ENBL << 24 | slot;
 | |
| 	else
 | |
| 		val = EDMAMUX_CHCFG_DIS;
 | |
| 
 | |
| 	iowrite32(val, addr + off * 4);
 | |
| }
 | |
| 
 | |
| void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan,
 | |
| 		       unsigned int slot, bool enable)
 | |
| {
 | |
| 	u32 ch = fsl_chan->vchan.chan.chan_id;
 | |
| 	void __iomem *muxaddr;
 | |
| 	unsigned int chans_per_mux, ch_off;
 | |
| 	int endian_diff[4] = {3, 1, -1, -3};
 | |
| 	u32 dmamux_nr = fsl_chan->edma->drvdata->dmamuxs;
 | |
| 
 | |
| 	if (!dmamux_nr)
 | |
| 		return;
 | |
| 
 | |
| 	chans_per_mux = fsl_chan->edma->n_chans / dmamux_nr;
 | |
| 	ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux;
 | |
| 
 | |
| 	if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_MUX_SWAP)
 | |
| 		ch_off += endian_diff[ch_off % 4];
 | |
| 
 | |
| 	muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux];
 | |
| 	slot = EDMAMUX_CHCFG_SOURCE(slot);
 | |
| 
 | |
| 	if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_CONFIG32)
 | |
| 		mux_configure32(fsl_chan, muxaddr, ch_off, slot, enable);
 | |
| 	else
 | |
| 		mux_configure8(fsl_chan, muxaddr, ch_off, slot, enable);
 | |
| }
 | |
| 
 | |
| static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
 | |
| 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 | |
| 
 | |
| 	val = ffs(addr_width) - 1;
 | |
| 	return val | (val << 8);
 | |
| }
 | |
| 
 | |
| void fsl_edma_free_desc(struct virt_dma_desc *vdesc)
 | |
| {
 | |
| 	struct fsl_edma_desc *fsl_desc;
 | |
| 	int i;
 | |
| 
 | |
| 	fsl_desc = to_fsl_edma_desc(vdesc);
 | |
| 	for (i = 0; i < fsl_desc->n_tcds; i++)
 | |
| 		dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd,
 | |
| 			      fsl_desc->tcd[i].ptcd);
 | |
| 	kfree(fsl_desc);
 | |
| }
 | |
| 
 | |
| int fsl_edma_terminate_all(struct dma_chan *chan)
 | |
| {
 | |
| 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(head);
 | |
| 
 | |
| 	spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
 | |
| 	fsl_edma_disable_request(fsl_chan);
 | |
| 	fsl_chan->edesc = NULL;
 | |
| 	fsl_chan->status = DMA_COMPLETE;
 | |
| 	vchan_get_all_descriptors(&fsl_chan->vchan, &head);
 | |
| 	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
 | |
| 	vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
 | |
| 
 | |
| 	if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_HAS_PD)
 | |
| 		pm_runtime_allow(fsl_chan->pd_dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int fsl_edma_pause(struct dma_chan *chan)
 | |
| {
 | |
| 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
 | |
| 	if (fsl_chan->edesc) {
 | |
| 		fsl_edma_disable_request(fsl_chan);
 | |
| 		fsl_chan->status = DMA_PAUSED;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int fsl_edma_resume(struct dma_chan *chan)
 | |
| {
 | |
| 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
 | |
| 	if (fsl_chan->edesc) {
 | |
| 		fsl_edma_enable_request(fsl_chan);
 | |
| 		fsl_chan->status = DMA_IN_PROGRESS;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void fsl_edma_unprep_slave_dma(struct fsl_edma_chan *fsl_chan)
 | |
| {
 | |
| 	if (fsl_chan->dma_dir != DMA_NONE)
 | |
| 		dma_unmap_resource(fsl_chan->vchan.chan.device->dev,
 | |
| 				   fsl_chan->dma_dev_addr,
 | |
| 				   fsl_chan->dma_dev_size,
 | |
| 				   fsl_chan->dma_dir, 0);
 | |
| 	fsl_chan->dma_dir = DMA_NONE;
 | |
| }
 | |
| 
 | |
| static bool fsl_edma_prep_slave_dma(struct fsl_edma_chan *fsl_chan,
 | |
| 				    enum dma_transfer_direction dir)
 | |
| {
 | |
| 	struct device *dev = fsl_chan->vchan.chan.device->dev;
 | |
| 	enum dma_data_direction dma_dir;
 | |
| 	phys_addr_t addr = 0;
 | |
| 	u32 size = 0;
 | |
| 
 | |
| 	switch (dir) {
 | |
| 	case DMA_MEM_TO_DEV:
 | |
| 		dma_dir = DMA_FROM_DEVICE;
 | |
| 		addr = fsl_chan->cfg.dst_addr;
 | |
| 		size = fsl_chan->cfg.dst_maxburst;
 | |
| 		break;
 | |
| 	case DMA_DEV_TO_MEM:
 | |
| 		dma_dir = DMA_TO_DEVICE;
 | |
| 		addr = fsl_chan->cfg.src_addr;
 | |
| 		size = fsl_chan->cfg.src_maxburst;
 | |
| 		break;
 | |
| 	default:
 | |
| 		dma_dir = DMA_NONE;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Already mapped for this config? */
 | |
| 	if (fsl_chan->dma_dir == dma_dir)
 | |
| 		return true;
 | |
| 
 | |
| 	fsl_edma_unprep_slave_dma(fsl_chan);
 | |
| 
 | |
| 	fsl_chan->dma_dev_addr = dma_map_resource(dev, addr, size, dma_dir, 0);
 | |
| 	if (dma_mapping_error(dev, fsl_chan->dma_dev_addr))
 | |
| 		return false;
 | |
| 	fsl_chan->dma_dev_size = size;
 | |
| 	fsl_chan->dma_dir = dma_dir;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| int fsl_edma_slave_config(struct dma_chan *chan,
 | |
| 				 struct dma_slave_config *cfg)
 | |
| {
 | |
| 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
 | |
| 
 | |
| 	memcpy(&fsl_chan->cfg, cfg, sizeof(*cfg));
 | |
| 	fsl_edma_unprep_slave_dma(fsl_chan);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan,
 | |
| 		struct virt_dma_desc *vdesc, bool in_progress)
 | |
| {
 | |
| 	struct fsl_edma_desc *edesc = fsl_chan->edesc;
 | |
| 	enum dma_transfer_direction dir = edesc->dirn;
 | |
| 	dma_addr_t cur_addr, dma_addr, old_addr;
 | |
| 	size_t len, size;
 | |
| 	u32 nbytes = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	/* calculate the total size in this desc */
 | |
| 	for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++) {
 | |
| 		nbytes = fsl_edma_get_tcd_to_cpu(fsl_chan, edesc->tcd[i].vtcd, nbytes);
 | |
| 		if (nbytes & (EDMA_V3_TCD_NBYTES_DMLOE | EDMA_V3_TCD_NBYTES_SMLOE))
 | |
| 			nbytes = EDMA_V3_TCD_NBYTES_MLOFF_NBYTES(nbytes);
 | |
| 		len += nbytes * fsl_edma_get_tcd_to_cpu(fsl_chan, edesc->tcd[i].vtcd, biter);
 | |
| 	}
 | |
| 
 | |
| 	if (!in_progress)
 | |
| 		return len;
 | |
| 
 | |
| 	/* 64bit read is not atomic, need read retry when high 32bit changed */
 | |
| 	do {
 | |
| 		if (dir == DMA_MEM_TO_DEV) {
 | |
| 			old_addr = edma_read_tcdreg(fsl_chan, saddr);
 | |
| 			cur_addr = edma_read_tcdreg(fsl_chan, saddr);
 | |
| 		} else {
 | |
| 			old_addr = edma_read_tcdreg(fsl_chan, daddr);
 | |
| 			cur_addr = edma_read_tcdreg(fsl_chan, daddr);
 | |
| 		}
 | |
| 	} while (upper_32_bits(cur_addr) != upper_32_bits(old_addr));
 | |
| 
 | |
| 	/* figure out the finished and calculate the residue */
 | |
| 	for (i = 0; i < fsl_chan->edesc->n_tcds; i++) {
 | |
| 		nbytes = fsl_edma_get_tcd_to_cpu(fsl_chan, edesc->tcd[i].vtcd, nbytes);
 | |
| 		if (nbytes & (EDMA_V3_TCD_NBYTES_DMLOE | EDMA_V3_TCD_NBYTES_SMLOE))
 | |
| 			nbytes = EDMA_V3_TCD_NBYTES_MLOFF_NBYTES(nbytes);
 | |
| 
 | |
| 		size = nbytes * fsl_edma_get_tcd_to_cpu(fsl_chan, edesc->tcd[i].vtcd, biter);
 | |
| 
 | |
| 		if (dir == DMA_MEM_TO_DEV)
 | |
| 			dma_addr = fsl_edma_get_tcd_to_cpu(fsl_chan, edesc->tcd[i].vtcd, saddr);
 | |
| 		else
 | |
| 			dma_addr = fsl_edma_get_tcd_to_cpu(fsl_chan, edesc->tcd[i].vtcd, daddr);
 | |
| 
 | |
| 		len -= size;
 | |
| 		if (cur_addr >= dma_addr && cur_addr < dma_addr + size) {
 | |
| 			len += dma_addr + size - cur_addr;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
 | |
| 		dma_cookie_t cookie, struct dma_tx_state *txstate)
 | |
| {
 | |
| 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
 | |
| 	struct virt_dma_desc *vdesc;
 | |
| 	enum dma_status status;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	status = dma_cookie_status(chan, cookie, txstate);
 | |
| 	if (status == DMA_COMPLETE)
 | |
| 		return status;
 | |
| 
 | |
| 	if (!txstate)
 | |
| 		return fsl_chan->status;
 | |
| 
 | |
| 	spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
 | |
| 	vdesc = vchan_find_desc(&fsl_chan->vchan, cookie);
 | |
| 	if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie)
 | |
| 		txstate->residue =
 | |
| 			fsl_edma_desc_residue(fsl_chan, vdesc, true);
 | |
| 	else if (vdesc)
 | |
| 		txstate->residue =
 | |
| 			fsl_edma_desc_residue(fsl_chan, vdesc, false);
 | |
| 	else
 | |
| 		txstate->residue = 0;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
 | |
| 
 | |
| 	return fsl_chan->status;
 | |
| }
 | |
| 
 | |
| static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan, void *tcd)
 | |
| {
 | |
| 	u16 csr = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * TCD parameters are stored in struct fsl_edma_hw_tcd in little
 | |
| 	 * endian format. However, we need to load the TCD registers in
 | |
| 	 * big- or little-endian obeying the eDMA engine model endian,
 | |
| 	 * and this is performed from specific edma_write functions
 | |
| 	 */
 | |
| 	edma_write_tcdreg(fsl_chan, 0, csr);
 | |
| 
 | |
| 	edma_cp_tcd_to_reg(fsl_chan, tcd, saddr);
 | |
| 	edma_cp_tcd_to_reg(fsl_chan, tcd, daddr);
 | |
| 
 | |
| 	edma_cp_tcd_to_reg(fsl_chan, tcd, attr);
 | |
| 	edma_cp_tcd_to_reg(fsl_chan, tcd, soff);
 | |
| 
 | |
| 	edma_cp_tcd_to_reg(fsl_chan, tcd, nbytes);
 | |
| 	edma_cp_tcd_to_reg(fsl_chan, tcd, slast);
 | |
| 
 | |
| 	edma_cp_tcd_to_reg(fsl_chan, tcd, citer);
 | |
| 	edma_cp_tcd_to_reg(fsl_chan, tcd, biter);
 | |
| 	edma_cp_tcd_to_reg(fsl_chan, tcd, doff);
 | |
| 
 | |
| 	edma_cp_tcd_to_reg(fsl_chan, tcd, dlast_sga);
 | |
| 
 | |
| 	csr = fsl_edma_get_tcd_to_cpu(fsl_chan, tcd, csr);
 | |
| 
 | |
| 	if (fsl_chan->is_sw) {
 | |
| 		csr |= EDMA_TCD_CSR_START;
 | |
| 		fsl_edma_set_tcd_to_le(fsl_chan, tcd, csr, csr);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Must clear CHn_CSR[DONE] bit before enable TCDn_CSR[ESG] at EDMAv3
 | |
| 	 * eDMAv4 have not such requirement.
 | |
| 	 * Change MLINK need clear CHn_CSR[DONE] for both eDMAv3 and eDMAv4.
 | |
| 	 */
 | |
| 	if (((fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_CLEAR_DONE_E_SG) &&
 | |
| 		(csr & EDMA_TCD_CSR_E_SG)) ||
 | |
| 	    ((fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_CLEAR_DONE_E_LINK) &&
 | |
| 		(csr & EDMA_TCD_CSR_E_LINK)))
 | |
| 		edma_writel_chreg(fsl_chan, edma_readl_chreg(fsl_chan, ch_csr), ch_csr);
 | |
| 
 | |
| 
 | |
| 	edma_cp_tcd_to_reg(fsl_chan, tcd, csr);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void fsl_edma_fill_tcd(struct fsl_edma_chan *fsl_chan,
 | |
| 		       struct fsl_edma_hw_tcd *tcd, dma_addr_t src, dma_addr_t dst,
 | |
| 		       u16 attr, u16 soff, u32 nbytes, dma_addr_t slast, u16 citer,
 | |
| 		       u16 biter, u16 doff, dma_addr_t dlast_sga, bool major_int,
 | |
| 		       bool disable_req, bool enable_sg)
 | |
| {
 | |
| 	struct dma_slave_config *cfg = &fsl_chan->cfg;
 | |
| 	u32 burst = 0;
 | |
| 	u16 csr = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * eDMA hardware SGs require the TCDs to be stored in little
 | |
| 	 * endian format irrespective of the register endian model.
 | |
| 	 * So we put the value in little endian in memory, waiting
 | |
| 	 * for fsl_edma_set_tcd_regs doing the swap.
 | |
| 	 */
 | |
| 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, src, saddr);
 | |
| 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, dst, daddr);
 | |
| 
 | |
| 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, attr, attr);
 | |
| 
 | |
| 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, soff, soff);
 | |
| 
 | |
| 	/* If we expect to have either multi_fifo or a port window size,
 | |
| 	 * we will use minor loop offset, meaning bits 29-10 will be used for
 | |
| 	 * address offset, while bits 9-0 will be used to tell DMA how much
 | |
| 	 * data to read from addr.
 | |
| 	 * If we don't have either of those, will use a major loop reading from addr
 | |
| 	 * nbytes (29bits).
 | |
| 	 */
 | |
| 	if (cfg->direction == DMA_MEM_TO_DEV) {
 | |
| 		if (fsl_chan->is_multi_fifo)
 | |
| 			burst = cfg->dst_maxburst * 4;
 | |
| 		if (cfg->dst_port_window_size)
 | |
| 			burst = cfg->dst_port_window_size * cfg->dst_addr_width;
 | |
| 		if (burst) {
 | |
| 			nbytes |= EDMA_V3_TCD_NBYTES_MLOFF(-burst);
 | |
| 			nbytes |= EDMA_V3_TCD_NBYTES_DMLOE;
 | |
| 			nbytes &= ~EDMA_V3_TCD_NBYTES_SMLOE;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (fsl_chan->is_multi_fifo)
 | |
| 			burst = cfg->src_maxburst * 4;
 | |
| 		if (cfg->src_port_window_size)
 | |
| 			burst = cfg->src_port_window_size * cfg->src_addr_width;
 | |
| 		if (burst) {
 | |
| 			nbytes |= EDMA_V3_TCD_NBYTES_MLOFF(-burst);
 | |
| 			nbytes |= EDMA_V3_TCD_NBYTES_SMLOE;
 | |
| 			nbytes &= ~EDMA_V3_TCD_NBYTES_DMLOE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, nbytes, nbytes);
 | |
| 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, slast, slast);
 | |
| 
 | |
| 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, EDMA_TCD_CITER_CITER(citer), citer);
 | |
| 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, doff, doff);
 | |
| 
 | |
| 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, dlast_sga, dlast_sga);
 | |
| 
 | |
| 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, EDMA_TCD_BITER_BITER(biter), biter);
 | |
| 
 | |
| 	if (major_int)
 | |
| 		csr |= EDMA_TCD_CSR_INT_MAJOR;
 | |
| 
 | |
| 	if (disable_req)
 | |
| 		csr |= EDMA_TCD_CSR_D_REQ;
 | |
| 
 | |
| 	if (enable_sg)
 | |
| 		csr |= EDMA_TCD_CSR_E_SG;
 | |
| 
 | |
| 	if (fsl_chan->is_rxchan)
 | |
| 		csr |= EDMA_TCD_CSR_ACTIVE;
 | |
| 
 | |
| 	if (fsl_chan->is_sw)
 | |
| 		csr |= EDMA_TCD_CSR_START;
 | |
| 
 | |
| 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, csr, csr);
 | |
| 
 | |
| 	trace_edma_fill_tcd(fsl_chan, tcd);
 | |
| }
 | |
| 
 | |
| static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan,
 | |
| 		int sg_len)
 | |
| {
 | |
| 	struct fsl_edma_desc *fsl_desc;
 | |
| 	int i;
 | |
| 
 | |
| 	fsl_desc = kzalloc(struct_size(fsl_desc, tcd, sg_len), GFP_NOWAIT);
 | |
| 	if (!fsl_desc)
 | |
| 		return NULL;
 | |
| 
 | |
| 	fsl_desc->echan = fsl_chan;
 | |
| 	fsl_desc->n_tcds = sg_len;
 | |
| 	for (i = 0; i < sg_len; i++) {
 | |
| 		fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool,
 | |
| 					GFP_NOWAIT, &fsl_desc->tcd[i].ptcd);
 | |
| 		if (!fsl_desc->tcd[i].vtcd)
 | |
| 			goto err;
 | |
| 	}
 | |
| 	return fsl_desc;
 | |
| 
 | |
| err:
 | |
| 	while (--i >= 0)
 | |
| 		dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd,
 | |
| 				fsl_desc->tcd[i].ptcd);
 | |
| 	kfree(fsl_desc);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(
 | |
| 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
 | |
| 		size_t period_len, enum dma_transfer_direction direction,
 | |
| 		unsigned long flags)
 | |
| {
 | |
| 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
 | |
| 	struct fsl_edma_desc *fsl_desc;
 | |
| 	dma_addr_t dma_buf_next;
 | |
| 	bool major_int = true;
 | |
| 	int sg_len, i;
 | |
| 	dma_addr_t src_addr, dst_addr, last_sg;
 | |
| 	u16 soff, doff, iter;
 | |
| 	u32 nbytes;
 | |
| 
 | |
| 	if (!is_slave_direction(direction))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!fsl_edma_prep_slave_dma(fsl_chan, direction))
 | |
| 		return NULL;
 | |
| 
 | |
| 	sg_len = buf_len / period_len;
 | |
| 	fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
 | |
| 	if (!fsl_desc)
 | |
| 		return NULL;
 | |
| 	fsl_desc->iscyclic = true;
 | |
| 	fsl_desc->dirn = direction;
 | |
| 
 | |
| 	dma_buf_next = dma_addr;
 | |
| 	if (direction == DMA_MEM_TO_DEV) {
 | |
| 		fsl_chan->attr =
 | |
| 			fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width);
 | |
| 		nbytes = fsl_chan->cfg.dst_addr_width *
 | |
| 			fsl_chan->cfg.dst_maxburst;
 | |
| 	} else {
 | |
| 		fsl_chan->attr =
 | |
| 			fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width);
 | |
| 		nbytes = fsl_chan->cfg.src_addr_width *
 | |
| 			fsl_chan->cfg.src_maxburst;
 | |
| 	}
 | |
| 
 | |
| 	iter = period_len / nbytes;
 | |
| 
 | |
| 	for (i = 0; i < sg_len; i++) {
 | |
| 		if (dma_buf_next >= dma_addr + buf_len)
 | |
| 			dma_buf_next = dma_addr;
 | |
| 
 | |
| 		/* get next sg's physical address */
 | |
| 		last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
 | |
| 
 | |
| 		if (direction == DMA_MEM_TO_DEV) {
 | |
| 			src_addr = dma_buf_next;
 | |
| 			dst_addr = fsl_chan->dma_dev_addr;
 | |
| 			soff = fsl_chan->cfg.dst_addr_width;
 | |
| 			doff = fsl_chan->is_multi_fifo ? 4 : 0;
 | |
| 			if (fsl_chan->cfg.dst_port_window_size)
 | |
| 				doff = fsl_chan->cfg.dst_addr_width;
 | |
| 		} else if (direction == DMA_DEV_TO_MEM) {
 | |
| 			src_addr = fsl_chan->dma_dev_addr;
 | |
| 			dst_addr = dma_buf_next;
 | |
| 			soff = fsl_chan->is_multi_fifo ? 4 : 0;
 | |
| 			doff = fsl_chan->cfg.src_addr_width;
 | |
| 			if (fsl_chan->cfg.src_port_window_size)
 | |
| 				soff = fsl_chan->cfg.src_addr_width;
 | |
| 		} else {
 | |
| 			/* DMA_DEV_TO_DEV */
 | |
| 			src_addr = fsl_chan->cfg.src_addr;
 | |
| 			dst_addr = fsl_chan->cfg.dst_addr;
 | |
| 			soff = doff = 0;
 | |
| 			major_int = false;
 | |
| 		}
 | |
| 
 | |
| 		fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr, dst_addr,
 | |
| 				  fsl_chan->attr, soff, nbytes, 0, iter,
 | |
| 				  iter, doff, last_sg, major_int, false, true);
 | |
| 		dma_buf_next += period_len;
 | |
| 	}
 | |
| 
 | |
| 	return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
 | |
| }
 | |
| 
 | |
| struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg(
 | |
| 		struct dma_chan *chan, struct scatterlist *sgl,
 | |
| 		unsigned int sg_len, enum dma_transfer_direction direction,
 | |
| 		unsigned long flags, void *context)
 | |
| {
 | |
| 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
 | |
| 	struct fsl_edma_desc *fsl_desc;
 | |
| 	struct scatterlist *sg;
 | |
| 	dma_addr_t src_addr, dst_addr, last_sg;
 | |
| 	u16 soff, doff, iter;
 | |
| 	u32 nbytes;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!is_slave_direction(direction))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!fsl_edma_prep_slave_dma(fsl_chan, direction))
 | |
| 		return NULL;
 | |
| 
 | |
| 	fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
 | |
| 	if (!fsl_desc)
 | |
| 		return NULL;
 | |
| 	fsl_desc->iscyclic = false;
 | |
| 	fsl_desc->dirn = direction;
 | |
| 
 | |
| 	if (direction == DMA_MEM_TO_DEV) {
 | |
| 		fsl_chan->attr =
 | |
| 			fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width);
 | |
| 		nbytes = fsl_chan->cfg.dst_addr_width *
 | |
| 			fsl_chan->cfg.dst_maxburst;
 | |
| 	} else {
 | |
| 		fsl_chan->attr =
 | |
| 			fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width);
 | |
| 		nbytes = fsl_chan->cfg.src_addr_width *
 | |
| 			fsl_chan->cfg.src_maxburst;
 | |
| 	}
 | |
| 
 | |
| 	for_each_sg(sgl, sg, sg_len, i) {
 | |
| 		if (direction == DMA_MEM_TO_DEV) {
 | |
| 			src_addr = sg_dma_address(sg);
 | |
| 			dst_addr = fsl_chan->dma_dev_addr;
 | |
| 			soff = fsl_chan->cfg.dst_addr_width;
 | |
| 			doff = 0;
 | |
| 		} else if (direction == DMA_DEV_TO_MEM) {
 | |
| 			src_addr = fsl_chan->dma_dev_addr;
 | |
| 			dst_addr = sg_dma_address(sg);
 | |
| 			soff = 0;
 | |
| 			doff = fsl_chan->cfg.src_addr_width;
 | |
| 		} else {
 | |
| 			/* DMA_DEV_TO_DEV */
 | |
| 			src_addr = fsl_chan->cfg.src_addr;
 | |
| 			dst_addr = fsl_chan->cfg.dst_addr;
 | |
| 			soff = 0;
 | |
| 			doff = 0;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Choose the suitable burst length if sg_dma_len is not
 | |
| 		 * multiple of burst length so that the whole transfer length is
 | |
| 		 * multiple of minor loop(burst length).
 | |
| 		 */
 | |
| 		if (sg_dma_len(sg) % nbytes) {
 | |
| 			u32 width = (direction == DMA_DEV_TO_MEM) ? doff : soff;
 | |
| 			u32 burst = (direction == DMA_DEV_TO_MEM) ?
 | |
| 						fsl_chan->cfg.src_maxburst :
 | |
| 						fsl_chan->cfg.dst_maxburst;
 | |
| 			int j;
 | |
| 
 | |
| 			for (j = burst; j > 1; j--) {
 | |
| 				if (!(sg_dma_len(sg) % (j * width))) {
 | |
| 					nbytes = j * width;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			/* Set burst size as 1 if there's no suitable one */
 | |
| 			if (j == 1)
 | |
| 				nbytes = width;
 | |
| 		}
 | |
| 		iter = sg_dma_len(sg) / nbytes;
 | |
| 		if (i < sg_len - 1) {
 | |
| 			last_sg = fsl_desc->tcd[(i + 1)].ptcd;
 | |
| 			fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr,
 | |
| 					  dst_addr, fsl_chan->attr, soff,
 | |
| 					  nbytes, 0, iter, iter, doff, last_sg,
 | |
| 					  false, false, true);
 | |
| 		} else {
 | |
| 			last_sg = 0;
 | |
| 			fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr,
 | |
| 					  dst_addr, fsl_chan->attr, soff,
 | |
| 					  nbytes, 0, iter, iter, doff, last_sg,
 | |
| 					  true, true, false);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
 | |
| }
 | |
| 
 | |
| struct dma_async_tx_descriptor *fsl_edma_prep_memcpy(struct dma_chan *chan,
 | |
| 						     dma_addr_t dma_dst, dma_addr_t dma_src,
 | |
| 						     size_t len, unsigned long flags)
 | |
| {
 | |
| 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
 | |
| 	struct fsl_edma_desc *fsl_desc;
 | |
| 
 | |
| 	fsl_desc = fsl_edma_alloc_desc(fsl_chan, 1);
 | |
| 	if (!fsl_desc)
 | |
| 		return NULL;
 | |
| 	fsl_desc->iscyclic = false;
 | |
| 
 | |
| 	fsl_chan->is_sw = true;
 | |
| 	if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_MEM_REMOTE)
 | |
| 		fsl_chan->is_remote = true;
 | |
| 
 | |
| 	/* To match with copy_align and max_seg_size so 1 tcd is enough */
 | |
| 	fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[0].vtcd, dma_src, dma_dst,
 | |
| 			fsl_edma_get_tcd_attr(DMA_SLAVE_BUSWIDTH_32_BYTES),
 | |
| 			32, len, 0, 1, 1, 32, 0, true, true, false);
 | |
| 
 | |
| 	return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
 | |
| }
 | |
| 
 | |
| void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan)
 | |
| {
 | |
| 	struct virt_dma_desc *vdesc;
 | |
| 
 | |
| 	lockdep_assert_held(&fsl_chan->vchan.lock);
 | |
| 
 | |
| 	vdesc = vchan_next_desc(&fsl_chan->vchan);
 | |
| 	if (!vdesc)
 | |
| 		return;
 | |
| 	fsl_chan->edesc = to_fsl_edma_desc(vdesc);
 | |
| 	fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd);
 | |
| 	fsl_edma_enable_request(fsl_chan);
 | |
| 	fsl_chan->status = DMA_IN_PROGRESS;
 | |
| }
 | |
| 
 | |
| void fsl_edma_issue_pending(struct dma_chan *chan)
 | |
| {
 | |
| 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
 | |
| 
 | |
| 	if (unlikely(fsl_chan->pm_state != RUNNING)) {
 | |
| 		spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
 | |
| 		/* cannot submit due to suspend */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc)
 | |
| 		fsl_edma_xfer_desc(fsl_chan);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
 | |
| }
 | |
| 
 | |
| int fsl_edma_alloc_chan_resources(struct dma_chan *chan)
 | |
| {
 | |
| 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_HAS_CHCLK)
 | |
| 		clk_prepare_enable(fsl_chan->clk);
 | |
| 
 | |
| 	fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev,
 | |
| 				fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_TCD64 ?
 | |
| 				sizeof(struct fsl_edma_hw_tcd64) : sizeof(struct fsl_edma_hw_tcd),
 | |
| 				32, 0);
 | |
| 
 | |
| 	if (fsl_chan->txirq)
 | |
| 		ret = request_irq(fsl_chan->txirq, fsl_chan->irq_handler, IRQF_SHARED,
 | |
| 				 fsl_chan->chan_name, fsl_chan);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto err_txirq;
 | |
| 
 | |
| 	if (fsl_chan->errirq > 0)
 | |
| 		ret = request_irq(fsl_chan->errirq, fsl_chan->errirq_handler, IRQF_SHARED,
 | |
| 				  fsl_chan->errirq_name, fsl_chan);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto err_errirq;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_errirq:
 | |
| 	if (fsl_chan->txirq)
 | |
| 		free_irq(fsl_chan->txirq, fsl_chan);
 | |
| err_txirq:
 | |
| 	dma_pool_destroy(fsl_chan->tcd_pool);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void fsl_edma_free_chan_resources(struct dma_chan *chan)
 | |
| {
 | |
| 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
 | |
| 	struct fsl_edma_engine *edma = fsl_chan->edma;
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(head);
 | |
| 
 | |
| 	spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
 | |
| 	fsl_edma_disable_request(fsl_chan);
 | |
| 	if (edma->drvdata->dmamuxs)
 | |
| 		fsl_edma_chan_mux(fsl_chan, 0, false);
 | |
| 	fsl_chan->edesc = NULL;
 | |
| 	vchan_get_all_descriptors(&fsl_chan->vchan, &head);
 | |
| 	fsl_edma_unprep_slave_dma(fsl_chan);
 | |
| 	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
 | |
| 
 | |
| 	if (fsl_chan->txirq)
 | |
| 		free_irq(fsl_chan->txirq, fsl_chan);
 | |
| 	if (fsl_chan->errirq)
 | |
| 		free_irq(fsl_chan->errirq, fsl_chan);
 | |
| 
 | |
| 	vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
 | |
| 	dma_pool_destroy(fsl_chan->tcd_pool);
 | |
| 	fsl_chan->tcd_pool = NULL;
 | |
| 	fsl_chan->is_sw = false;
 | |
| 	fsl_chan->srcid = 0;
 | |
| 	fsl_chan->is_remote = false;
 | |
| 	if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_HAS_CHCLK)
 | |
| 		clk_disable_unprepare(fsl_chan->clk);
 | |
| }
 | |
| 
 | |
| void fsl_edma_cleanup_vchan(struct dma_device *dmadev)
 | |
| {
 | |
| 	struct fsl_edma_chan *chan, *_chan;
 | |
| 
 | |
| 	list_for_each_entry_safe(chan, _chan,
 | |
| 				&dmadev->channels, vchan.chan.device_node) {
 | |
| 		list_del(&chan->vchan.chan.device_node);
 | |
| 		tasklet_kill(&chan->vchan.task);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On the 32 channels Vybrid/mpc577x edma version, register offsets are
 | |
|  * different compared to ColdFire mcf5441x 64 channels edma.
 | |
|  *
 | |
|  * This function sets up register offsets as per proper declared version
 | |
|  * so must be called in xxx_edma_probe() just after setting the
 | |
|  * edma "version" and "membase" appropriately.
 | |
|  */
 | |
| void fsl_edma_setup_regs(struct fsl_edma_engine *edma)
 | |
| {
 | |
| 	bool is64 = !!(edma->drvdata->flags & FSL_EDMA_DRV_EDMA64);
 | |
| 
 | |
| 	edma->regs.cr = edma->membase + EDMA_CR;
 | |
| 	edma->regs.es = edma->membase + EDMA_ES;
 | |
| 	edma->regs.erql = edma->membase + EDMA_ERQ;
 | |
| 	edma->regs.eeil = edma->membase + EDMA_EEI;
 | |
| 
 | |
| 	edma->regs.serq = edma->membase + (is64 ? EDMA64_SERQ : EDMA_SERQ);
 | |
| 	edma->regs.cerq = edma->membase + (is64 ? EDMA64_CERQ : EDMA_CERQ);
 | |
| 	edma->regs.seei = edma->membase + (is64 ? EDMA64_SEEI : EDMA_SEEI);
 | |
| 	edma->regs.ceei = edma->membase + (is64 ? EDMA64_CEEI : EDMA_CEEI);
 | |
| 	edma->regs.cint = edma->membase + (is64 ? EDMA64_CINT : EDMA_CINT);
 | |
| 	edma->regs.cerr = edma->membase + (is64 ? EDMA64_CERR : EDMA_CERR);
 | |
| 	edma->regs.ssrt = edma->membase + (is64 ? EDMA64_SSRT : EDMA_SSRT);
 | |
| 	edma->regs.cdne = edma->membase + (is64 ? EDMA64_CDNE : EDMA_CDNE);
 | |
| 	edma->regs.intl = edma->membase + (is64 ? EDMA64_INTL : EDMA_INTR);
 | |
| 	edma->regs.errl = edma->membase + (is64 ? EDMA64_ERRL : EDMA_ERR);
 | |
| 
 | |
| 	if (is64) {
 | |
| 		edma->regs.erqh = edma->membase + EDMA64_ERQH;
 | |
| 		edma->regs.eeih = edma->membase + EDMA64_EEIH;
 | |
| 		edma->regs.errh = edma->membase + EDMA64_ERRH;
 | |
| 		edma->regs.inth = edma->membase + EDMA64_INTH;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| MODULE_LICENSE("GPL v2");
 |