mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 fb46e22a9e
			
		
	
	
		fb46e22a9e
		
	
	
	
	
		
			
			are included in this merge do the following:
 
 - Peng Zhang has done some mapletree maintainance work in the
   series
 
 	"maple_tree: add mt_free_one() and mt_attr() helpers"
 	"Some cleanups of maple tree"
 
 - In the series "mm: use memmap_on_memory semantics for dax/kmem"
   Vishal Verma has altered the interworking between memory-hotplug
   and dax/kmem so that newly added 'device memory' can more easily
   have its memmap placed within that newly added memory.
 
 - Matthew Wilcox continues folio-related work (including a few
   fixes) in the patch series
 
 	"Add folio_zero_tail() and folio_fill_tail()"
 	"Make folio_start_writeback return void"
 	"Fix fault handler's handling of poisoned tail pages"
 	"Convert aops->error_remove_page to ->error_remove_folio"
 	"Finish two folio conversions"
 	"More swap folio conversions"
 
 - Kefeng Wang has also contributed folio-related work in the series
 
 	"mm: cleanup and use more folio in page fault"
 
 - Jim Cromie has improved the kmemleak reporting output in the
   series "tweak kmemleak report format".
 
 - In the series "stackdepot: allow evicting stack traces" Andrey
   Konovalov to permits clients (in this case KASAN) to cause
   eviction of no longer needed stack traces.
 
 - Charan Teja Kalla has fixed some accounting issues in the page
   allocator's atomic reserve calculations in the series "mm:
   page_alloc: fixes for high atomic reserve caluculations".
 
 - Dmitry Rokosov has added to the samples/ dorectory some sample
   code for a userspace memcg event listener application.  See the
   series "samples: introduce cgroup events listeners".
 
 - Some mapletree maintanance work from Liam Howlett in the series
   "maple_tree: iterator state changes".
 
 - Nhat Pham has improved zswap's approach to writeback in the
   series "workload-specific and memory pressure-driven zswap
   writeback".
 
 - DAMON/DAMOS feature and maintenance work from SeongJae Park in
   the series
 
 	"mm/damon: let users feed and tame/auto-tune DAMOS"
 	"selftests/damon: add Python-written DAMON functionality tests"
 	"mm/damon: misc updates for 6.8"
 
 - Yosry Ahmed has improved memcg's stats flushing in the series
   "mm: memcg: subtree stats flushing and thresholds".
 
 - In the series "Multi-size THP for anonymous memory" Ryan Roberts
   has added a runtime opt-in feature to transparent hugepages which
   improves performance by allocating larger chunks of memory during
   anonymous page faults.
 
 - Matthew Wilcox has also contributed some cleanup and maintenance
   work against eh buffer_head code int he series "More buffer_head
   cleanups".
 
 - Suren Baghdasaryan has done work on Andrea Arcangeli's series
   "userfaultfd move option".  UFFDIO_MOVE permits userspace heap
   compaction algorithms to move userspace's pages around rather than
   UFFDIO_COPY'a alloc/copy/free.
 
 - Stefan Roesch has developed a "KSM Advisor", in the series
   "mm/ksm: Add ksm advisor".  This is a governor which tunes KSM's
   scanning aggressiveness in response to userspace's current needs.
 
 - Chengming Zhou has optimized zswap's temporary working memory
   use in the series "mm/zswap: dstmem reuse optimizations and
   cleanups".
 
 - Matthew Wilcox has performed some maintenance work on the
   writeback code, both code and within filesystems.  The series is
   "Clean up the writeback paths".
 
 - Andrey Konovalov has optimized KASAN's handling of alloc and
   free stack traces for secondary-level allocators, in the series
   "kasan: save mempool stack traces".
 
 - Andrey also performed some KASAN maintenance work in the series
   "kasan: assorted clean-ups".
 
 - David Hildenbrand has gone to town on the rmap code.  Cleanups,
   more pte batching, folio conversions and more.  See the series
   "mm/rmap: interface overhaul".
 
 - Kinsey Ho has contributed some maintenance work on the MGLRU
   code in the series "mm/mglru: Kconfig cleanup".
 
 - Matthew Wilcox has contributed lruvec page accounting code
   cleanups in the series "Remove some lruvec page accounting
   functions".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZZyF2wAKCRDdBJ7gKXxA
 jjWjAP42LHvGSjp5M+Rs2rKFL0daBQsrlvy6/jCHUequSdWjSgEAmOx7bc5fbF27
 Oa8+DxGM9C+fwqZ/7YxU2w/WuUmLPgU=
 =0NHs
 -----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
 "Many singleton patches against the MM code. The patch series which are
  included in this merge do the following:
   - Peng Zhang has done some mapletree maintainance work in the series
	'maple_tree: add mt_free_one() and mt_attr() helpers'
	'Some cleanups of maple tree'
   - In the series 'mm: use memmap_on_memory semantics for dax/kmem'
     Vishal Verma has altered the interworking between memory-hotplug
     and dax/kmem so that newly added 'device memory' can more easily
     have its memmap placed within that newly added memory.
   - Matthew Wilcox continues folio-related work (including a few fixes)
     in the patch series
	'Add folio_zero_tail() and folio_fill_tail()'
	'Make folio_start_writeback return void'
	'Fix fault handler's handling of poisoned tail pages'
	'Convert aops->error_remove_page to ->error_remove_folio'
	'Finish two folio conversions'
	'More swap folio conversions'
   - Kefeng Wang has also contributed folio-related work in the series
	'mm: cleanup and use more folio in page fault'
   - Jim Cromie has improved the kmemleak reporting output in the series
     'tweak kmemleak report format'.
   - In the series 'stackdepot: allow evicting stack traces' Andrey
     Konovalov to permits clients (in this case KASAN) to cause eviction
     of no longer needed stack traces.
   - Charan Teja Kalla has fixed some accounting issues in the page
     allocator's atomic reserve calculations in the series 'mm:
     page_alloc: fixes for high atomic reserve caluculations'.
   - Dmitry Rokosov has added to the samples/ dorectory some sample code
     for a userspace memcg event listener application. See the series
     'samples: introduce cgroup events listeners'.
   - Some mapletree maintanance work from Liam Howlett in the series
     'maple_tree: iterator state changes'.
   - Nhat Pham has improved zswap's approach to writeback in the series
     'workload-specific and memory pressure-driven zswap writeback'.
   - DAMON/DAMOS feature and maintenance work from SeongJae Park in the
     series
	'mm/damon: let users feed and tame/auto-tune DAMOS'
	'selftests/damon: add Python-written DAMON functionality tests'
	'mm/damon: misc updates for 6.8'
   - Yosry Ahmed has improved memcg's stats flushing in the series 'mm:
     memcg: subtree stats flushing and thresholds'.
   - In the series 'Multi-size THP for anonymous memory' Ryan Roberts
     has added a runtime opt-in feature to transparent hugepages which
     improves performance by allocating larger chunks of memory during
     anonymous page faults.
   - Matthew Wilcox has also contributed some cleanup and maintenance
     work against eh buffer_head code int he series 'More buffer_head
     cleanups'.
   - Suren Baghdasaryan has done work on Andrea Arcangeli's series
     'userfaultfd move option'. UFFDIO_MOVE permits userspace heap
     compaction algorithms to move userspace's pages around rather than
     UFFDIO_COPY'a alloc/copy/free.
   - Stefan Roesch has developed a 'KSM Advisor', in the series 'mm/ksm:
     Add ksm advisor'. This is a governor which tunes KSM's scanning
     aggressiveness in response to userspace's current needs.
   - Chengming Zhou has optimized zswap's temporary working memory use
     in the series 'mm/zswap: dstmem reuse optimizations and cleanups'.
   - Matthew Wilcox has performed some maintenance work on the writeback
     code, both code and within filesystems. The series is 'Clean up the
     writeback paths'.
   - Andrey Konovalov has optimized KASAN's handling of alloc and free
     stack traces for secondary-level allocators, in the series 'kasan:
     save mempool stack traces'.
   - Andrey also performed some KASAN maintenance work in the series
     'kasan: assorted clean-ups'.
   - David Hildenbrand has gone to town on the rmap code. Cleanups, more
     pte batching, folio conversions and more. See the series 'mm/rmap:
     interface overhaul'.
   - Kinsey Ho has contributed some maintenance work on the MGLRU code
     in the series 'mm/mglru: Kconfig cleanup'.
   - Matthew Wilcox has contributed lruvec page accounting code cleanups
     in the series 'Remove some lruvec page accounting functions'"
* tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (361 commits)
  mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
  mm, treewide: introduce NR_PAGE_ORDERS
  selftests/mm: add separate UFFDIO_MOVE test for PMD splitting
  selftests/mm: skip test if application doesn't has root privileges
  selftests/mm: conform test to TAP format output
  selftests: mm: hugepage-mmap: conform to TAP format output
  selftests/mm: gup_test: conform test to TAP format output
  mm/selftests: hugepage-mremap: conform test to TAP format output
  mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING
  mm: zsmalloc: return -ENOSPC rather than -EINVAL in zs_malloc while size is too large
  mm/memcontrol: remove __mod_lruvec_page_state()
  mm/khugepaged: use a folio more in collapse_file()
  slub: use a folio in __kmalloc_large_node
  slub: use folio APIs in free_large_kmalloc()
  slub: use alloc_pages_node() in alloc_slab_page()
  mm: remove inc/dec lruvec page state functions
  mm: ratelimit stat flush from workingset shrinker
  kasan: stop leaking stack trace handles
  mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE
  mm/mglru: add dummy pmd_dirty()
  ...
		
	
			
		
			
				
	
	
		
			1709 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1709 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * hugetlbpage-backed filesystem.  Based on ramfs.
 | |
|  *
 | |
|  * Nadia Yvette Chambers, 2002
 | |
|  *
 | |
|  * Copyright (C) 2002 Linus Torvalds.
 | |
|  * License: GPL
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/thread_info.h>
 | |
| #include <asm/current.h>
 | |
| #include <linux/falloc.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/fs_parser.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/dnotify.h>
 | |
| #include <linux/statfs.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/magic.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/uio.h>
 | |
| 
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/sched/mm.h>
 | |
| 
 | |
| static const struct address_space_operations hugetlbfs_aops;
 | |
| const struct file_operations hugetlbfs_file_operations;
 | |
| static const struct inode_operations hugetlbfs_dir_inode_operations;
 | |
| static const struct inode_operations hugetlbfs_inode_operations;
 | |
| 
 | |
| enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
 | |
| 
 | |
| struct hugetlbfs_fs_context {
 | |
| 	struct hstate		*hstate;
 | |
| 	unsigned long long	max_size_opt;
 | |
| 	unsigned long long	min_size_opt;
 | |
| 	long			max_hpages;
 | |
| 	long			nr_inodes;
 | |
| 	long			min_hpages;
 | |
| 	enum hugetlbfs_size_type max_val_type;
 | |
| 	enum hugetlbfs_size_type min_val_type;
 | |
| 	kuid_t			uid;
 | |
| 	kgid_t			gid;
 | |
| 	umode_t			mode;
 | |
| };
 | |
| 
 | |
| int sysctl_hugetlb_shm_group;
 | |
| 
 | |
| enum hugetlb_param {
 | |
| 	Opt_gid,
 | |
| 	Opt_min_size,
 | |
| 	Opt_mode,
 | |
| 	Opt_nr_inodes,
 | |
| 	Opt_pagesize,
 | |
| 	Opt_size,
 | |
| 	Opt_uid,
 | |
| };
 | |
| 
 | |
| static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
 | |
| 	fsparam_u32   ("gid",		Opt_gid),
 | |
| 	fsparam_string("min_size",	Opt_min_size),
 | |
| 	fsparam_u32oct("mode",		Opt_mode),
 | |
| 	fsparam_string("nr_inodes",	Opt_nr_inodes),
 | |
| 	fsparam_string("pagesize",	Opt_pagesize),
 | |
| 	fsparam_string("size",		Opt_size),
 | |
| 	fsparam_u32   ("uid",		Opt_uid),
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Mask used when checking the page offset value passed in via system
 | |
|  * calls.  This value will be converted to a loff_t which is signed.
 | |
|  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
 | |
|  * value.  The extra bit (- 1 in the shift value) is to take the sign
 | |
|  * bit into account.
 | |
|  */
 | |
| #define PGOFF_LOFFT_MAX \
 | |
| 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
 | |
| 
 | |
| static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | |
| 	loff_t len, vma_len;
 | |
| 	int ret;
 | |
| 	struct hstate *h = hstate_file(file);
 | |
| 
 | |
| 	/*
 | |
| 	 * vma address alignment (but not the pgoff alignment) has
 | |
| 	 * already been checked by prepare_hugepage_range.  If you add
 | |
| 	 * any error returns here, do so after setting VM_HUGETLB, so
 | |
| 	 * is_vm_hugetlb_page tests below unmap_region go the right
 | |
| 	 * way when do_mmap unwinds (may be important on powerpc
 | |
| 	 * and ia64).
 | |
| 	 */
 | |
| 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
 | |
| 	vma->vm_ops = &hugetlb_vm_ops;
 | |
| 
 | |
| 	ret = seal_check_write(info->seals, vma);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * page based offset in vm_pgoff could be sufficiently large to
 | |
| 	 * overflow a loff_t when converted to byte offset.  This can
 | |
| 	 * only happen on architectures where sizeof(loff_t) ==
 | |
| 	 * sizeof(unsigned long).  So, only check in those instances.
 | |
| 	 */
 | |
| 	if (sizeof(unsigned long) == sizeof(loff_t)) {
 | |
| 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* must be huge page aligned */
 | |
| 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
 | |
| 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 | |
| 	/* check for overflow */
 | |
| 	if (len < vma_len)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	inode_lock(inode);
 | |
| 	file_accessed(file);
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	if (!hugetlb_reserve_pages(inode,
 | |
| 				vma->vm_pgoff >> huge_page_order(h),
 | |
| 				len >> huge_page_shift(h), vma,
 | |
| 				vma->vm_flags))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = 0;
 | |
| 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
 | |
| 		i_size_write(inode, len);
 | |
| out:
 | |
| 	inode_unlock(inode);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called under mmap_write_lock(mm).
 | |
|  */
 | |
| 
 | |
| static unsigned long
 | |
| hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
 | |
| 		unsigned long len, unsigned long pgoff, unsigned long flags)
 | |
| {
 | |
| 	struct hstate *h = hstate_file(file);
 | |
| 	struct vm_unmapped_area_info info;
 | |
| 
 | |
| 	info.flags = 0;
 | |
| 	info.length = len;
 | |
| 	info.low_limit = current->mm->mmap_base;
 | |
| 	info.high_limit = arch_get_mmap_end(addr, len, flags);
 | |
| 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 | |
| 	info.align_offset = 0;
 | |
| 	return vm_unmapped_area(&info);
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
 | |
| 		unsigned long len, unsigned long pgoff, unsigned long flags)
 | |
| {
 | |
| 	struct hstate *h = hstate_file(file);
 | |
| 	struct vm_unmapped_area_info info;
 | |
| 
 | |
| 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
 | |
| 	info.length = len;
 | |
| 	info.low_limit = PAGE_SIZE;
 | |
| 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
 | |
| 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 | |
| 	info.align_offset = 0;
 | |
| 	addr = vm_unmapped_area(&info);
 | |
| 
 | |
| 	/*
 | |
| 	 * A failed mmap() very likely causes application failure,
 | |
| 	 * so fall back to the bottom-up function here. This scenario
 | |
| 	 * can happen with large stack limits and large mmap()
 | |
| 	 * allocations.
 | |
| 	 */
 | |
| 	if (unlikely(offset_in_page(addr))) {
 | |
| 		VM_BUG_ON(addr != -ENOMEM);
 | |
| 		info.flags = 0;
 | |
| 		info.low_limit = current->mm->mmap_base;
 | |
| 		info.high_limit = arch_get_mmap_end(addr, len, flags);
 | |
| 		addr = vm_unmapped_area(&info);
 | |
| 	}
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 | |
| 				  unsigned long len, unsigned long pgoff,
 | |
| 				  unsigned long flags)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct hstate *h = hstate_file(file);
 | |
| 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
 | |
| 
 | |
| 	if (len & ~huge_page_mask(h))
 | |
| 		return -EINVAL;
 | |
| 	if (len > TASK_SIZE)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (flags & MAP_FIXED) {
 | |
| 		if (prepare_hugepage_range(file, addr, len))
 | |
| 			return -EINVAL;
 | |
| 		return addr;
 | |
| 	}
 | |
| 
 | |
| 	if (addr) {
 | |
| 		addr = ALIGN(addr, huge_page_size(h));
 | |
| 		vma = find_vma(mm, addr);
 | |
| 		if (mmap_end - len >= addr &&
 | |
| 		    (!vma || addr + len <= vm_start_gap(vma)))
 | |
| 			return addr;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
 | |
| 	 * If architectures have special needs, they should define their own
 | |
| 	 * version of hugetlb_get_unmapped_area.
 | |
| 	 */
 | |
| 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
 | |
| 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
 | |
| 				pgoff, flags);
 | |
| 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
 | |
| 			pgoff, flags);
 | |
| }
 | |
| 
 | |
| #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 | |
| static unsigned long
 | |
| hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 | |
| 			  unsigned long len, unsigned long pgoff,
 | |
| 			  unsigned long flags)
 | |
| {
 | |
| 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
 | |
|  * Returns the maximum number of bytes one can read without touching the 1st raw
 | |
|  * HWPOISON subpage.
 | |
|  *
 | |
|  * The implementation borrows the iteration logic from copy_page_to_iter*.
 | |
|  */
 | |
| static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
 | |
| {
 | |
| 	size_t n = 0;
 | |
| 	size_t res = 0;
 | |
| 
 | |
| 	/* First subpage to start the loop. */
 | |
| 	page = nth_page(page, offset / PAGE_SIZE);
 | |
| 	offset %= PAGE_SIZE;
 | |
| 	while (1) {
 | |
| 		if (is_raw_hwpoison_page_in_hugepage(page))
 | |
| 			break;
 | |
| 
 | |
| 		/* Safe to read n bytes without touching HWPOISON subpage. */
 | |
| 		n = min(bytes, (size_t)PAGE_SIZE - offset);
 | |
| 		res += n;
 | |
| 		bytes -= n;
 | |
| 		if (!bytes || !n)
 | |
| 			break;
 | |
| 		offset += n;
 | |
| 		if (offset == PAGE_SIZE) {
 | |
| 			page = nth_page(page, 1);
 | |
| 			offset = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Support for read() - Find the page attached to f_mapping and copy out the
 | |
|  * data. This provides functionality similar to filemap_read().
 | |
|  */
 | |
| static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct hstate *h = hstate_file(file);
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
 | |
| 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
 | |
| 	unsigned long end_index;
 | |
| 	loff_t isize;
 | |
| 	ssize_t retval = 0;
 | |
| 
 | |
| 	while (iov_iter_count(to)) {
 | |
| 		struct folio *folio;
 | |
| 		size_t nr, copied, want;
 | |
| 
 | |
| 		/* nr is the maximum number of bytes to copy from this page */
 | |
| 		nr = huge_page_size(h);
 | |
| 		isize = i_size_read(inode);
 | |
| 		if (!isize)
 | |
| 			break;
 | |
| 		end_index = (isize - 1) >> huge_page_shift(h);
 | |
| 		if (index > end_index)
 | |
| 			break;
 | |
| 		if (index == end_index) {
 | |
| 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
 | |
| 			if (nr <= offset)
 | |
| 				break;
 | |
| 		}
 | |
| 		nr = nr - offset;
 | |
| 
 | |
| 		/* Find the folio */
 | |
| 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
 | |
| 		if (IS_ERR(folio)) {
 | |
| 			/*
 | |
| 			 * We have a HOLE, zero out the user-buffer for the
 | |
| 			 * length of the hole or request.
 | |
| 			 */
 | |
| 			copied = iov_iter_zero(nr, to);
 | |
| 		} else {
 | |
| 			folio_unlock(folio);
 | |
| 
 | |
| 			if (!folio_test_has_hwpoisoned(folio))
 | |
| 				want = nr;
 | |
| 			else {
 | |
| 				/*
 | |
| 				 * Adjust how many bytes safe to read without
 | |
| 				 * touching the 1st raw HWPOISON subpage after
 | |
| 				 * offset.
 | |
| 				 */
 | |
| 				want = adjust_range_hwpoison(&folio->page, offset, nr);
 | |
| 				if (want == 0) {
 | |
| 					folio_put(folio);
 | |
| 					retval = -EIO;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * We have the folio, copy it to user space buffer.
 | |
| 			 */
 | |
| 			copied = copy_folio_to_iter(folio, offset, want, to);
 | |
| 			folio_put(folio);
 | |
| 		}
 | |
| 		offset += copied;
 | |
| 		retval += copied;
 | |
| 		if (copied != nr && iov_iter_count(to)) {
 | |
| 			if (!retval)
 | |
| 				retval = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 		index += offset >> huge_page_shift(h);
 | |
| 		offset &= ~huge_page_mask(h);
 | |
| 	}
 | |
| 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_write_begin(struct file *file,
 | |
| 			struct address_space *mapping,
 | |
| 			loff_t pos, unsigned len,
 | |
| 			struct page **pagep, void **fsdata)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
 | |
| 			loff_t pos, unsigned len, unsigned copied,
 | |
| 			struct page *page, void *fsdata)
 | |
| {
 | |
| 	BUG();
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static void hugetlb_delete_from_page_cache(struct folio *folio)
 | |
| {
 | |
| 	folio_clear_dirty(folio);
 | |
| 	folio_clear_uptodate(folio);
 | |
| 	filemap_remove_folio(folio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
 | |
|  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
 | |
|  * mutex for the page in the mapping.  So, we can not race with page being
 | |
|  * faulted into the vma.
 | |
|  */
 | |
| static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
 | |
| 				unsigned long addr, struct page *page)
 | |
| {
 | |
| 	pte_t *ptep, pte;
 | |
| 
 | |
| 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
 | |
| 	if (!ptep)
 | |
| 		return false;
 | |
| 
 | |
| 	pte = huge_ptep_get(ptep);
 | |
| 	if (huge_pte_none(pte) || !pte_present(pte))
 | |
| 		return false;
 | |
| 
 | |
| 	if (pte_page(pte) == page)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
 | |
|  * No, because the interval tree returns us only those vmas
 | |
|  * which overlap the truncated area starting at pgoff,
 | |
|  * and no vma on a 32-bit arch can span beyond the 4GB.
 | |
|  */
 | |
| static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
 | |
| {
 | |
| 	unsigned long offset = 0;
 | |
| 
 | |
| 	if (vma->vm_pgoff < start)
 | |
| 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
 | |
| 
 | |
| 	return vma->vm_start + offset;
 | |
| }
 | |
| 
 | |
| static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
 | |
| {
 | |
| 	unsigned long t_end;
 | |
| 
 | |
| 	if (!end)
 | |
| 		return vma->vm_end;
 | |
| 
 | |
| 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
 | |
| 	if (t_end > vma->vm_end)
 | |
| 		t_end = vma->vm_end;
 | |
| 	return t_end;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
 | |
|  * this folio can be created while executing the routine.
 | |
|  */
 | |
| static void hugetlb_unmap_file_folio(struct hstate *h,
 | |
| 					struct address_space *mapping,
 | |
| 					struct folio *folio, pgoff_t index)
 | |
| {
 | |
| 	struct rb_root_cached *root = &mapping->i_mmap;
 | |
| 	struct hugetlb_vma_lock *vma_lock;
 | |
| 	struct page *page = &folio->page;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	unsigned long v_start;
 | |
| 	unsigned long v_end;
 | |
| 	pgoff_t start, end;
 | |
| 
 | |
| 	start = index * pages_per_huge_page(h);
 | |
| 	end = (index + 1) * pages_per_huge_page(h);
 | |
| 
 | |
| 	i_mmap_lock_write(mapping);
 | |
| retry:
 | |
| 	vma_lock = NULL;
 | |
| 	vma_interval_tree_foreach(vma, root, start, end - 1) {
 | |
| 		v_start = vma_offset_start(vma, start);
 | |
| 		v_end = vma_offset_end(vma, end);
 | |
| 
 | |
| 		if (!hugetlb_vma_maps_page(vma, v_start, page))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!hugetlb_vma_trylock_write(vma)) {
 | |
| 			vma_lock = vma->vm_private_data;
 | |
| 			/*
 | |
| 			 * If we can not get vma lock, we need to drop
 | |
| 			 * immap_sema and take locks in order.  First,
 | |
| 			 * take a ref on the vma_lock structure so that
 | |
| 			 * we can be guaranteed it will not go away when
 | |
| 			 * dropping immap_sema.
 | |
| 			 */
 | |
| 			kref_get(&vma_lock->refs);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		unmap_hugepage_range(vma, v_start, v_end, NULL,
 | |
| 				     ZAP_FLAG_DROP_MARKER);
 | |
| 		hugetlb_vma_unlock_write(vma);
 | |
| 	}
 | |
| 
 | |
| 	i_mmap_unlock_write(mapping);
 | |
| 
 | |
| 	if (vma_lock) {
 | |
| 		/*
 | |
| 		 * Wait on vma_lock.  We know it is still valid as we have
 | |
| 		 * a reference.  We must 'open code' vma locking as we do
 | |
| 		 * not know if vma_lock is still attached to vma.
 | |
| 		 */
 | |
| 		down_write(&vma_lock->rw_sema);
 | |
| 		i_mmap_lock_write(mapping);
 | |
| 
 | |
| 		vma = vma_lock->vma;
 | |
| 		if (!vma) {
 | |
| 			/*
 | |
| 			 * If lock is no longer attached to vma, then just
 | |
| 			 * unlock, drop our reference and retry looking for
 | |
| 			 * other vmas.
 | |
| 			 */
 | |
| 			up_write(&vma_lock->rw_sema);
 | |
| 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * vma_lock is still attached to vma.  Check to see if vma
 | |
| 		 * still maps page and if so, unmap.
 | |
| 		 */
 | |
| 		v_start = vma_offset_start(vma, start);
 | |
| 		v_end = vma_offset_end(vma, end);
 | |
| 		if (hugetlb_vma_maps_page(vma, v_start, page))
 | |
| 			unmap_hugepage_range(vma, v_start, v_end, NULL,
 | |
| 					     ZAP_FLAG_DROP_MARKER);
 | |
| 
 | |
| 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
 | |
| 		hugetlb_vma_unlock_write(vma);
 | |
| 
 | |
| 		goto retry;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
 | |
| 		      zap_flags_t zap_flags)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	/*
 | |
| 	 * end == 0 indicates that the entire range after start should be
 | |
| 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
 | |
| 	 * an inclusive "last".
 | |
| 	 */
 | |
| 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
 | |
| 		unsigned long v_start;
 | |
| 		unsigned long v_end;
 | |
| 
 | |
| 		if (!hugetlb_vma_trylock_write(vma))
 | |
| 			continue;
 | |
| 
 | |
| 		v_start = vma_offset_start(vma, start);
 | |
| 		v_end = vma_offset_end(vma, end);
 | |
| 
 | |
| 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * Note that vma lock only exists for shared/non-private
 | |
| 		 * vmas.  Therefore, lock is not held when calling
 | |
| 		 * unmap_hugepage_range for private vmas.
 | |
| 		 */
 | |
| 		hugetlb_vma_unlock_write(vma);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with hugetlb fault mutex held.
 | |
|  * Returns true if page was actually removed, false otherwise.
 | |
|  */
 | |
| static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
 | |
| 					struct address_space *mapping,
 | |
| 					struct folio *folio, pgoff_t index,
 | |
| 					bool truncate_op)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * If folio is mapped, it was faulted in after being
 | |
| 	 * unmapped in caller.  Unmap (again) while holding
 | |
| 	 * the fault mutex.  The mutex will prevent faults
 | |
| 	 * until we finish removing the folio.
 | |
| 	 */
 | |
| 	if (unlikely(folio_mapped(folio)))
 | |
| 		hugetlb_unmap_file_folio(h, mapping, folio, index);
 | |
| 
 | |
| 	folio_lock(folio);
 | |
| 	/*
 | |
| 	 * We must remove the folio from page cache before removing
 | |
| 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
 | |
| 	 * rare out of memory conditions, removal of the region/reserve
 | |
| 	 * map could fail.  Correspondingly, the subpool and global
 | |
| 	 * reserve usage count can need to be adjusted.
 | |
| 	 */
 | |
| 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
 | |
| 	hugetlb_delete_from_page_cache(folio);
 | |
| 	ret = true;
 | |
| 	if (!truncate_op) {
 | |
| 		if (unlikely(hugetlb_unreserve_pages(inode, index,
 | |
| 							index + 1, 1)))
 | |
| 			hugetlb_fix_reserve_counts(inode);
 | |
| 	}
 | |
| 
 | |
| 	folio_unlock(folio);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove_inode_hugepages handles two distinct cases: truncation and hole
 | |
|  * punch.  There are subtle differences in operation for each case.
 | |
|  *
 | |
|  * truncation is indicated by end of range being LLONG_MAX
 | |
|  *	In this case, we first scan the range and release found pages.
 | |
|  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
 | |
|  *	maps and global counts.  Page faults can race with truncation.
 | |
|  *	During faults, hugetlb_no_page() checks i_size before page allocation,
 | |
|  *	and again after obtaining page table lock.  It will 'back out'
 | |
|  *	allocations in the truncated range.
 | |
|  * hole punch is indicated if end is not LLONG_MAX
 | |
|  *	In the hole punch case we scan the range and release found pages.
 | |
|  *	Only when releasing a page is the associated region/reserve map
 | |
|  *	deleted.  The region/reserve map for ranges without associated
 | |
|  *	pages are not modified.  Page faults can race with hole punch.
 | |
|  *	This is indicated if we find a mapped page.
 | |
|  * Note: If the passed end of range value is beyond the end of file, but
 | |
|  * not LLONG_MAX this routine still performs a hole punch operation.
 | |
|  */
 | |
| static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
 | |
| 				   loff_t lend)
 | |
| {
 | |
| 	struct hstate *h = hstate_inode(inode);
 | |
| 	struct address_space *mapping = &inode->i_data;
 | |
| 	const pgoff_t end = lend >> PAGE_SHIFT;
 | |
| 	struct folio_batch fbatch;
 | |
| 	pgoff_t next, index;
 | |
| 	int i, freed = 0;
 | |
| 	bool truncate_op = (lend == LLONG_MAX);
 | |
| 
 | |
| 	folio_batch_init(&fbatch);
 | |
| 	next = lstart >> PAGE_SHIFT;
 | |
| 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
 | |
| 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
 | |
| 			struct folio *folio = fbatch.folios[i];
 | |
| 			u32 hash = 0;
 | |
| 
 | |
| 			index = folio->index >> huge_page_order(h);
 | |
| 			hash = hugetlb_fault_mutex_hash(mapping, index);
 | |
| 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
 | |
| 
 | |
| 			/*
 | |
| 			 * Remove folio that was part of folio_batch.
 | |
| 			 */
 | |
| 			if (remove_inode_single_folio(h, inode, mapping, folio,
 | |
| 							index, truncate_op))
 | |
| 				freed++;
 | |
| 
 | |
| 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 		}
 | |
| 		folio_batch_release(&fbatch);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	if (truncate_op)
 | |
| 		(void)hugetlb_unreserve_pages(inode,
 | |
| 				lstart >> huge_page_shift(h),
 | |
| 				LONG_MAX, freed);
 | |
| }
 | |
| 
 | |
| static void hugetlbfs_evict_inode(struct inode *inode)
 | |
| {
 | |
| 	struct resv_map *resv_map;
 | |
| 
 | |
| 	remove_inode_hugepages(inode, 0, LLONG_MAX);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the resv_map from the address space embedded in the inode.
 | |
| 	 * This is the address space which points to any resv_map allocated
 | |
| 	 * at inode creation time.  If this is a device special inode,
 | |
| 	 * i_mapping may not point to the original address space.
 | |
| 	 */
 | |
| 	resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
 | |
| 	/* Only regular and link inodes have associated reserve maps */
 | |
| 	if (resv_map)
 | |
| 		resv_map_release(&resv_map->refs);
 | |
| 	clear_inode(inode);
 | |
| }
 | |
| 
 | |
| static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
 | |
| {
 | |
| 	pgoff_t pgoff;
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	struct hstate *h = hstate_inode(inode);
 | |
| 
 | |
| 	BUG_ON(offset & ~huge_page_mask(h));
 | |
| 	pgoff = offset >> PAGE_SHIFT;
 | |
| 
 | |
| 	i_size_write(inode, offset);
 | |
| 	i_mmap_lock_write(mapping);
 | |
| 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 | |
| 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
 | |
| 				      ZAP_FLAG_DROP_MARKER);
 | |
| 	i_mmap_unlock_write(mapping);
 | |
| 	remove_inode_hugepages(inode, offset, LLONG_MAX);
 | |
| }
 | |
| 
 | |
| static void hugetlbfs_zero_partial_page(struct hstate *h,
 | |
| 					struct address_space *mapping,
 | |
| 					loff_t start,
 | |
| 					loff_t end)
 | |
| {
 | |
| 	pgoff_t idx = start >> huge_page_shift(h);
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
 | |
| 	if (IS_ERR(folio))
 | |
| 		return;
 | |
| 
 | |
| 	start = start & ~huge_page_mask(h);
 | |
| 	end = end & ~huge_page_mask(h);
 | |
| 	if (!end)
 | |
| 		end = huge_page_size(h);
 | |
| 
 | |
| 	folio_zero_segment(folio, (size_t)start, (size_t)end);
 | |
| 
 | |
| 	folio_unlock(folio);
 | |
| 	folio_put(folio);
 | |
| }
 | |
| 
 | |
| static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 | |
| {
 | |
| 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	struct hstate *h = hstate_inode(inode);
 | |
| 	loff_t hpage_size = huge_page_size(h);
 | |
| 	loff_t hole_start, hole_end;
 | |
| 
 | |
| 	/*
 | |
| 	 * hole_start and hole_end indicate the full pages within the hole.
 | |
| 	 */
 | |
| 	hole_start = round_up(offset, hpage_size);
 | |
| 	hole_end = round_down(offset + len, hpage_size);
 | |
| 
 | |
| 	inode_lock(inode);
 | |
| 
 | |
| 	/* protected by i_rwsem */
 | |
| 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
 | |
| 		inode_unlock(inode);
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	i_mmap_lock_write(mapping);
 | |
| 
 | |
| 	/* If range starts before first full page, zero partial page. */
 | |
| 	if (offset < hole_start)
 | |
| 		hugetlbfs_zero_partial_page(h, mapping,
 | |
| 				offset, min(offset + len, hole_start));
 | |
| 
 | |
| 	/* Unmap users of full pages in the hole. */
 | |
| 	if (hole_end > hole_start) {
 | |
| 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 | |
| 			hugetlb_vmdelete_list(&mapping->i_mmap,
 | |
| 					      hole_start >> PAGE_SHIFT,
 | |
| 					      hole_end >> PAGE_SHIFT, 0);
 | |
| 	}
 | |
| 
 | |
| 	/* If range extends beyond last full page, zero partial page. */
 | |
| 	if ((offset + len) > hole_end && (offset + len) > hole_start)
 | |
| 		hugetlbfs_zero_partial_page(h, mapping,
 | |
| 				hole_end, offset + len);
 | |
| 
 | |
| 	i_mmap_unlock_write(mapping);
 | |
| 
 | |
| 	/* Remove full pages from the file. */
 | |
| 	if (hole_end > hole_start)
 | |
| 		remove_inode_hugepages(inode, hole_start, hole_end);
 | |
| 
 | |
| 	inode_unlock(inode);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
 | |
| 				loff_t len)
 | |
| {
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	struct hstate *h = hstate_inode(inode);
 | |
| 	struct vm_area_struct pseudo_vma;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	loff_t hpage_size = huge_page_size(h);
 | |
| 	unsigned long hpage_shift = huge_page_shift(h);
 | |
| 	pgoff_t start, index, end;
 | |
| 	int error;
 | |
| 	u32 hash;
 | |
| 
 | |
| 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (mode & FALLOC_FL_PUNCH_HOLE)
 | |
| 		return hugetlbfs_punch_hole(inode, offset, len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Default preallocate case.
 | |
| 	 * For this range, start is rounded down and end is rounded up
 | |
| 	 * as well as being converted to page offsets.
 | |
| 	 */
 | |
| 	start = offset >> hpage_shift;
 | |
| 	end = (offset + len + hpage_size - 1) >> hpage_shift;
 | |
| 
 | |
| 	inode_lock(inode);
 | |
| 
 | |
| 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
 | |
| 	error = inode_newsize_ok(inode, offset + len);
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
 | |
| 		error = -EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize a pseudo vma as this is required by the huge page
 | |
| 	 * allocation routines.
 | |
| 	 */
 | |
| 	vma_init(&pseudo_vma, mm);
 | |
| 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 | |
| 	pseudo_vma.vm_file = file;
 | |
| 
 | |
| 	for (index = start; index < end; index++) {
 | |
| 		/*
 | |
| 		 * This is supposed to be the vaddr where the page is being
 | |
| 		 * faulted in, but we have no vaddr here.
 | |
| 		 */
 | |
| 		struct folio *folio;
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		/*
 | |
| 		 * fallocate(2) manpage permits EINTR; we may have been
 | |
| 		 * interrupted because we are using up too much memory.
 | |
| 		 */
 | |
| 		if (signal_pending(current)) {
 | |
| 			error = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* addr is the offset within the file (zero based) */
 | |
| 		addr = index * hpage_size;
 | |
| 
 | |
| 		/* mutex taken here, fault path and hole punch */
 | |
| 		hash = hugetlb_fault_mutex_hash(mapping, index);
 | |
| 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
 | |
| 
 | |
| 		/* See if already present in mapping to avoid alloc/free */
 | |
| 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
 | |
| 		if (!IS_ERR(folio)) {
 | |
| 			folio_put(folio);
 | |
| 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Allocate folio without setting the avoid_reserve argument.
 | |
| 		 * There certainly are no reserves associated with the
 | |
| 		 * pseudo_vma.  However, there could be shared mappings with
 | |
| 		 * reserves for the file at the inode level.  If we fallocate
 | |
| 		 * folios in these areas, we need to consume the reserves
 | |
| 		 * to keep reservation accounting consistent.
 | |
| 		 */
 | |
| 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
 | |
| 		if (IS_ERR(folio)) {
 | |
| 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 			error = PTR_ERR(folio);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
 | |
| 		__folio_mark_uptodate(folio);
 | |
| 		error = hugetlb_add_to_page_cache(folio, mapping, index);
 | |
| 		if (unlikely(error)) {
 | |
| 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
 | |
| 			folio_put(folio);
 | |
| 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 
 | |
| 		folio_set_hugetlb_migratable(folio);
 | |
| 		/*
 | |
| 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
 | |
| 		 * folio_put() due to reference from alloc_hugetlb_folio()
 | |
| 		 */
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 	}
 | |
| 
 | |
| 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
 | |
| 		i_size_write(inode, offset + len);
 | |
| 	inode_set_ctime_current(inode);
 | |
| out:
 | |
| 	inode_unlock(inode);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_setattr(struct mnt_idmap *idmap,
 | |
| 			     struct dentry *dentry, struct iattr *attr)
 | |
| {
 | |
| 	struct inode *inode = d_inode(dentry);
 | |
| 	struct hstate *h = hstate_inode(inode);
 | |
| 	int error;
 | |
| 	unsigned int ia_valid = attr->ia_valid;
 | |
| 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | |
| 
 | |
| 	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (ia_valid & ATTR_SIZE) {
 | |
| 		loff_t oldsize = inode->i_size;
 | |
| 		loff_t newsize = attr->ia_size;
 | |
| 
 | |
| 		if (newsize & ~huge_page_mask(h))
 | |
| 			return -EINVAL;
 | |
| 		/* protected by i_rwsem */
 | |
| 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 | |
| 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 | |
| 			return -EPERM;
 | |
| 		hugetlb_vmtruncate(inode, newsize);
 | |
| 	}
 | |
| 
 | |
| 	setattr_copy(&nop_mnt_idmap, inode, attr);
 | |
| 	mark_inode_dirty(inode);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct inode *hugetlbfs_get_root(struct super_block *sb,
 | |
| 					struct hugetlbfs_fs_context *ctx)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	inode = new_inode(sb);
 | |
| 	if (inode) {
 | |
| 		inode->i_ino = get_next_ino();
 | |
| 		inode->i_mode = S_IFDIR | ctx->mode;
 | |
| 		inode->i_uid = ctx->uid;
 | |
| 		inode->i_gid = ctx->gid;
 | |
| 		simple_inode_init_ts(inode);
 | |
| 		inode->i_op = &hugetlbfs_dir_inode_operations;
 | |
| 		inode->i_fop = &simple_dir_operations;
 | |
| 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
 | |
| 		inc_nlink(inode);
 | |
| 		lockdep_annotate_inode_mutex_key(inode);
 | |
| 	}
 | |
| 	return inode;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
 | |
|  * be taken from reclaim -- unlike regular filesystems. This needs an
 | |
|  * annotation because huge_pmd_share() does an allocation under hugetlb's
 | |
|  * i_mmap_rwsem.
 | |
|  */
 | |
| static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
 | |
| 
 | |
| static struct inode *hugetlbfs_get_inode(struct super_block *sb,
 | |
| 					struct inode *dir,
 | |
| 					umode_t mode, dev_t dev)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	struct resv_map *resv_map = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve maps are only needed for inodes that can have associated
 | |
| 	 * page allocations.
 | |
| 	 */
 | |
| 	if (S_ISREG(mode) || S_ISLNK(mode)) {
 | |
| 		resv_map = resv_map_alloc();
 | |
| 		if (!resv_map)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	inode = new_inode(sb);
 | |
| 	if (inode) {
 | |
| 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | |
| 
 | |
| 		inode->i_ino = get_next_ino();
 | |
| 		inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
 | |
| 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
 | |
| 				&hugetlbfs_i_mmap_rwsem_key);
 | |
| 		inode->i_mapping->a_ops = &hugetlbfs_aops;
 | |
| 		simple_inode_init_ts(inode);
 | |
| 		inode->i_mapping->i_private_data = resv_map;
 | |
| 		info->seals = F_SEAL_SEAL;
 | |
| 		switch (mode & S_IFMT) {
 | |
| 		default:
 | |
| 			init_special_inode(inode, mode, dev);
 | |
| 			break;
 | |
| 		case S_IFREG:
 | |
| 			inode->i_op = &hugetlbfs_inode_operations;
 | |
| 			inode->i_fop = &hugetlbfs_file_operations;
 | |
| 			break;
 | |
| 		case S_IFDIR:
 | |
| 			inode->i_op = &hugetlbfs_dir_inode_operations;
 | |
| 			inode->i_fop = &simple_dir_operations;
 | |
| 
 | |
| 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
 | |
| 			inc_nlink(inode);
 | |
| 			break;
 | |
| 		case S_IFLNK:
 | |
| 			inode->i_op = &page_symlink_inode_operations;
 | |
| 			inode_nohighmem(inode);
 | |
| 			break;
 | |
| 		}
 | |
| 		lockdep_annotate_inode_mutex_key(inode);
 | |
| 	} else {
 | |
| 		if (resv_map)
 | |
| 			kref_put(&resv_map->refs, resv_map_release);
 | |
| 	}
 | |
| 
 | |
| 	return inode;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * File creation. Allocate an inode, and we're done..
 | |
|  */
 | |
| static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
 | |
| 			   struct dentry *dentry, umode_t mode, dev_t dev)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
 | |
| 	if (!inode)
 | |
| 		return -ENOSPC;
 | |
| 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
 | |
| 	d_instantiate(dentry, inode);
 | |
| 	dget(dentry);/* Extra count - pin the dentry in core */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
 | |
| 			   struct dentry *dentry, umode_t mode)
 | |
| {
 | |
| 	int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry,
 | |
| 				     mode | S_IFDIR, 0);
 | |
| 	if (!retval)
 | |
| 		inc_nlink(dir);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_create(struct mnt_idmap *idmap,
 | |
| 			    struct inode *dir, struct dentry *dentry,
 | |
| 			    umode_t mode, bool excl)
 | |
| {
 | |
| 	return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0);
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
 | |
| 			     struct inode *dir, struct file *file,
 | |
| 			     umode_t mode)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
 | |
| 	if (!inode)
 | |
| 		return -ENOSPC;
 | |
| 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
 | |
| 	d_tmpfile(file, inode);
 | |
| 	return finish_open_simple(file, 0);
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_symlink(struct mnt_idmap *idmap,
 | |
| 			     struct inode *dir, struct dentry *dentry,
 | |
| 			     const char *symname)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	int error = -ENOSPC;
 | |
| 
 | |
| 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
 | |
| 	if (inode) {
 | |
| 		int l = strlen(symname)+1;
 | |
| 		error = page_symlink(inode, symname, l);
 | |
| 		if (!error) {
 | |
| 			d_instantiate(dentry, inode);
 | |
| 			dget(dentry);
 | |
| 		} else
 | |
| 			iput(inode);
 | |
| 	}
 | |
| 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MIGRATION
 | |
| static int hugetlbfs_migrate_folio(struct address_space *mapping,
 | |
| 				struct folio *dst, struct folio *src,
 | |
| 				enum migrate_mode mode)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
 | |
| 	if (rc != MIGRATEPAGE_SUCCESS)
 | |
| 		return rc;
 | |
| 
 | |
| 	if (hugetlb_folio_subpool(src)) {
 | |
| 		hugetlb_set_folio_subpool(dst,
 | |
| 					hugetlb_folio_subpool(src));
 | |
| 		hugetlb_set_folio_subpool(src, NULL);
 | |
| 	}
 | |
| 
 | |
| 	if (mode != MIGRATE_SYNC_NO_COPY)
 | |
| 		folio_migrate_copy(dst, src);
 | |
| 	else
 | |
| 		folio_migrate_flags(dst, src);
 | |
| 
 | |
| 	return MIGRATEPAGE_SUCCESS;
 | |
| }
 | |
| #else
 | |
| #define hugetlbfs_migrate_folio NULL
 | |
| #endif
 | |
| 
 | |
| static int hugetlbfs_error_remove_folio(struct address_space *mapping,
 | |
| 				struct folio *folio)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Display the mount options in /proc/mounts.
 | |
|  */
 | |
| static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
 | |
| {
 | |
| 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
 | |
| 	struct hugepage_subpool *spool = sbinfo->spool;
 | |
| 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
 | |
| 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
 | |
| 	char mod;
 | |
| 
 | |
| 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
 | |
| 		seq_printf(m, ",uid=%u",
 | |
| 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
 | |
| 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
 | |
| 		seq_printf(m, ",gid=%u",
 | |
| 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
 | |
| 	if (sbinfo->mode != 0755)
 | |
| 		seq_printf(m, ",mode=%o", sbinfo->mode);
 | |
| 	if (sbinfo->max_inodes != -1)
 | |
| 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
 | |
| 
 | |
| 	hpage_size /= 1024;
 | |
| 	mod = 'K';
 | |
| 	if (hpage_size >= 1024) {
 | |
| 		hpage_size /= 1024;
 | |
| 		mod = 'M';
 | |
| 	}
 | |
| 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
 | |
| 	if (spool) {
 | |
| 		if (spool->max_hpages != -1)
 | |
| 			seq_printf(m, ",size=%llu",
 | |
| 				   (unsigned long long)spool->max_hpages << hpage_shift);
 | |
| 		if (spool->min_hpages != -1)
 | |
| 			seq_printf(m, ",min_size=%llu",
 | |
| 				   (unsigned long long)spool->min_hpages << hpage_shift);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 | |
| {
 | |
| 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
 | |
| 	struct hstate *h = hstate_inode(d_inode(dentry));
 | |
| 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
 | |
| 
 | |
| 	buf->f_fsid = u64_to_fsid(id);
 | |
| 	buf->f_type = HUGETLBFS_MAGIC;
 | |
| 	buf->f_bsize = huge_page_size(h);
 | |
| 	if (sbinfo) {
 | |
| 		spin_lock(&sbinfo->stat_lock);
 | |
| 		/* If no limits set, just report 0 or -1 for max/free/used
 | |
| 		 * blocks, like simple_statfs() */
 | |
| 		if (sbinfo->spool) {
 | |
| 			long free_pages;
 | |
| 
 | |
| 			spin_lock_irq(&sbinfo->spool->lock);
 | |
| 			buf->f_blocks = sbinfo->spool->max_hpages;
 | |
| 			free_pages = sbinfo->spool->max_hpages
 | |
| 				- sbinfo->spool->used_hpages;
 | |
| 			buf->f_bavail = buf->f_bfree = free_pages;
 | |
| 			spin_unlock_irq(&sbinfo->spool->lock);
 | |
| 			buf->f_files = sbinfo->max_inodes;
 | |
| 			buf->f_ffree = sbinfo->free_inodes;
 | |
| 		}
 | |
| 		spin_unlock(&sbinfo->stat_lock);
 | |
| 	}
 | |
| 	buf->f_namelen = NAME_MAX;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hugetlbfs_put_super(struct super_block *sb)
 | |
| {
 | |
| 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
 | |
| 
 | |
| 	if (sbi) {
 | |
| 		sb->s_fs_info = NULL;
 | |
| 
 | |
| 		if (sbi->spool)
 | |
| 			hugepage_put_subpool(sbi->spool);
 | |
| 
 | |
| 		kfree(sbi);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
 | |
| {
 | |
| 	if (sbinfo->free_inodes >= 0) {
 | |
| 		spin_lock(&sbinfo->stat_lock);
 | |
| 		if (unlikely(!sbinfo->free_inodes)) {
 | |
| 			spin_unlock(&sbinfo->stat_lock);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		sbinfo->free_inodes--;
 | |
| 		spin_unlock(&sbinfo->stat_lock);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
 | |
| {
 | |
| 	if (sbinfo->free_inodes >= 0) {
 | |
| 		spin_lock(&sbinfo->stat_lock);
 | |
| 		sbinfo->free_inodes++;
 | |
| 		spin_unlock(&sbinfo->stat_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct kmem_cache *hugetlbfs_inode_cachep;
 | |
| 
 | |
| static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
 | |
| {
 | |
| 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
 | |
| 	struct hugetlbfs_inode_info *p;
 | |
| 
 | |
| 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
 | |
| 		return NULL;
 | |
| 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
 | |
| 	if (unlikely(!p)) {
 | |
| 		hugetlbfs_inc_free_inodes(sbinfo);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return &p->vfs_inode;
 | |
| }
 | |
| 
 | |
| static void hugetlbfs_free_inode(struct inode *inode)
 | |
| {
 | |
| 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
 | |
| }
 | |
| 
 | |
| static void hugetlbfs_destroy_inode(struct inode *inode)
 | |
| {
 | |
| 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
 | |
| }
 | |
| 
 | |
| static const struct address_space_operations hugetlbfs_aops = {
 | |
| 	.write_begin	= hugetlbfs_write_begin,
 | |
| 	.write_end	= hugetlbfs_write_end,
 | |
| 	.dirty_folio	= noop_dirty_folio,
 | |
| 	.migrate_folio  = hugetlbfs_migrate_folio,
 | |
| 	.error_remove_folio	= hugetlbfs_error_remove_folio,
 | |
| };
 | |
| 
 | |
| 
 | |
| static void init_once(void *foo)
 | |
| {
 | |
| 	struct hugetlbfs_inode_info *ei = foo;
 | |
| 
 | |
| 	inode_init_once(&ei->vfs_inode);
 | |
| }
 | |
| 
 | |
| const struct file_operations hugetlbfs_file_operations = {
 | |
| 	.read_iter		= hugetlbfs_read_iter,
 | |
| 	.mmap			= hugetlbfs_file_mmap,
 | |
| 	.fsync			= noop_fsync,
 | |
| 	.get_unmapped_area	= hugetlb_get_unmapped_area,
 | |
| 	.llseek			= default_llseek,
 | |
| 	.fallocate		= hugetlbfs_fallocate,
 | |
| };
 | |
| 
 | |
| static const struct inode_operations hugetlbfs_dir_inode_operations = {
 | |
| 	.create		= hugetlbfs_create,
 | |
| 	.lookup		= simple_lookup,
 | |
| 	.link		= simple_link,
 | |
| 	.unlink		= simple_unlink,
 | |
| 	.symlink	= hugetlbfs_symlink,
 | |
| 	.mkdir		= hugetlbfs_mkdir,
 | |
| 	.rmdir		= simple_rmdir,
 | |
| 	.mknod		= hugetlbfs_mknod,
 | |
| 	.rename		= simple_rename,
 | |
| 	.setattr	= hugetlbfs_setattr,
 | |
| 	.tmpfile	= hugetlbfs_tmpfile,
 | |
| };
 | |
| 
 | |
| static const struct inode_operations hugetlbfs_inode_operations = {
 | |
| 	.setattr	= hugetlbfs_setattr,
 | |
| };
 | |
| 
 | |
| static const struct super_operations hugetlbfs_ops = {
 | |
| 	.alloc_inode    = hugetlbfs_alloc_inode,
 | |
| 	.free_inode     = hugetlbfs_free_inode,
 | |
| 	.destroy_inode  = hugetlbfs_destroy_inode,
 | |
| 	.evict_inode	= hugetlbfs_evict_inode,
 | |
| 	.statfs		= hugetlbfs_statfs,
 | |
| 	.put_super	= hugetlbfs_put_super,
 | |
| 	.show_options	= hugetlbfs_show_options,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Convert size option passed from command line to number of huge pages
 | |
|  * in the pool specified by hstate.  Size option could be in bytes
 | |
|  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
 | |
|  */
 | |
| static long
 | |
| hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
 | |
| 			 enum hugetlbfs_size_type val_type)
 | |
| {
 | |
| 	if (val_type == NO_SIZE)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (val_type == SIZE_PERCENT) {
 | |
| 		size_opt <<= huge_page_shift(h);
 | |
| 		size_opt *= h->max_huge_pages;
 | |
| 		do_div(size_opt, 100);
 | |
| 	}
 | |
| 
 | |
| 	size_opt >>= huge_page_shift(h);
 | |
| 	return size_opt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse one mount parameter.
 | |
|  */
 | |
| static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
 | |
| {
 | |
| 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
 | |
| 	struct fs_parse_result result;
 | |
| 	char *rest;
 | |
| 	unsigned long ps;
 | |
| 	int opt;
 | |
| 
 | |
| 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
 | |
| 	if (opt < 0)
 | |
| 		return opt;
 | |
| 
 | |
| 	switch (opt) {
 | |
| 	case Opt_uid:
 | |
| 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
 | |
| 		if (!uid_valid(ctx->uid))
 | |
| 			goto bad_val;
 | |
| 		return 0;
 | |
| 
 | |
| 	case Opt_gid:
 | |
| 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
 | |
| 		if (!gid_valid(ctx->gid))
 | |
| 			goto bad_val;
 | |
| 		return 0;
 | |
| 
 | |
| 	case Opt_mode:
 | |
| 		ctx->mode = result.uint_32 & 01777U;
 | |
| 		return 0;
 | |
| 
 | |
| 	case Opt_size:
 | |
| 		/* memparse() will accept a K/M/G without a digit */
 | |
| 		if (!param->string || !isdigit(param->string[0]))
 | |
| 			goto bad_val;
 | |
| 		ctx->max_size_opt = memparse(param->string, &rest);
 | |
| 		ctx->max_val_type = SIZE_STD;
 | |
| 		if (*rest == '%')
 | |
| 			ctx->max_val_type = SIZE_PERCENT;
 | |
| 		return 0;
 | |
| 
 | |
| 	case Opt_nr_inodes:
 | |
| 		/* memparse() will accept a K/M/G without a digit */
 | |
| 		if (!param->string || !isdigit(param->string[0]))
 | |
| 			goto bad_val;
 | |
| 		ctx->nr_inodes = memparse(param->string, &rest);
 | |
| 		return 0;
 | |
| 
 | |
| 	case Opt_pagesize:
 | |
| 		ps = memparse(param->string, &rest);
 | |
| 		ctx->hstate = size_to_hstate(ps);
 | |
| 		if (!ctx->hstate) {
 | |
| 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		return 0;
 | |
| 
 | |
| 	case Opt_min_size:
 | |
| 		/* memparse() will accept a K/M/G without a digit */
 | |
| 		if (!param->string || !isdigit(param->string[0]))
 | |
| 			goto bad_val;
 | |
| 		ctx->min_size_opt = memparse(param->string, &rest);
 | |
| 		ctx->min_val_type = SIZE_STD;
 | |
| 		if (*rest == '%')
 | |
| 			ctx->min_val_type = SIZE_PERCENT;
 | |
| 		return 0;
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| bad_val:
 | |
| 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
 | |
| 		      param->string, param->key);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Validate the parsed options.
 | |
|  */
 | |
| static int hugetlbfs_validate(struct fs_context *fc)
 | |
| {
 | |
| 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use huge page pool size (in hstate) to convert the size
 | |
| 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
 | |
| 	 */
 | |
| 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
 | |
| 						   ctx->max_size_opt,
 | |
| 						   ctx->max_val_type);
 | |
| 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
 | |
| 						   ctx->min_size_opt,
 | |
| 						   ctx->min_val_type);
 | |
| 
 | |
| 	/*
 | |
| 	 * If max_size was specified, then min_size must be smaller
 | |
| 	 */
 | |
| 	if (ctx->max_val_type > NO_SIZE &&
 | |
| 	    ctx->min_hpages > ctx->max_hpages) {
 | |
| 		pr_err("Minimum size can not be greater than maximum size\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
 | |
| {
 | |
| 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
 | |
| 	struct hugetlbfs_sb_info *sbinfo;
 | |
| 
 | |
| 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
 | |
| 	if (!sbinfo)
 | |
| 		return -ENOMEM;
 | |
| 	sb->s_fs_info = sbinfo;
 | |
| 	spin_lock_init(&sbinfo->stat_lock);
 | |
| 	sbinfo->hstate		= ctx->hstate;
 | |
| 	sbinfo->max_inodes	= ctx->nr_inodes;
 | |
| 	sbinfo->free_inodes	= ctx->nr_inodes;
 | |
| 	sbinfo->spool		= NULL;
 | |
| 	sbinfo->uid		= ctx->uid;
 | |
| 	sbinfo->gid		= ctx->gid;
 | |
| 	sbinfo->mode		= ctx->mode;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate and initialize subpool if maximum or minimum size is
 | |
| 	 * specified.  Any needed reservations (for minimum size) are taken
 | |
| 	 * when the subpool is created.
 | |
| 	 */
 | |
| 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
 | |
| 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
 | |
| 						     ctx->max_hpages,
 | |
| 						     ctx->min_hpages);
 | |
| 		if (!sbinfo->spool)
 | |
| 			goto out_free;
 | |
| 	}
 | |
| 	sb->s_maxbytes = MAX_LFS_FILESIZE;
 | |
| 	sb->s_blocksize = huge_page_size(ctx->hstate);
 | |
| 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
 | |
| 	sb->s_magic = HUGETLBFS_MAGIC;
 | |
| 	sb->s_op = &hugetlbfs_ops;
 | |
| 	sb->s_time_gran = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Due to the special and limited functionality of hugetlbfs, it does
 | |
| 	 * not work well as a stacking filesystem.
 | |
| 	 */
 | |
| 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
 | |
| 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
 | |
| 	if (!sb->s_root)
 | |
| 		goto out_free;
 | |
| 	return 0;
 | |
| out_free:
 | |
| 	kfree(sbinfo->spool);
 | |
| 	kfree(sbinfo);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_get_tree(struct fs_context *fc)
 | |
| {
 | |
| 	int err = hugetlbfs_validate(fc);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	return get_tree_nodev(fc, hugetlbfs_fill_super);
 | |
| }
 | |
| 
 | |
| static void hugetlbfs_fs_context_free(struct fs_context *fc)
 | |
| {
 | |
| 	kfree(fc->fs_private);
 | |
| }
 | |
| 
 | |
| static const struct fs_context_operations hugetlbfs_fs_context_ops = {
 | |
| 	.free		= hugetlbfs_fs_context_free,
 | |
| 	.parse_param	= hugetlbfs_parse_param,
 | |
| 	.get_tree	= hugetlbfs_get_tree,
 | |
| };
 | |
| 
 | |
| static int hugetlbfs_init_fs_context(struct fs_context *fc)
 | |
| {
 | |
| 	struct hugetlbfs_fs_context *ctx;
 | |
| 
 | |
| 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
 | |
| 	if (!ctx)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ctx->max_hpages	= -1; /* No limit on size by default */
 | |
| 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
 | |
| 	ctx->uid	= current_fsuid();
 | |
| 	ctx->gid	= current_fsgid();
 | |
| 	ctx->mode	= 0755;
 | |
| 	ctx->hstate	= &default_hstate;
 | |
| 	ctx->min_hpages	= -1; /* No default minimum size */
 | |
| 	ctx->max_val_type = NO_SIZE;
 | |
| 	ctx->min_val_type = NO_SIZE;
 | |
| 	fc->fs_private = ctx;
 | |
| 	fc->ops	= &hugetlbfs_fs_context_ops;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct file_system_type hugetlbfs_fs_type = {
 | |
| 	.name			= "hugetlbfs",
 | |
| 	.init_fs_context	= hugetlbfs_init_fs_context,
 | |
| 	.parameters		= hugetlb_fs_parameters,
 | |
| 	.kill_sb		= kill_litter_super,
 | |
| };
 | |
| 
 | |
| static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
 | |
| 
 | |
| static int can_do_hugetlb_shm(void)
 | |
| {
 | |
| 	kgid_t shm_group;
 | |
| 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
 | |
| 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
 | |
| }
 | |
| 
 | |
| static int get_hstate_idx(int page_size_log)
 | |
| {
 | |
| 	struct hstate *h = hstate_sizelog(page_size_log);
 | |
| 
 | |
| 	if (!h)
 | |
| 		return -1;
 | |
| 	return hstate_index(h);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note that size should be aligned to proper hugepage size in caller side,
 | |
|  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
 | |
|  */
 | |
| struct file *hugetlb_file_setup(const char *name, size_t size,
 | |
| 				vm_flags_t acctflag, int creat_flags,
 | |
| 				int page_size_log)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	struct vfsmount *mnt;
 | |
| 	int hstate_idx;
 | |
| 	struct file *file;
 | |
| 
 | |
| 	hstate_idx = get_hstate_idx(page_size_log);
 | |
| 	if (hstate_idx < 0)
 | |
| 		return ERR_PTR(-ENODEV);
 | |
| 
 | |
| 	mnt = hugetlbfs_vfsmount[hstate_idx];
 | |
| 	if (!mnt)
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 
 | |
| 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
 | |
| 		struct ucounts *ucounts = current_ucounts();
 | |
| 
 | |
| 		if (user_shm_lock(size, ucounts)) {
 | |
| 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
 | |
| 				current->comm, current->pid);
 | |
| 			user_shm_unlock(size, ucounts);
 | |
| 		}
 | |
| 		return ERR_PTR(-EPERM);
 | |
| 	}
 | |
| 
 | |
| 	file = ERR_PTR(-ENOSPC);
 | |
| 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
 | |
| 	if (!inode)
 | |
| 		goto out;
 | |
| 	if (creat_flags == HUGETLB_SHMFS_INODE)
 | |
| 		inode->i_flags |= S_PRIVATE;
 | |
| 
 | |
| 	inode->i_size = size;
 | |
| 	clear_nlink(inode);
 | |
| 
 | |
| 	if (!hugetlb_reserve_pages(inode, 0,
 | |
| 			size >> huge_page_shift(hstate_inode(inode)), NULL,
 | |
| 			acctflag))
 | |
| 		file = ERR_PTR(-ENOMEM);
 | |
| 	else
 | |
| 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
 | |
| 					&hugetlbfs_file_operations);
 | |
| 	if (!IS_ERR(file))
 | |
| 		return file;
 | |
| 
 | |
| 	iput(inode);
 | |
| out:
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
 | |
| {
 | |
| 	struct fs_context *fc;
 | |
| 	struct vfsmount *mnt;
 | |
| 
 | |
| 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
 | |
| 	if (IS_ERR(fc)) {
 | |
| 		mnt = ERR_CAST(fc);
 | |
| 	} else {
 | |
| 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
 | |
| 		ctx->hstate = h;
 | |
| 		mnt = fc_mount(fc);
 | |
| 		put_fs_context(fc);
 | |
| 	}
 | |
| 	if (IS_ERR(mnt))
 | |
| 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
 | |
| 		       huge_page_size(h) / SZ_1K);
 | |
| 	return mnt;
 | |
| }
 | |
| 
 | |
| static int __init init_hugetlbfs_fs(void)
 | |
| {
 | |
| 	struct vfsmount *mnt;
 | |
| 	struct hstate *h;
 | |
| 	int error;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!hugepages_supported()) {
 | |
| 		pr_info("disabling because there are no supported hugepage sizes\n");
 | |
| 		return -ENOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	error = -ENOMEM;
 | |
| 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
 | |
| 					sizeof(struct hugetlbfs_inode_info),
 | |
| 					0, SLAB_ACCOUNT, init_once);
 | |
| 	if (hugetlbfs_inode_cachep == NULL)
 | |
| 		goto out;
 | |
| 
 | |
| 	error = register_filesystem(&hugetlbfs_fs_type);
 | |
| 	if (error)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	/* default hstate mount is required */
 | |
| 	mnt = mount_one_hugetlbfs(&default_hstate);
 | |
| 	if (IS_ERR(mnt)) {
 | |
| 		error = PTR_ERR(mnt);
 | |
| 		goto out_unreg;
 | |
| 	}
 | |
| 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
 | |
| 
 | |
| 	/* other hstates are optional */
 | |
| 	i = 0;
 | |
| 	for_each_hstate(h) {
 | |
| 		if (i == default_hstate_idx) {
 | |
| 			i++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		mnt = mount_one_hugetlbfs(h);
 | |
| 		if (IS_ERR(mnt))
 | |
| 			hugetlbfs_vfsmount[i] = NULL;
 | |
| 		else
 | |
| 			hugetlbfs_vfsmount[i] = mnt;
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_unreg:
 | |
| 	(void)unregister_filesystem(&hugetlbfs_fs_type);
 | |
|  out_free:
 | |
| 	kmem_cache_destroy(hugetlbfs_inode_cachep);
 | |
|  out:
 | |
| 	return error;
 | |
| }
 | |
| fs_initcall(init_hugetlbfs_fs)
 |