mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 ac924c6034
			
		
	
	
		ac924c6034
		
	
	
	
	
		
			
			As pointed out in http://bugzilla.kernel.org/show_bug.cgi?id=6490, this function can experience overflows on 32-bit machines, causing our response to changed values of min_free_kbytes to go whacky. Fixing it efficiently is all too hard, so fix it with 64-bit math instead. Cc: Ake Sandgren <ake.sandgren@hpc2n.umu.se> Cc: Martin Bligh <mbligh@google.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			2836 lines
		
	
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2836 lines
		
	
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/mm/page_alloc.c
 | |
|  *
 | |
|  *  Manages the free list, the system allocates free pages here.
 | |
|  *  Note that kmalloc() lives in slab.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  *  Swap reorganised 29.12.95, Stephen Tweedie
 | |
|  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 | |
|  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 | |
|  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 | |
|  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 | |
|  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 | |
|  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 | |
|  */
 | |
| 
 | |
| #include <linux/config.h>
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/memory_hotplug.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/mempolicy.h>
 | |
| 
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/div64.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| /*
 | |
|  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
 | |
|  * initializer cleaner
 | |
|  */
 | |
| nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
 | |
| EXPORT_SYMBOL(node_online_map);
 | |
| nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
 | |
| EXPORT_SYMBOL(node_possible_map);
 | |
| unsigned long totalram_pages __read_mostly;
 | |
| unsigned long totalhigh_pages __read_mostly;
 | |
| unsigned long totalreserve_pages __read_mostly;
 | |
| long nr_swap_pages;
 | |
| int percpu_pagelist_fraction;
 | |
| 
 | |
| static void __free_pages_ok(struct page *page, unsigned int order);
 | |
| 
 | |
| /*
 | |
|  * results with 256, 32 in the lowmem_reserve sysctl:
 | |
|  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 | |
|  *	1G machine -> (16M dma, 784M normal, 224M high)
 | |
|  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 | |
|  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 | |
|  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
 | |
|  *
 | |
|  * TBD: should special case ZONE_DMA32 machines here - in those we normally
 | |
|  * don't need any ZONE_NORMAL reservation
 | |
|  */
 | |
| int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
 | |
| 
 | |
| EXPORT_SYMBOL(totalram_pages);
 | |
| 
 | |
| /*
 | |
|  * Used by page_zone() to look up the address of the struct zone whose
 | |
|  * id is encoded in the upper bits of page->flags
 | |
|  */
 | |
| struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
 | |
| EXPORT_SYMBOL(zone_table);
 | |
| 
 | |
| static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
 | |
| int min_free_kbytes = 1024;
 | |
| 
 | |
| unsigned long __initdata nr_kernel_pages;
 | |
| unsigned long __initdata nr_all_pages;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	unsigned seq;
 | |
| 	unsigned long pfn = page_to_pfn(page);
 | |
| 
 | |
| 	do {
 | |
| 		seq = zone_span_seqbegin(zone);
 | |
| 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
 | |
| 			ret = 1;
 | |
| 		else if (pfn < zone->zone_start_pfn)
 | |
| 			ret = 1;
 | |
| 	} while (zone_span_seqretry(zone, seq));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int page_is_consistent(struct zone *zone, struct page *page)
 | |
| {
 | |
| #ifdef CONFIG_HOLES_IN_ZONE
 | |
| 	if (!pfn_valid(page_to_pfn(page)))
 | |
| 		return 0;
 | |
| #endif
 | |
| 	if (zone != page_zone(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| /*
 | |
|  * Temporary debugging check for pages not lying within a given zone.
 | |
|  */
 | |
| static int bad_range(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	if (page_outside_zone_boundaries(zone, page))
 | |
| 		return 1;
 | |
| 	if (!page_is_consistent(zone, page))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline int bad_range(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void bad_page(struct page *page)
 | |
| {
 | |
| 	printk(KERN_EMERG "Bad page state in process '%s'\n"
 | |
| 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
 | |
| 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
 | |
| 		KERN_EMERG "Backtrace:\n",
 | |
| 		current->comm, page, (int)(2*sizeof(unsigned long)),
 | |
| 		(unsigned long)page->flags, page->mapping,
 | |
| 		page_mapcount(page), page_count(page));
 | |
| 	dump_stack();
 | |
| 	page->flags &= ~(1 << PG_lru	|
 | |
| 			1 << PG_private |
 | |
| 			1 << PG_locked	|
 | |
| 			1 << PG_active	|
 | |
| 			1 << PG_dirty	|
 | |
| 			1 << PG_reclaim |
 | |
| 			1 << PG_slab    |
 | |
| 			1 << PG_swapcache |
 | |
| 			1 << PG_writeback |
 | |
| 			1 << PG_buddy );
 | |
| 	set_page_count(page, 0);
 | |
| 	reset_page_mapcount(page);
 | |
| 	page->mapping = NULL;
 | |
| 	add_taint(TAINT_BAD_PAGE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Higher-order pages are called "compound pages".  They are structured thusly:
 | |
|  *
 | |
|  * The first PAGE_SIZE page is called the "head page".
 | |
|  *
 | |
|  * The remaining PAGE_SIZE pages are called "tail pages".
 | |
|  *
 | |
|  * All pages have PG_compound set.  All pages have their ->private pointing at
 | |
|  * the head page (even the head page has this).
 | |
|  *
 | |
|  * The first tail page's ->lru.next holds the address of the compound page's
 | |
|  * put_page() function.  Its ->lru.prev holds the order of allocation.
 | |
|  * This usage means that zero-order pages may not be compound.
 | |
|  */
 | |
| 
 | |
| static void free_compound_page(struct page *page)
 | |
| {
 | |
| 	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
 | |
| }
 | |
| 
 | |
| static void prep_compound_page(struct page *page, unsigned long order)
 | |
| {
 | |
| 	int i;
 | |
| 	int nr_pages = 1 << order;
 | |
| 
 | |
| 	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
 | |
| 	page[1].lru.prev = (void *)order;
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		struct page *p = page + i;
 | |
| 
 | |
| 		__SetPageCompound(p);
 | |
| 		set_page_private(p, (unsigned long)page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void destroy_compound_page(struct page *page, unsigned long order)
 | |
| {
 | |
| 	int i;
 | |
| 	int nr_pages = 1 << order;
 | |
| 
 | |
| 	if (unlikely((unsigned long)page[1].lru.prev != order))
 | |
| 		bad_page(page);
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		struct page *p = page + i;
 | |
| 
 | |
| 		if (unlikely(!PageCompound(p) |
 | |
| 				(page_private(p) != (unsigned long)page)))
 | |
| 			bad_page(page);
 | |
| 		__ClearPageCompound(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
 | |
| 	/*
 | |
| 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
 | |
| 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
 | |
| 	 */
 | |
| 	BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
 | |
| 	for (i = 0; i < (1 << order); i++)
 | |
| 		clear_highpage(page + i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * function for dealing with page's order in buddy system.
 | |
|  * zone->lock is already acquired when we use these.
 | |
|  * So, we don't need atomic page->flags operations here.
 | |
|  */
 | |
| static inline unsigned long page_order(struct page *page)
 | |
| {
 | |
| 	return page_private(page);
 | |
| }
 | |
| 
 | |
| static inline void set_page_order(struct page *page, int order)
 | |
| {
 | |
| 	set_page_private(page, order);
 | |
| 	__SetPageBuddy(page);
 | |
| }
 | |
| 
 | |
| static inline void rmv_page_order(struct page *page)
 | |
| {
 | |
| 	__ClearPageBuddy(page);
 | |
| 	set_page_private(page, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locate the struct page for both the matching buddy in our
 | |
|  * pair (buddy1) and the combined O(n+1) page they form (page).
 | |
|  *
 | |
|  * 1) Any buddy B1 will have an order O twin B2 which satisfies
 | |
|  * the following equation:
 | |
|  *     B2 = B1 ^ (1 << O)
 | |
|  * For example, if the starting buddy (buddy2) is #8 its order
 | |
|  * 1 buddy is #10:
 | |
|  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 | |
|  *
 | |
|  * 2) Any buddy B will have an order O+1 parent P which
 | |
|  * satisfies the following equation:
 | |
|  *     P = B & ~(1 << O)
 | |
|  *
 | |
|  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
 | |
|  */
 | |
| static inline struct page *
 | |
| __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
 | |
| {
 | |
| 	unsigned long buddy_idx = page_idx ^ (1 << order);
 | |
| 
 | |
| 	return page + (buddy_idx - page_idx);
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| __find_combined_index(unsigned long page_idx, unsigned int order)
 | |
| {
 | |
| 	return (page_idx & ~(1 << order));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function checks whether a page is free && is the buddy
 | |
|  * we can do coalesce a page and its buddy if
 | |
|  * (a) the buddy is not in a hole &&
 | |
|  * (b) the buddy is in the buddy system &&
 | |
|  * (c) a page and its buddy have the same order.
 | |
|  *
 | |
|  * For recording whether a page is in the buddy system, we use PG_buddy.
 | |
|  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
 | |
|  *
 | |
|  * For recording page's order, we use page_private(page).
 | |
|  */
 | |
| static inline int page_is_buddy(struct page *page, int order)
 | |
| {
 | |
| #ifdef CONFIG_HOLES_IN_ZONE
 | |
| 	if (!pfn_valid(page_to_pfn(page)))
 | |
| 		return 0;
 | |
| #endif
 | |
| 
 | |
| 	if (PageBuddy(page) && page_order(page) == order) {
 | |
| 		BUG_ON(page_count(page) != 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Freeing function for a buddy system allocator.
 | |
|  *
 | |
|  * The concept of a buddy system is to maintain direct-mapped table
 | |
|  * (containing bit values) for memory blocks of various "orders".
 | |
|  * The bottom level table contains the map for the smallest allocatable
 | |
|  * units of memory (here, pages), and each level above it describes
 | |
|  * pairs of units from the levels below, hence, "buddies".
 | |
|  * At a high level, all that happens here is marking the table entry
 | |
|  * at the bottom level available, and propagating the changes upward
 | |
|  * as necessary, plus some accounting needed to play nicely with other
 | |
|  * parts of the VM system.
 | |
|  * At each level, we keep a list of pages, which are heads of continuous
 | |
|  * free pages of length of (1 << order) and marked with PG_buddy. Page's
 | |
|  * order is recorded in page_private(page) field.
 | |
|  * So when we are allocating or freeing one, we can derive the state of the
 | |
|  * other.  That is, if we allocate a small block, and both were   
 | |
|  * free, the remainder of the region must be split into blocks.   
 | |
|  * If a block is freed, and its buddy is also free, then this
 | |
|  * triggers coalescing into a block of larger size.            
 | |
|  *
 | |
|  * -- wli
 | |
|  */
 | |
| 
 | |
| static inline void __free_one_page(struct page *page,
 | |
| 		struct zone *zone, unsigned int order)
 | |
| {
 | |
| 	unsigned long page_idx;
 | |
| 	int order_size = 1 << order;
 | |
| 
 | |
| 	if (unlikely(PageCompound(page)))
 | |
| 		destroy_compound_page(page, order);
 | |
| 
 | |
| 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
 | |
| 
 | |
| 	BUG_ON(page_idx & (order_size - 1));
 | |
| 	BUG_ON(bad_range(zone, page));
 | |
| 
 | |
| 	zone->free_pages += order_size;
 | |
| 	while (order < MAX_ORDER-1) {
 | |
| 		unsigned long combined_idx;
 | |
| 		struct free_area *area;
 | |
| 		struct page *buddy;
 | |
| 
 | |
| 		buddy = __page_find_buddy(page, page_idx, order);
 | |
| 		if (!page_is_buddy(buddy, order))
 | |
| 			break;		/* Move the buddy up one level. */
 | |
| 
 | |
| 		list_del(&buddy->lru);
 | |
| 		area = zone->free_area + order;
 | |
| 		area->nr_free--;
 | |
| 		rmv_page_order(buddy);
 | |
| 		combined_idx = __find_combined_index(page_idx, order);
 | |
| 		page = page + (combined_idx - page_idx);
 | |
| 		page_idx = combined_idx;
 | |
| 		order++;
 | |
| 	}
 | |
| 	set_page_order(page, order);
 | |
| 	list_add(&page->lru, &zone->free_area[order].free_list);
 | |
| 	zone->free_area[order].nr_free++;
 | |
| }
 | |
| 
 | |
| static inline int free_pages_check(struct page *page)
 | |
| {
 | |
| 	if (unlikely(page_mapcount(page) |
 | |
| 		(page->mapping != NULL)  |
 | |
| 		(page_count(page) != 0)  |
 | |
| 		(page->flags & (
 | |
| 			1 << PG_lru	|
 | |
| 			1 << PG_private |
 | |
| 			1 << PG_locked	|
 | |
| 			1 << PG_active	|
 | |
| 			1 << PG_reclaim	|
 | |
| 			1 << PG_slab	|
 | |
| 			1 << PG_swapcache |
 | |
| 			1 << PG_writeback |
 | |
| 			1 << PG_reserved |
 | |
| 			1 << PG_buddy ))))
 | |
| 		bad_page(page);
 | |
| 	if (PageDirty(page))
 | |
| 		__ClearPageDirty(page);
 | |
| 	/*
 | |
| 	 * For now, we report if PG_reserved was found set, but do not
 | |
| 	 * clear it, and do not free the page.  But we shall soon need
 | |
| 	 * to do more, for when the ZERO_PAGE count wraps negative.
 | |
| 	 */
 | |
| 	return PageReserved(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Frees a list of pages. 
 | |
|  * Assumes all pages on list are in same zone, and of same order.
 | |
|  * count is the number of pages to free.
 | |
|  *
 | |
|  * If the zone was previously in an "all pages pinned" state then look to
 | |
|  * see if this freeing clears that state.
 | |
|  *
 | |
|  * And clear the zone's pages_scanned counter, to hold off the "all pages are
 | |
|  * pinned" detection logic.
 | |
|  */
 | |
| static void free_pages_bulk(struct zone *zone, int count,
 | |
| 					struct list_head *list, int order)
 | |
| {
 | |
| 	spin_lock(&zone->lock);
 | |
| 	zone->all_unreclaimable = 0;
 | |
| 	zone->pages_scanned = 0;
 | |
| 	while (count--) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		BUG_ON(list_empty(list));
 | |
| 		page = list_entry(list->prev, struct page, lru);
 | |
| 		/* have to delete it as __free_one_page list manipulates */
 | |
| 		list_del(&page->lru);
 | |
| 		__free_one_page(page, zone, order);
 | |
| 	}
 | |
| 	spin_unlock(&zone->lock);
 | |
| }
 | |
| 
 | |
| static void free_one_page(struct zone *zone, struct page *page, int order)
 | |
| {
 | |
| 	LIST_HEAD(list);
 | |
| 	list_add(&page->lru, &list);
 | |
| 	free_pages_bulk(zone, 1, &list, order);
 | |
| }
 | |
| 
 | |
| static void __free_pages_ok(struct page *page, unsigned int order)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 	int reserved = 0;
 | |
| 
 | |
| 	arch_free_page(page, order);
 | |
| 	if (!PageHighMem(page))
 | |
| 		mutex_debug_check_no_locks_freed(page_address(page),
 | |
| 						 PAGE_SIZE<<order);
 | |
| 
 | |
| 	for (i = 0 ; i < (1 << order) ; ++i)
 | |
| 		reserved += free_pages_check(page + i);
 | |
| 	if (reserved)
 | |
| 		return;
 | |
| 
 | |
| 	kernel_map_pages(page, 1 << order, 0);
 | |
| 	local_irq_save(flags);
 | |
| 	__mod_page_state(pgfree, 1 << order);
 | |
| 	free_one_page(page_zone(page), page, order);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * permit the bootmem allocator to evade page validation on high-order frees
 | |
|  */
 | |
| void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
 | |
| {
 | |
| 	if (order == 0) {
 | |
| 		__ClearPageReserved(page);
 | |
| 		set_page_count(page, 0);
 | |
| 		set_page_refcounted(page);
 | |
| 		__free_page(page);
 | |
| 	} else {
 | |
| 		int loop;
 | |
| 
 | |
| 		prefetchw(page);
 | |
| 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
 | |
| 			struct page *p = &page[loop];
 | |
| 
 | |
| 			if (loop + 1 < BITS_PER_LONG)
 | |
| 				prefetchw(p + 1);
 | |
| 			__ClearPageReserved(p);
 | |
| 			set_page_count(p, 0);
 | |
| 		}
 | |
| 
 | |
| 		set_page_refcounted(page);
 | |
| 		__free_pages(page, order);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The order of subdivision here is critical for the IO subsystem.
 | |
|  * Please do not alter this order without good reasons and regression
 | |
|  * testing. Specifically, as large blocks of memory are subdivided,
 | |
|  * the order in which smaller blocks are delivered depends on the order
 | |
|  * they're subdivided in this function. This is the primary factor
 | |
|  * influencing the order in which pages are delivered to the IO
 | |
|  * subsystem according to empirical testing, and this is also justified
 | |
|  * by considering the behavior of a buddy system containing a single
 | |
|  * large block of memory acted on by a series of small allocations.
 | |
|  * This behavior is a critical factor in sglist merging's success.
 | |
|  *
 | |
|  * -- wli
 | |
|  */
 | |
| static inline void expand(struct zone *zone, struct page *page,
 | |
|  	int low, int high, struct free_area *area)
 | |
| {
 | |
| 	unsigned long size = 1 << high;
 | |
| 
 | |
| 	while (high > low) {
 | |
| 		area--;
 | |
| 		high--;
 | |
| 		size >>= 1;
 | |
| 		BUG_ON(bad_range(zone, &page[size]));
 | |
| 		list_add(&page[size].lru, &area->free_list);
 | |
| 		area->nr_free++;
 | |
| 		set_page_order(&page[size], high);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This page is about to be returned from the page allocator
 | |
|  */
 | |
| static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
 | |
| {
 | |
| 	if (unlikely(page_mapcount(page) |
 | |
| 		(page->mapping != NULL)  |
 | |
| 		(page_count(page) != 0)  |
 | |
| 		(page->flags & (
 | |
| 			1 << PG_lru	|
 | |
| 			1 << PG_private	|
 | |
| 			1 << PG_locked	|
 | |
| 			1 << PG_active	|
 | |
| 			1 << PG_dirty	|
 | |
| 			1 << PG_reclaim	|
 | |
| 			1 << PG_slab    |
 | |
| 			1 << PG_swapcache |
 | |
| 			1 << PG_writeback |
 | |
| 			1 << PG_reserved |
 | |
| 			1 << PG_buddy ))))
 | |
| 		bad_page(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * For now, we report if PG_reserved was found set, but do not
 | |
| 	 * clear it, and do not allocate the page: as a safety net.
 | |
| 	 */
 | |
| 	if (PageReserved(page))
 | |
| 		return 1;
 | |
| 
 | |
| 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
 | |
| 			1 << PG_referenced | 1 << PG_arch_1 |
 | |
| 			1 << PG_checked | 1 << PG_mappedtodisk);
 | |
| 	set_page_private(page, 0);
 | |
| 	set_page_refcounted(page);
 | |
| 	kernel_map_pages(page, 1 << order, 1);
 | |
| 
 | |
| 	if (gfp_flags & __GFP_ZERO)
 | |
| 		prep_zero_page(page, order, gfp_flags);
 | |
| 
 | |
| 	if (order && (gfp_flags & __GFP_COMP))
 | |
| 		prep_compound_page(page, order);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* 
 | |
|  * Do the hard work of removing an element from the buddy allocator.
 | |
|  * Call me with the zone->lock already held.
 | |
|  */
 | |
| static struct page *__rmqueue(struct zone *zone, unsigned int order)
 | |
| {
 | |
| 	struct free_area * area;
 | |
| 	unsigned int current_order;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
 | |
| 		area = zone->free_area + current_order;
 | |
| 		if (list_empty(&area->free_list))
 | |
| 			continue;
 | |
| 
 | |
| 		page = list_entry(area->free_list.next, struct page, lru);
 | |
| 		list_del(&page->lru);
 | |
| 		rmv_page_order(page);
 | |
| 		area->nr_free--;
 | |
| 		zone->free_pages -= 1UL << order;
 | |
| 		expand(zone, page, order, current_order, area);
 | |
| 		return page;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* 
 | |
|  * Obtain a specified number of elements from the buddy allocator, all under
 | |
|  * a single hold of the lock, for efficiency.  Add them to the supplied list.
 | |
|  * Returns the number of new pages which were placed at *list.
 | |
|  */
 | |
| static int rmqueue_bulk(struct zone *zone, unsigned int order, 
 | |
| 			unsigned long count, struct list_head *list)
 | |
| {
 | |
| 	int i;
 | |
| 	
 | |
| 	spin_lock(&zone->lock);
 | |
| 	for (i = 0; i < count; ++i) {
 | |
| 		struct page *page = __rmqueue(zone, order);
 | |
| 		if (unlikely(page == NULL))
 | |
| 			break;
 | |
| 		list_add_tail(&page->lru, list);
 | |
| 	}
 | |
| 	spin_unlock(&zone->lock);
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * Called from the slab reaper to drain pagesets on a particular node that
 | |
|  * belong to the currently executing processor.
 | |
|  * Note that this function must be called with the thread pinned to
 | |
|  * a single processor.
 | |
|  */
 | |
| void drain_node_pages(int nodeid)
 | |
| {
 | |
| 	int i, z;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	for (z = 0; z < MAX_NR_ZONES; z++) {
 | |
| 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
 | |
| 		struct per_cpu_pageset *pset;
 | |
| 
 | |
| 		pset = zone_pcp(zone, smp_processor_id());
 | |
| 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
 | |
| 			struct per_cpu_pages *pcp;
 | |
| 
 | |
| 			pcp = &pset->pcp[i];
 | |
| 			if (pcp->count) {
 | |
| 				local_irq_save(flags);
 | |
| 				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
 | |
| 				pcp->count = 0;
 | |
| 				local_irq_restore(flags);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
 | |
| static void __drain_pages(unsigned int cpu)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct zone *zone;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 		struct per_cpu_pageset *pset;
 | |
| 
 | |
| 		pset = zone_pcp(zone, cpu);
 | |
| 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
 | |
| 			struct per_cpu_pages *pcp;
 | |
| 
 | |
| 			pcp = &pset->pcp[i];
 | |
| 			local_irq_save(flags);
 | |
| 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
 | |
| 			pcp->count = 0;
 | |
| 			local_irq_restore(flags);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| 
 | |
| void mark_free_pages(struct zone *zone)
 | |
| {
 | |
| 	unsigned long zone_pfn, flags;
 | |
| 	int order;
 | |
| 	struct list_head *curr;
 | |
| 
 | |
| 	if (!zone->spanned_pages)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&zone->lock, flags);
 | |
| 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
 | |
| 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
 | |
| 
 | |
| 	for (order = MAX_ORDER - 1; order >= 0; --order)
 | |
| 		list_for_each(curr, &zone->free_area[order].free_list) {
 | |
| 			unsigned long start_pfn, i;
 | |
| 
 | |
| 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
 | |
| 
 | |
| 			for (i=0; i < (1<<order); i++)
 | |
| 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&zone->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
 | |
|  */
 | |
| void drain_local_pages(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);	
 | |
| 	__drain_pages(smp_processor_id());
 | |
| 	local_irq_restore(flags);	
 | |
| }
 | |
| #endif /* CONFIG_PM */
 | |
| 
 | |
| static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	pg_data_t *pg = z->zone_pgdat;
 | |
| 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
 | |
| 	struct per_cpu_pageset *p;
 | |
| 
 | |
| 	p = zone_pcp(z, cpu);
 | |
| 	if (pg == orig) {
 | |
| 		p->numa_hit++;
 | |
| 	} else {
 | |
| 		p->numa_miss++;
 | |
| 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
 | |
| 	}
 | |
| 	if (pg == NODE_DATA(numa_node_id()))
 | |
| 		p->local_node++;
 | |
| 	else
 | |
| 		p->other_node++;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a 0-order page
 | |
|  */
 | |
| static void fastcall free_hot_cold_page(struct page *page, int cold)
 | |
| {
 | |
| 	struct zone *zone = page_zone(page);
 | |
| 	struct per_cpu_pages *pcp;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	arch_free_page(page, 0);
 | |
| 
 | |
| 	if (PageAnon(page))
 | |
| 		page->mapping = NULL;
 | |
| 	if (free_pages_check(page))
 | |
| 		return;
 | |
| 
 | |
| 	kernel_map_pages(page, 1, 0);
 | |
| 
 | |
| 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
 | |
| 	local_irq_save(flags);
 | |
| 	__inc_page_state(pgfree);
 | |
| 	list_add(&page->lru, &pcp->list);
 | |
| 	pcp->count++;
 | |
| 	if (pcp->count >= pcp->high) {
 | |
| 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
 | |
| 		pcp->count -= pcp->batch;
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| void fastcall free_hot_page(struct page *page)
 | |
| {
 | |
| 	free_hot_cold_page(page, 0);
 | |
| }
 | |
| 	
 | |
| void fastcall free_cold_page(struct page *page)
 | |
| {
 | |
| 	free_hot_cold_page(page, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * split_page takes a non-compound higher-order page, and splits it into
 | |
|  * n (1<<order) sub-pages: page[0..n]
 | |
|  * Each sub-page must be freed individually.
 | |
|  *
 | |
|  * Note: this is probably too low level an operation for use in drivers.
 | |
|  * Please consult with lkml before using this in your driver.
 | |
|  */
 | |
| void split_page(struct page *page, unsigned int order)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(PageCompound(page));
 | |
| 	BUG_ON(!page_count(page));
 | |
| 	for (i = 1; i < (1 << order); i++)
 | |
| 		set_page_refcounted(page + i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
 | |
|  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
 | |
|  * or two.
 | |
|  */
 | |
| static struct page *buffered_rmqueue(struct zonelist *zonelist,
 | |
| 			struct zone *zone, int order, gfp_t gfp_flags)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct page *page;
 | |
| 	int cold = !!(gfp_flags & __GFP_COLD);
 | |
| 	int cpu;
 | |
| 
 | |
| again:
 | |
| 	cpu  = get_cpu();
 | |
| 	if (likely(order == 0)) {
 | |
| 		struct per_cpu_pages *pcp;
 | |
| 
 | |
| 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
 | |
| 		local_irq_save(flags);
 | |
| 		if (!pcp->count) {
 | |
| 			pcp->count += rmqueue_bulk(zone, 0,
 | |
| 						pcp->batch, &pcp->list);
 | |
| 			if (unlikely(!pcp->count))
 | |
| 				goto failed;
 | |
| 		}
 | |
| 		page = list_entry(pcp->list.next, struct page, lru);
 | |
| 		list_del(&page->lru);
 | |
| 		pcp->count--;
 | |
| 	} else {
 | |
| 		spin_lock_irqsave(&zone->lock, flags);
 | |
| 		page = __rmqueue(zone, order);
 | |
| 		spin_unlock(&zone->lock);
 | |
| 		if (!page)
 | |
| 			goto failed;
 | |
| 	}
 | |
| 
 | |
| 	__mod_page_state_zone(zone, pgalloc, 1 << order);
 | |
| 	zone_statistics(zonelist, zone, cpu);
 | |
| 	local_irq_restore(flags);
 | |
| 	put_cpu();
 | |
| 
 | |
| 	BUG_ON(bad_range(zone, page));
 | |
| 	if (prep_new_page(page, order, gfp_flags))
 | |
| 		goto again;
 | |
| 	return page;
 | |
| 
 | |
| failed:
 | |
| 	local_irq_restore(flags);
 | |
| 	put_cpu();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
 | |
| #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
 | |
| #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
 | |
| #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
 | |
| #define ALLOC_HARDER		0x10 /* try to alloc harder */
 | |
| #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
 | |
| #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
 | |
| 
 | |
| /*
 | |
|  * Return 1 if free pages are above 'mark'. This takes into account the order
 | |
|  * of the allocation.
 | |
|  */
 | |
| int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
 | |
| 		      int classzone_idx, int alloc_flags)
 | |
| {
 | |
| 	/* free_pages my go negative - that's OK */
 | |
| 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
 | |
| 	int o;
 | |
| 
 | |
| 	if (alloc_flags & ALLOC_HIGH)
 | |
| 		min -= min / 2;
 | |
| 	if (alloc_flags & ALLOC_HARDER)
 | |
| 		min -= min / 4;
 | |
| 
 | |
| 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
 | |
| 		return 0;
 | |
| 	for (o = 0; o < order; o++) {
 | |
| 		/* At the next order, this order's pages become unavailable */
 | |
| 		free_pages -= z->free_area[o].nr_free << o;
 | |
| 
 | |
| 		/* Require fewer higher order pages to be free */
 | |
| 		min >>= 1;
 | |
| 
 | |
| 		if (free_pages <= min)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get_page_from_freeliest goes through the zonelist trying to allocate
 | |
|  * a page.
 | |
|  */
 | |
| static struct page *
 | |
| get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
 | |
| 		struct zonelist *zonelist, int alloc_flags)
 | |
| {
 | |
| 	struct zone **z = zonelist->zones;
 | |
| 	struct page *page = NULL;
 | |
| 	int classzone_idx = zone_idx(*z);
 | |
| 
 | |
| 	/*
 | |
| 	 * Go through the zonelist once, looking for a zone with enough free.
 | |
| 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
 | |
| 	 */
 | |
| 	do {
 | |
| 		if ((alloc_flags & ALLOC_CPUSET) &&
 | |
| 				!cpuset_zone_allowed(*z, gfp_mask))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
 | |
| 			unsigned long mark;
 | |
| 			if (alloc_flags & ALLOC_WMARK_MIN)
 | |
| 				mark = (*z)->pages_min;
 | |
| 			else if (alloc_flags & ALLOC_WMARK_LOW)
 | |
| 				mark = (*z)->pages_low;
 | |
| 			else
 | |
| 				mark = (*z)->pages_high;
 | |
| 			if (!zone_watermark_ok(*z, order, mark,
 | |
| 				    classzone_idx, alloc_flags))
 | |
| 				if (!zone_reclaim_mode ||
 | |
| 				    !zone_reclaim(*z, gfp_mask, order))
 | |
| 					continue;
 | |
| 		}
 | |
| 
 | |
| 		page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
 | |
| 		if (page) {
 | |
| 			break;
 | |
| 		}
 | |
| 	} while (*(++z) != NULL);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the 'heart' of the zoned buddy allocator.
 | |
|  */
 | |
| struct page * fastcall
 | |
| __alloc_pages(gfp_t gfp_mask, unsigned int order,
 | |
| 		struct zonelist *zonelist)
 | |
| {
 | |
| 	const gfp_t wait = gfp_mask & __GFP_WAIT;
 | |
| 	struct zone **z;
 | |
| 	struct page *page;
 | |
| 	struct reclaim_state reclaim_state;
 | |
| 	struct task_struct *p = current;
 | |
| 	int do_retry;
 | |
| 	int alloc_flags;
 | |
| 	int did_some_progress;
 | |
| 
 | |
| 	might_sleep_if(wait);
 | |
| 
 | |
| restart:
 | |
| 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
 | |
| 
 | |
| 	if (unlikely(*z == NULL)) {
 | |
| 		/* Should this ever happen?? */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
 | |
| 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
 | |
| 	if (page)
 | |
| 		goto got_pg;
 | |
| 
 | |
| 	do {
 | |
| 		if (cpuset_zone_allowed(*z, gfp_mask))
 | |
| 			wakeup_kswapd(*z, order);
 | |
| 	} while (*(++z));
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, we're below the kswapd watermark and have kicked background
 | |
| 	 * reclaim. Now things get more complex, so set up alloc_flags according
 | |
| 	 * to how we want to proceed.
 | |
| 	 *
 | |
| 	 * The caller may dip into page reserves a bit more if the caller
 | |
| 	 * cannot run direct reclaim, or if the caller has realtime scheduling
 | |
| 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
 | |
| 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
 | |
| 	 */
 | |
| 	alloc_flags = ALLOC_WMARK_MIN;
 | |
| 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
 | |
| 		alloc_flags |= ALLOC_HARDER;
 | |
| 	if (gfp_mask & __GFP_HIGH)
 | |
| 		alloc_flags |= ALLOC_HIGH;
 | |
| 	alloc_flags |= ALLOC_CPUSET;
 | |
| 
 | |
| 	/*
 | |
| 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
 | |
| 	 * coming from realtime tasks go deeper into reserves.
 | |
| 	 *
 | |
| 	 * This is the last chance, in general, before the goto nopage.
 | |
| 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
 | |
| 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
 | |
| 	 */
 | |
| 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
 | |
| 	if (page)
 | |
| 		goto got_pg;
 | |
| 
 | |
| 	/* This allocation should allow future memory freeing. */
 | |
| 
 | |
| 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
 | |
| 			&& !in_interrupt()) {
 | |
| 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
 | |
| nofail_alloc:
 | |
| 			/* go through the zonelist yet again, ignoring mins */
 | |
| 			page = get_page_from_freelist(gfp_mask, order,
 | |
| 				zonelist, ALLOC_NO_WATERMARKS);
 | |
| 			if (page)
 | |
| 				goto got_pg;
 | |
| 			if (gfp_mask & __GFP_NOFAIL) {
 | |
| 				blk_congestion_wait(WRITE, HZ/50);
 | |
| 				goto nofail_alloc;
 | |
| 			}
 | |
| 		}
 | |
| 		goto nopage;
 | |
| 	}
 | |
| 
 | |
| 	/* Atomic allocations - we can't balance anything */
 | |
| 	if (!wait)
 | |
| 		goto nopage;
 | |
| 
 | |
| rebalance:
 | |
| 	cond_resched();
 | |
| 
 | |
| 	/* We now go into synchronous reclaim */
 | |
| 	cpuset_memory_pressure_bump();
 | |
| 	p->flags |= PF_MEMALLOC;
 | |
| 	reclaim_state.reclaimed_slab = 0;
 | |
| 	p->reclaim_state = &reclaim_state;
 | |
| 
 | |
| 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
 | |
| 
 | |
| 	p->reclaim_state = NULL;
 | |
| 	p->flags &= ~PF_MEMALLOC;
 | |
| 
 | |
| 	cond_resched();
 | |
| 
 | |
| 	if (likely(did_some_progress)) {
 | |
| 		page = get_page_from_freelist(gfp_mask, order,
 | |
| 						zonelist, alloc_flags);
 | |
| 		if (page)
 | |
| 			goto got_pg;
 | |
| 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
 | |
| 		/*
 | |
| 		 * Go through the zonelist yet one more time, keep
 | |
| 		 * very high watermark here, this is only to catch
 | |
| 		 * a parallel oom killing, we must fail if we're still
 | |
| 		 * under heavy pressure.
 | |
| 		 */
 | |
| 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
 | |
| 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
 | |
| 		if (page)
 | |
| 			goto got_pg;
 | |
| 
 | |
| 		out_of_memory(zonelist, gfp_mask, order);
 | |
| 		goto restart;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't let big-order allocations loop unless the caller explicitly
 | |
| 	 * requests that.  Wait for some write requests to complete then retry.
 | |
| 	 *
 | |
| 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
 | |
| 	 * <= 3, but that may not be true in other implementations.
 | |
| 	 */
 | |
| 	do_retry = 0;
 | |
| 	if (!(gfp_mask & __GFP_NORETRY)) {
 | |
| 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
 | |
| 			do_retry = 1;
 | |
| 		if (gfp_mask & __GFP_NOFAIL)
 | |
| 			do_retry = 1;
 | |
| 	}
 | |
| 	if (do_retry) {
 | |
| 		blk_congestion_wait(WRITE, HZ/50);
 | |
| 		goto rebalance;
 | |
| 	}
 | |
| 
 | |
| nopage:
 | |
| 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
 | |
| 		printk(KERN_WARNING "%s: page allocation failure."
 | |
| 			" order:%d, mode:0x%x\n",
 | |
| 			p->comm, order, gfp_mask);
 | |
| 		dump_stack();
 | |
| 		show_mem();
 | |
| 	}
 | |
| got_pg:
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(__alloc_pages);
 | |
| 
 | |
| /*
 | |
|  * Common helper functions.
 | |
|  */
 | |
| fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
 | |
| {
 | |
| 	struct page * page;
 | |
| 	page = alloc_pages(gfp_mask, order);
 | |
| 	if (!page)
 | |
| 		return 0;
 | |
| 	return (unsigned long) page_address(page);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(__get_free_pages);
 | |
| 
 | |
| fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
 | |
| {
 | |
| 	struct page * page;
 | |
| 
 | |
| 	/*
 | |
| 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
 | |
| 	 * a highmem page
 | |
| 	 */
 | |
| 	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
 | |
| 
 | |
| 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
 | |
| 	if (page)
 | |
| 		return (unsigned long) page_address(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(get_zeroed_page);
 | |
| 
 | |
| void __pagevec_free(struct pagevec *pvec)
 | |
| {
 | |
| 	int i = pagevec_count(pvec);
 | |
| 
 | |
| 	while (--i >= 0)
 | |
| 		free_hot_cold_page(pvec->pages[i], pvec->cold);
 | |
| }
 | |
| 
 | |
| fastcall void __free_pages(struct page *page, unsigned int order)
 | |
| {
 | |
| 	if (put_page_testzero(page)) {
 | |
| 		if (order == 0)
 | |
| 			free_hot_page(page);
 | |
| 		else
 | |
| 			__free_pages_ok(page, order);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(__free_pages);
 | |
| 
 | |
| fastcall void free_pages(unsigned long addr, unsigned int order)
 | |
| {
 | |
| 	if (addr != 0) {
 | |
| 		BUG_ON(!virt_addr_valid((void *)addr));
 | |
| 		__free_pages(virt_to_page((void *)addr), order);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(free_pages);
 | |
| 
 | |
| /*
 | |
|  * Total amount of free (allocatable) RAM:
 | |
|  */
 | |
| unsigned int nr_free_pages(void)
 | |
| {
 | |
| 	unsigned int sum = 0;
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_zone(zone)
 | |
| 		sum += zone->free_pages;
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(nr_free_pages);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
 | |
| {
 | |
| 	unsigned int i, sum = 0;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++)
 | |
| 		sum += pgdat->node_zones[i].free_pages;
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static unsigned int nr_free_zone_pages(int offset)
 | |
| {
 | |
| 	/* Just pick one node, since fallback list is circular */
 | |
| 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
 | |
| 	unsigned int sum = 0;
 | |
| 
 | |
| 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
 | |
| 	struct zone **zonep = zonelist->zones;
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for (zone = *zonep++; zone; zone = *zonep++) {
 | |
| 		unsigned long size = zone->present_pages;
 | |
| 		unsigned long high = zone->pages_high;
 | |
| 		if (size > high)
 | |
| 			sum += size - high;
 | |
| 	}
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
 | |
|  */
 | |
| unsigned int nr_free_buffer_pages(void)
 | |
| {
 | |
| 	return nr_free_zone_pages(gfp_zone(GFP_USER));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Amount of free RAM allocatable within all zones
 | |
|  */
 | |
| unsigned int nr_free_pagecache_pages(void)
 | |
| {
 | |
| 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| unsigned int nr_free_highpages (void)
 | |
| {
 | |
| 	pg_data_t *pgdat;
 | |
| 	unsigned int pages = 0;
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat)
 | |
| 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
 | |
| 
 | |
| 	return pages;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static void show_node(struct zone *zone)
 | |
| {
 | |
| 	printk("Node %d ", zone->zone_pgdat->node_id);
 | |
| }
 | |
| #else
 | |
| #define show_node(zone)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Accumulate the page_state information across all CPUs.
 | |
|  * The result is unavoidably approximate - it can change
 | |
|  * during and after execution of this function.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct page_state, page_states) = {0};
 | |
| 
 | |
| atomic_t nr_pagecache = ATOMIC_INIT(0);
 | |
| EXPORT_SYMBOL(nr_pagecache);
 | |
| #ifdef CONFIG_SMP
 | |
| DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
 | |
| #endif
 | |
| 
 | |
| static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
 | |
| {
 | |
| 	unsigned cpu;
 | |
| 
 | |
| 	memset(ret, 0, nr * sizeof(unsigned long));
 | |
| 	cpus_and(*cpumask, *cpumask, cpu_online_map);
 | |
| 
 | |
| 	for_each_cpu_mask(cpu, *cpumask) {
 | |
| 		unsigned long *in;
 | |
| 		unsigned long *out;
 | |
| 		unsigned off;
 | |
| 		unsigned next_cpu;
 | |
| 
 | |
| 		in = (unsigned long *)&per_cpu(page_states, cpu);
 | |
| 
 | |
| 		next_cpu = next_cpu(cpu, *cpumask);
 | |
| 		if (likely(next_cpu < NR_CPUS))
 | |
| 			prefetch(&per_cpu(page_states, next_cpu));
 | |
| 
 | |
| 		out = (unsigned long *)ret;
 | |
| 		for (off = 0; off < nr; off++)
 | |
| 			*out++ += *in++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void get_page_state_node(struct page_state *ret, int node)
 | |
| {
 | |
| 	int nr;
 | |
| 	cpumask_t mask = node_to_cpumask(node);
 | |
| 
 | |
| 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
 | |
| 	nr /= sizeof(unsigned long);
 | |
| 
 | |
| 	__get_page_state(ret, nr+1, &mask);
 | |
| }
 | |
| 
 | |
| void get_page_state(struct page_state *ret)
 | |
| {
 | |
| 	int nr;
 | |
| 	cpumask_t mask = CPU_MASK_ALL;
 | |
| 
 | |
| 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
 | |
| 	nr /= sizeof(unsigned long);
 | |
| 
 | |
| 	__get_page_state(ret, nr + 1, &mask);
 | |
| }
 | |
| 
 | |
| void get_full_page_state(struct page_state *ret)
 | |
| {
 | |
| 	cpumask_t mask = CPU_MASK_ALL;
 | |
| 
 | |
| 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
 | |
| }
 | |
| 
 | |
| unsigned long read_page_state_offset(unsigned long offset)
 | |
| {
 | |
| 	unsigned long ret = 0;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		unsigned long in;
 | |
| 
 | |
| 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
 | |
| 		ret += *((unsigned long *)in);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void __mod_page_state_offset(unsigned long offset, unsigned long delta)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	ptr = &__get_cpu_var(page_states);
 | |
| 	*(unsigned long *)(ptr + offset) += delta;
 | |
| }
 | |
| EXPORT_SYMBOL(__mod_page_state_offset);
 | |
| 
 | |
| void mod_page_state_offset(unsigned long offset, unsigned long delta)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	void *ptr;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	ptr = &__get_cpu_var(page_states);
 | |
| 	*(unsigned long *)(ptr + offset) += delta;
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL(mod_page_state_offset);
 | |
| 
 | |
| void __get_zone_counts(unsigned long *active, unsigned long *inactive,
 | |
| 			unsigned long *free, struct pglist_data *pgdat)
 | |
| {
 | |
| 	struct zone *zones = pgdat->node_zones;
 | |
| 	int i;
 | |
| 
 | |
| 	*active = 0;
 | |
| 	*inactive = 0;
 | |
| 	*free = 0;
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 		*active += zones[i].nr_active;
 | |
| 		*inactive += zones[i].nr_inactive;
 | |
| 		*free += zones[i].free_pages;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void get_zone_counts(unsigned long *active,
 | |
| 		unsigned long *inactive, unsigned long *free)
 | |
| {
 | |
| 	struct pglist_data *pgdat;
 | |
| 
 | |
| 	*active = 0;
 | |
| 	*inactive = 0;
 | |
| 	*free = 0;
 | |
| 	for_each_online_pgdat(pgdat) {
 | |
| 		unsigned long l, m, n;
 | |
| 		__get_zone_counts(&l, &m, &n, pgdat);
 | |
| 		*active += l;
 | |
| 		*inactive += m;
 | |
| 		*free += n;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void si_meminfo(struct sysinfo *val)
 | |
| {
 | |
| 	val->totalram = totalram_pages;
 | |
| 	val->sharedram = 0;
 | |
| 	val->freeram = nr_free_pages();
 | |
| 	val->bufferram = nr_blockdev_pages();
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	val->totalhigh = totalhigh_pages;
 | |
| 	val->freehigh = nr_free_highpages();
 | |
| #else
 | |
| 	val->totalhigh = 0;
 | |
| 	val->freehigh = 0;
 | |
| #endif
 | |
| 	val->mem_unit = PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(si_meminfo);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| void si_meminfo_node(struct sysinfo *val, int nid)
 | |
| {
 | |
| 	pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 
 | |
| 	val->totalram = pgdat->node_present_pages;
 | |
| 	val->freeram = nr_free_pages_pgdat(pgdat);
 | |
| 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
 | |
| 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
 | |
| 	val->mem_unit = PAGE_SIZE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define K(x) ((x) << (PAGE_SHIFT-10))
 | |
| 
 | |
| /*
 | |
|  * Show free area list (used inside shift_scroll-lock stuff)
 | |
|  * We also calculate the percentage fragmentation. We do this by counting the
 | |
|  * memory on each free list with the exception of the first item on the list.
 | |
|  */
 | |
| void show_free_areas(void)
 | |
| {
 | |
| 	struct page_state ps;
 | |
| 	int cpu, temperature;
 | |
| 	unsigned long active;
 | |
| 	unsigned long inactive;
 | |
| 	unsigned long free;
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 		show_node(zone);
 | |
| 		printk("%s per-cpu:", zone->name);
 | |
| 
 | |
| 		if (!populated_zone(zone)) {
 | |
| 			printk(" empty\n");
 | |
| 			continue;
 | |
| 		} else
 | |
| 			printk("\n");
 | |
| 
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			struct per_cpu_pageset *pageset;
 | |
| 
 | |
| 			pageset = zone_pcp(zone, cpu);
 | |
| 
 | |
| 			for (temperature = 0; temperature < 2; temperature++)
 | |
| 				printk("cpu %d %s: high %d, batch %d used:%d\n",
 | |
| 					cpu,
 | |
| 					temperature ? "cold" : "hot",
 | |
| 					pageset->pcp[temperature].high,
 | |
| 					pageset->pcp[temperature].batch,
 | |
| 					pageset->pcp[temperature].count);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	get_page_state(&ps);
 | |
| 	get_zone_counts(&active, &inactive, &free);
 | |
| 
 | |
| 	printk("Free pages: %11ukB (%ukB HighMem)\n",
 | |
| 		K(nr_free_pages()),
 | |
| 		K(nr_free_highpages()));
 | |
| 
 | |
| 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
 | |
| 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
 | |
| 		active,
 | |
| 		inactive,
 | |
| 		ps.nr_dirty,
 | |
| 		ps.nr_writeback,
 | |
| 		ps.nr_unstable,
 | |
| 		nr_free_pages(),
 | |
| 		ps.nr_slab,
 | |
| 		ps.nr_mapped,
 | |
| 		ps.nr_page_table_pages);
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 		int i;
 | |
| 
 | |
| 		show_node(zone);
 | |
| 		printk("%s"
 | |
| 			" free:%lukB"
 | |
| 			" min:%lukB"
 | |
| 			" low:%lukB"
 | |
| 			" high:%lukB"
 | |
| 			" active:%lukB"
 | |
| 			" inactive:%lukB"
 | |
| 			" present:%lukB"
 | |
| 			" pages_scanned:%lu"
 | |
| 			" all_unreclaimable? %s"
 | |
| 			"\n",
 | |
| 			zone->name,
 | |
| 			K(zone->free_pages),
 | |
| 			K(zone->pages_min),
 | |
| 			K(zone->pages_low),
 | |
| 			K(zone->pages_high),
 | |
| 			K(zone->nr_active),
 | |
| 			K(zone->nr_inactive),
 | |
| 			K(zone->present_pages),
 | |
| 			zone->pages_scanned,
 | |
| 			(zone->all_unreclaimable ? "yes" : "no")
 | |
| 			);
 | |
| 		printk("lowmem_reserve[]:");
 | |
| 		for (i = 0; i < MAX_NR_ZONES; i++)
 | |
| 			printk(" %lu", zone->lowmem_reserve[i]);
 | |
| 		printk("\n");
 | |
| 	}
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
|  		unsigned long nr, flags, order, total = 0;
 | |
| 
 | |
| 		show_node(zone);
 | |
| 		printk("%s: ", zone->name);
 | |
| 		if (!populated_zone(zone)) {
 | |
| 			printk("empty\n");
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock_irqsave(&zone->lock, flags);
 | |
| 		for (order = 0; order < MAX_ORDER; order++) {
 | |
| 			nr = zone->free_area[order].nr_free;
 | |
| 			total += nr << order;
 | |
| 			printk("%lu*%lukB ", nr, K(1UL) << order);
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&zone->lock, flags);
 | |
| 		printk("= %lukB\n", K(total));
 | |
| 	}
 | |
| 
 | |
| 	show_swap_cache_info();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Builds allocation fallback zone lists.
 | |
|  *
 | |
|  * Add all populated zones of a node to the zonelist.
 | |
|  */
 | |
| static int __init build_zonelists_node(pg_data_t *pgdat,
 | |
| 			struct zonelist *zonelist, int nr_zones, int zone_type)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	BUG_ON(zone_type > ZONE_HIGHMEM);
 | |
| 
 | |
| 	do {
 | |
| 		zone = pgdat->node_zones + zone_type;
 | |
| 		if (populated_zone(zone)) {
 | |
| #ifndef CONFIG_HIGHMEM
 | |
| 			BUG_ON(zone_type > ZONE_NORMAL);
 | |
| #endif
 | |
| 			zonelist->zones[nr_zones++] = zone;
 | |
| 			check_highest_zone(zone_type);
 | |
| 		}
 | |
| 		zone_type--;
 | |
| 
 | |
| 	} while (zone_type >= 0);
 | |
| 	return nr_zones;
 | |
| }
 | |
| 
 | |
| static inline int highest_zone(int zone_bits)
 | |
| {
 | |
| 	int res = ZONE_NORMAL;
 | |
| 	if (zone_bits & (__force int)__GFP_HIGHMEM)
 | |
| 		res = ZONE_HIGHMEM;
 | |
| 	if (zone_bits & (__force int)__GFP_DMA32)
 | |
| 		res = ZONE_DMA32;
 | |
| 	if (zone_bits & (__force int)__GFP_DMA)
 | |
| 		res = ZONE_DMA;
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| #define MAX_NODE_LOAD (num_online_nodes())
 | |
| static int __initdata node_load[MAX_NUMNODES];
 | |
| /**
 | |
|  * find_next_best_node - find the next node that should appear in a given node's fallback list
 | |
|  * @node: node whose fallback list we're appending
 | |
|  * @used_node_mask: nodemask_t of already used nodes
 | |
|  *
 | |
|  * We use a number of factors to determine which is the next node that should
 | |
|  * appear on a given node's fallback list.  The node should not have appeared
 | |
|  * already in @node's fallback list, and it should be the next closest node
 | |
|  * according to the distance array (which contains arbitrary distance values
 | |
|  * from each node to each node in the system), and should also prefer nodes
 | |
|  * with no CPUs, since presumably they'll have very little allocation pressure
 | |
|  * on them otherwise.
 | |
|  * It returns -1 if no node is found.
 | |
|  */
 | |
| static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
 | |
| {
 | |
| 	int n, val;
 | |
| 	int min_val = INT_MAX;
 | |
| 	int best_node = -1;
 | |
| 
 | |
| 	/* Use the local node if we haven't already */
 | |
| 	if (!node_isset(node, *used_node_mask)) {
 | |
| 		node_set(node, *used_node_mask);
 | |
| 		return node;
 | |
| 	}
 | |
| 
 | |
| 	for_each_online_node(n) {
 | |
| 		cpumask_t tmp;
 | |
| 
 | |
| 		/* Don't want a node to appear more than once */
 | |
| 		if (node_isset(n, *used_node_mask))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Use the distance array to find the distance */
 | |
| 		val = node_distance(node, n);
 | |
| 
 | |
| 		/* Penalize nodes under us ("prefer the next node") */
 | |
| 		val += (n < node);
 | |
| 
 | |
| 		/* Give preference to headless and unused nodes */
 | |
| 		tmp = node_to_cpumask(n);
 | |
| 		if (!cpus_empty(tmp))
 | |
| 			val += PENALTY_FOR_NODE_WITH_CPUS;
 | |
| 
 | |
| 		/* Slight preference for less loaded node */
 | |
| 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
 | |
| 		val += node_load[n];
 | |
| 
 | |
| 		if (val < min_val) {
 | |
| 			min_val = val;
 | |
| 			best_node = n;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (best_node >= 0)
 | |
| 		node_set(best_node, *used_node_mask);
 | |
| 
 | |
| 	return best_node;
 | |
| }
 | |
| 
 | |
| static void __init build_zonelists(pg_data_t *pgdat)
 | |
| {
 | |
| 	int i, j, k, node, local_node;
 | |
| 	int prev_node, load;
 | |
| 	struct zonelist *zonelist;
 | |
| 	nodemask_t used_mask;
 | |
| 
 | |
| 	/* initialize zonelists */
 | |
| 	for (i = 0; i < GFP_ZONETYPES; i++) {
 | |
| 		zonelist = pgdat->node_zonelists + i;
 | |
| 		zonelist->zones[0] = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* NUMA-aware ordering of nodes */
 | |
| 	local_node = pgdat->node_id;
 | |
| 	load = num_online_nodes();
 | |
| 	prev_node = local_node;
 | |
| 	nodes_clear(used_mask);
 | |
| 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
 | |
| 		int distance = node_distance(local_node, node);
 | |
| 
 | |
| 		/*
 | |
| 		 * If another node is sufficiently far away then it is better
 | |
| 		 * to reclaim pages in a zone before going off node.
 | |
| 		 */
 | |
| 		if (distance > RECLAIM_DISTANCE)
 | |
| 			zone_reclaim_mode = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't want to pressure a particular node.
 | |
| 		 * So adding penalty to the first node in same
 | |
| 		 * distance group to make it round-robin.
 | |
| 		 */
 | |
| 
 | |
| 		if (distance != node_distance(local_node, prev_node))
 | |
| 			node_load[node] += load;
 | |
| 		prev_node = node;
 | |
| 		load--;
 | |
| 		for (i = 0; i < GFP_ZONETYPES; i++) {
 | |
| 			zonelist = pgdat->node_zonelists + i;
 | |
| 			for (j = 0; zonelist->zones[j] != NULL; j++);
 | |
| 
 | |
| 			k = highest_zone(i);
 | |
| 
 | |
| 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
 | |
| 			zonelist->zones[j] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_NUMA */
 | |
| 
 | |
| static void __init build_zonelists(pg_data_t *pgdat)
 | |
| {
 | |
| 	int i, j, k, node, local_node;
 | |
| 
 | |
| 	local_node = pgdat->node_id;
 | |
| 	for (i = 0; i < GFP_ZONETYPES; i++) {
 | |
| 		struct zonelist *zonelist;
 | |
| 
 | |
| 		zonelist = pgdat->node_zonelists + i;
 | |
| 
 | |
| 		j = 0;
 | |
| 		k = highest_zone(i);
 | |
|  		j = build_zonelists_node(pgdat, zonelist, j, k);
 | |
|  		/*
 | |
|  		 * Now we build the zonelist so that it contains the zones
 | |
|  		 * of all the other nodes.
 | |
|  		 * We don't want to pressure a particular node, so when
 | |
|  		 * building the zones for node N, we make sure that the
 | |
|  		 * zones coming right after the local ones are those from
 | |
|  		 * node N+1 (modulo N)
 | |
|  		 */
 | |
| 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
 | |
| 			if (!node_online(node))
 | |
| 				continue;
 | |
| 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
 | |
| 		}
 | |
| 		for (node = 0; node < local_node; node++) {
 | |
| 			if (!node_online(node))
 | |
| 				continue;
 | |
| 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
 | |
| 		}
 | |
| 
 | |
| 		zonelist->zones[j] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_NUMA */
 | |
| 
 | |
| void __init build_all_zonelists(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_online_node(i)
 | |
| 		build_zonelists(NODE_DATA(i));
 | |
| 	printk("Built %i zonelists\n", num_online_nodes());
 | |
| 	cpuset_init_current_mems_allowed();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper functions to size the waitqueue hash table.
 | |
|  * Essentially these want to choose hash table sizes sufficiently
 | |
|  * large so that collisions trying to wait on pages are rare.
 | |
|  * But in fact, the number of active page waitqueues on typical
 | |
|  * systems is ridiculously low, less than 200. So this is even
 | |
|  * conservative, even though it seems large.
 | |
|  *
 | |
|  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
 | |
|  * waitqueues, i.e. the size of the waitq table given the number of pages.
 | |
|  */
 | |
| #define PAGES_PER_WAITQUEUE	256
 | |
| 
 | |
| static inline unsigned long wait_table_size(unsigned long pages)
 | |
| {
 | |
| 	unsigned long size = 1;
 | |
| 
 | |
| 	pages /= PAGES_PER_WAITQUEUE;
 | |
| 
 | |
| 	while (size < pages)
 | |
| 		size <<= 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once we have dozens or even hundreds of threads sleeping
 | |
| 	 * on IO we've got bigger problems than wait queue collision.
 | |
| 	 * Limit the size of the wait table to a reasonable size.
 | |
| 	 */
 | |
| 	size = min(size, 4096UL);
 | |
| 
 | |
| 	return max(size, 4UL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is an integer logarithm so that shifts can be used later
 | |
|  * to extract the more random high bits from the multiplicative
 | |
|  * hash function before the remainder is taken.
 | |
|  */
 | |
| static inline unsigned long wait_table_bits(unsigned long size)
 | |
| {
 | |
| 	return ffz(~size);
 | |
| }
 | |
| 
 | |
| #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
 | |
| 
 | |
| static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
 | |
| 		unsigned long *zones_size, unsigned long *zholes_size)
 | |
| {
 | |
| 	unsigned long realtotalpages, totalpages = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++)
 | |
| 		totalpages += zones_size[i];
 | |
| 	pgdat->node_spanned_pages = totalpages;
 | |
| 
 | |
| 	realtotalpages = totalpages;
 | |
| 	if (zholes_size)
 | |
| 		for (i = 0; i < MAX_NR_ZONES; i++)
 | |
| 			realtotalpages -= zholes_size[i];
 | |
| 	pgdat->node_present_pages = realtotalpages;
 | |
| 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Initially all pages are reserved - free ones are freed
 | |
|  * up by free_all_bootmem() once the early boot process is
 | |
|  * done. Non-atomic initialization, single-pass.
 | |
|  */
 | |
| void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
 | |
| 		unsigned long start_pfn)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned long end_pfn = start_pfn + size;
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 | |
| 		if (!early_pfn_valid(pfn))
 | |
| 			continue;
 | |
| 		page = pfn_to_page(pfn);
 | |
| 		set_page_links(page, zone, nid, pfn);
 | |
| 		init_page_count(page);
 | |
| 		reset_page_mapcount(page);
 | |
| 		SetPageReserved(page);
 | |
| 		INIT_LIST_HEAD(&page->lru);
 | |
| #ifdef WANT_PAGE_VIRTUAL
 | |
| 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
 | |
| 		if (!is_highmem_idx(zone))
 | |
| 			set_page_address(page, __va(pfn << PAGE_SHIFT));
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
 | |
| 				unsigned long size)
 | |
| {
 | |
| 	int order;
 | |
| 	for (order = 0; order < MAX_ORDER ; order++) {
 | |
| 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
 | |
| 		zone->free_area[order].nr_free = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
 | |
| void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
 | |
| 		unsigned long size)
 | |
| {
 | |
| 	unsigned long snum = pfn_to_section_nr(pfn);
 | |
| 	unsigned long end = pfn_to_section_nr(pfn + size);
 | |
| 
 | |
| 	if (FLAGS_HAS_NODE)
 | |
| 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
 | |
| 	else
 | |
| 		for (; snum <= end; snum++)
 | |
| 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
 | |
| }
 | |
| 
 | |
| #ifndef __HAVE_ARCH_MEMMAP_INIT
 | |
| #define memmap_init(size, nid, zone, start_pfn) \
 | |
| 	memmap_init_zone((size), (nid), (zone), (start_pfn))
 | |
| #endif
 | |
| 
 | |
| static int __cpuinit zone_batchsize(struct zone *zone)
 | |
| {
 | |
| 	int batch;
 | |
| 
 | |
| 	/*
 | |
| 	 * The per-cpu-pages pools are set to around 1000th of the
 | |
| 	 * size of the zone.  But no more than 1/2 of a meg.
 | |
| 	 *
 | |
| 	 * OK, so we don't know how big the cache is.  So guess.
 | |
| 	 */
 | |
| 	batch = zone->present_pages / 1024;
 | |
| 	if (batch * PAGE_SIZE > 512 * 1024)
 | |
| 		batch = (512 * 1024) / PAGE_SIZE;
 | |
| 	batch /= 4;		/* We effectively *= 4 below */
 | |
| 	if (batch < 1)
 | |
| 		batch = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clamp the batch to a 2^n - 1 value. Having a power
 | |
| 	 * of 2 value was found to be more likely to have
 | |
| 	 * suboptimal cache aliasing properties in some cases.
 | |
| 	 *
 | |
| 	 * For example if 2 tasks are alternately allocating
 | |
| 	 * batches of pages, one task can end up with a lot
 | |
| 	 * of pages of one half of the possible page colors
 | |
| 	 * and the other with pages of the other colors.
 | |
| 	 */
 | |
| 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
 | |
| 
 | |
| 	return batch;
 | |
| }
 | |
| 
 | |
| inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
 | |
| {
 | |
| 	struct per_cpu_pages *pcp;
 | |
| 
 | |
| 	memset(p, 0, sizeof(*p));
 | |
| 
 | |
| 	pcp = &p->pcp[0];		/* hot */
 | |
| 	pcp->count = 0;
 | |
| 	pcp->high = 6 * batch;
 | |
| 	pcp->batch = max(1UL, 1 * batch);
 | |
| 	INIT_LIST_HEAD(&pcp->list);
 | |
| 
 | |
| 	pcp = &p->pcp[1];		/* cold*/
 | |
| 	pcp->count = 0;
 | |
| 	pcp->high = 2 * batch;
 | |
| 	pcp->batch = max(1UL, batch/2);
 | |
| 	INIT_LIST_HEAD(&pcp->list);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
 | |
|  * to the value high for the pageset p.
 | |
|  */
 | |
| 
 | |
| static void setup_pagelist_highmark(struct per_cpu_pageset *p,
 | |
| 				unsigned long high)
 | |
| {
 | |
| 	struct per_cpu_pages *pcp;
 | |
| 
 | |
| 	pcp = &p->pcp[0]; /* hot list */
 | |
| 	pcp->high = high;
 | |
| 	pcp->batch = max(1UL, high/4);
 | |
| 	if ((high/4) > (PAGE_SHIFT * 8))
 | |
| 		pcp->batch = PAGE_SHIFT * 8;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * Boot pageset table. One per cpu which is going to be used for all
 | |
|  * zones and all nodes. The parameters will be set in such a way
 | |
|  * that an item put on a list will immediately be handed over to
 | |
|  * the buddy list. This is safe since pageset manipulation is done
 | |
|  * with interrupts disabled.
 | |
|  *
 | |
|  * Some NUMA counter updates may also be caught by the boot pagesets.
 | |
|  *
 | |
|  * The boot_pagesets must be kept even after bootup is complete for
 | |
|  * unused processors and/or zones. They do play a role for bootstrapping
 | |
|  * hotplugged processors.
 | |
|  *
 | |
|  * zoneinfo_show() and maybe other functions do
 | |
|  * not check if the processor is online before following the pageset pointer.
 | |
|  * Other parts of the kernel may not check if the zone is available.
 | |
|  */
 | |
| static struct per_cpu_pageset boot_pageset[NR_CPUS];
 | |
| 
 | |
| /*
 | |
|  * Dynamically allocate memory for the
 | |
|  * per cpu pageset array in struct zone.
 | |
|  */
 | |
| static int __cpuinit process_zones(int cpu)
 | |
| {
 | |
| 	struct zone *zone, *dzone;
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 
 | |
| 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
 | |
| 					 GFP_KERNEL, cpu_to_node(cpu));
 | |
| 		if (!zone_pcp(zone, cpu))
 | |
| 			goto bad;
 | |
| 
 | |
| 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
 | |
| 
 | |
| 		if (percpu_pagelist_fraction)
 | |
| 			setup_pagelist_highmark(zone_pcp(zone, cpu),
 | |
| 			 	(zone->present_pages / percpu_pagelist_fraction));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| bad:
 | |
| 	for_each_zone(dzone) {
 | |
| 		if (dzone == zone)
 | |
| 			break;
 | |
| 		kfree(zone_pcp(dzone, cpu));
 | |
| 		zone_pcp(dzone, cpu) = NULL;
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static inline void free_zone_pagesets(int cpu)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
 | |
| 
 | |
| 		zone_pcp(zone, cpu) = NULL;
 | |
| 		kfree(pset);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int pageset_cpuup_callback(struct notifier_block *nfb,
 | |
| 		unsigned long action,
 | |
| 		void *hcpu)
 | |
| {
 | |
| 	int cpu = (long)hcpu;
 | |
| 	int ret = NOTIFY_OK;
 | |
| 
 | |
| 	switch (action) {
 | |
| 		case CPU_UP_PREPARE:
 | |
| 			if (process_zones(cpu))
 | |
| 				ret = NOTIFY_BAD;
 | |
| 			break;
 | |
| 		case CPU_UP_CANCELED:
 | |
| 		case CPU_DEAD:
 | |
| 			free_zone_pagesets(cpu);
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct notifier_block pageset_notifier =
 | |
| 	{ &pageset_cpuup_callback, NULL, 0 };
 | |
| 
 | |
| void __init setup_per_cpu_pageset(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	/* Initialize per_cpu_pageset for cpu 0.
 | |
| 	 * A cpuup callback will do this for every cpu
 | |
| 	 * as it comes online
 | |
| 	 */
 | |
| 	err = process_zones(smp_processor_id());
 | |
| 	BUG_ON(err);
 | |
| 	register_cpu_notifier(&pageset_notifier);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static __meminit
 | |
| void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
 | |
| {
 | |
| 	int i;
 | |
| 	struct pglist_data *pgdat = zone->zone_pgdat;
 | |
| 
 | |
| 	/*
 | |
| 	 * The per-page waitqueue mechanism uses hashed waitqueues
 | |
| 	 * per zone.
 | |
| 	 */
 | |
| 	zone->wait_table_size = wait_table_size(zone_size_pages);
 | |
| 	zone->wait_table_bits =	wait_table_bits(zone->wait_table_size);
 | |
| 	zone->wait_table = (wait_queue_head_t *)
 | |
| 		alloc_bootmem_node(pgdat, zone->wait_table_size
 | |
| 					* sizeof(wait_queue_head_t));
 | |
| 
 | |
| 	for(i = 0; i < zone->wait_table_size; ++i)
 | |
| 		init_waitqueue_head(zone->wait_table + i);
 | |
| }
 | |
| 
 | |
| static __meminit void zone_pcp_init(struct zone *zone)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long batch = zone_batchsize(zone);
 | |
| 
 | |
| 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
 | |
| #ifdef CONFIG_NUMA
 | |
| 		/* Early boot. Slab allocator not functional yet */
 | |
| 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
 | |
| 		setup_pageset(&boot_pageset[cpu],0);
 | |
| #else
 | |
| 		setup_pageset(zone_pcp(zone,cpu), batch);
 | |
| #endif
 | |
| 	}
 | |
| 	if (zone->present_pages)
 | |
| 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
 | |
| 			zone->name, zone->present_pages, batch);
 | |
| }
 | |
| 
 | |
| static __meminit void init_currently_empty_zone(struct zone *zone,
 | |
| 		unsigned long zone_start_pfn, unsigned long size)
 | |
| {
 | |
| 	struct pglist_data *pgdat = zone->zone_pgdat;
 | |
| 
 | |
| 	zone_wait_table_init(zone, size);
 | |
| 	pgdat->nr_zones = zone_idx(zone) + 1;
 | |
| 
 | |
| 	zone->zone_start_pfn = zone_start_pfn;
 | |
| 
 | |
| 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
 | |
| 
 | |
| 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up the zone data structures:
 | |
|  *   - mark all pages reserved
 | |
|  *   - mark all memory queues empty
 | |
|  *   - clear the memory bitmaps
 | |
|  */
 | |
| static void __init free_area_init_core(struct pglist_data *pgdat,
 | |
| 		unsigned long *zones_size, unsigned long *zholes_size)
 | |
| {
 | |
| 	unsigned long j;
 | |
| 	int nid = pgdat->node_id;
 | |
| 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
 | |
| 
 | |
| 	pgdat_resize_init(pgdat);
 | |
| 	pgdat->nr_zones = 0;
 | |
| 	init_waitqueue_head(&pgdat->kswapd_wait);
 | |
| 	pgdat->kswapd_max_order = 0;
 | |
| 	
 | |
| 	for (j = 0; j < MAX_NR_ZONES; j++) {
 | |
| 		struct zone *zone = pgdat->node_zones + j;
 | |
| 		unsigned long size, realsize;
 | |
| 
 | |
| 		realsize = size = zones_size[j];
 | |
| 		if (zholes_size)
 | |
| 			realsize -= zholes_size[j];
 | |
| 
 | |
| 		if (j < ZONE_HIGHMEM)
 | |
| 			nr_kernel_pages += realsize;
 | |
| 		nr_all_pages += realsize;
 | |
| 
 | |
| 		zone->spanned_pages = size;
 | |
| 		zone->present_pages = realsize;
 | |
| 		zone->name = zone_names[j];
 | |
| 		spin_lock_init(&zone->lock);
 | |
| 		spin_lock_init(&zone->lru_lock);
 | |
| 		zone_seqlock_init(zone);
 | |
| 		zone->zone_pgdat = pgdat;
 | |
| 		zone->free_pages = 0;
 | |
| 
 | |
| 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
 | |
| 
 | |
| 		zone_pcp_init(zone);
 | |
| 		INIT_LIST_HEAD(&zone->active_list);
 | |
| 		INIT_LIST_HEAD(&zone->inactive_list);
 | |
| 		zone->nr_scan_active = 0;
 | |
| 		zone->nr_scan_inactive = 0;
 | |
| 		zone->nr_active = 0;
 | |
| 		zone->nr_inactive = 0;
 | |
| 		atomic_set(&zone->reclaim_in_progress, 0);
 | |
| 		if (!size)
 | |
| 			continue;
 | |
| 
 | |
| 		zonetable_add(zone, nid, j, zone_start_pfn, size);
 | |
| 		init_currently_empty_zone(zone, zone_start_pfn, size);
 | |
| 		zone_start_pfn += size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init alloc_node_mem_map(struct pglist_data *pgdat)
 | |
| {
 | |
| 	/* Skip empty nodes */
 | |
| 	if (!pgdat->node_spanned_pages)
 | |
| 		return;
 | |
| 
 | |
| #ifdef CONFIG_FLAT_NODE_MEM_MAP
 | |
| 	/* ia64 gets its own node_mem_map, before this, without bootmem */
 | |
| 	if (!pgdat->node_mem_map) {
 | |
| 		unsigned long size;
 | |
| 		struct page *map;
 | |
| 
 | |
| 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
 | |
| 		map = alloc_remap(pgdat->node_id, size);
 | |
| 		if (!map)
 | |
| 			map = alloc_bootmem_node(pgdat, size);
 | |
| 		pgdat->node_mem_map = map;
 | |
| 	}
 | |
| #ifdef CONFIG_FLATMEM
 | |
| 	/*
 | |
| 	 * With no DISCONTIG, the global mem_map is just set as node 0's
 | |
| 	 */
 | |
| 	if (pgdat == NODE_DATA(0))
 | |
| 		mem_map = NODE_DATA(0)->node_mem_map;
 | |
| #endif
 | |
| #endif /* CONFIG_FLAT_NODE_MEM_MAP */
 | |
| }
 | |
| 
 | |
| void __init free_area_init_node(int nid, struct pglist_data *pgdat,
 | |
| 		unsigned long *zones_size, unsigned long node_start_pfn,
 | |
| 		unsigned long *zholes_size)
 | |
| {
 | |
| 	pgdat->node_id = nid;
 | |
| 	pgdat->node_start_pfn = node_start_pfn;
 | |
| 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
 | |
| 
 | |
| 	alloc_node_mem_map(pgdat);
 | |
| 
 | |
| 	free_area_init_core(pgdat, zones_size, zholes_size);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_NEED_MULTIPLE_NODES
 | |
| static bootmem_data_t contig_bootmem_data;
 | |
| struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
 | |
| 
 | |
| EXPORT_SYMBOL(contig_page_data);
 | |
| #endif
 | |
| 
 | |
| void __init free_area_init(unsigned long *zones_size)
 | |
| {
 | |
| 	free_area_init_node(0, NODE_DATA(0), zones_size,
 | |
| 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| 
 | |
| #include <linux/seq_file.h>
 | |
| 
 | |
| static void *frag_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	pg_data_t *pgdat;
 | |
| 	loff_t node = *pos;
 | |
| 	for (pgdat = first_online_pgdat();
 | |
| 	     pgdat && node;
 | |
| 	     pgdat = next_online_pgdat(pgdat))
 | |
| 		--node;
 | |
| 
 | |
| 	return pgdat;
 | |
| }
 | |
| 
 | |
| static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
 | |
| {
 | |
| 	pg_data_t *pgdat = (pg_data_t *)arg;
 | |
| 
 | |
| 	(*pos)++;
 | |
| 	return next_online_pgdat(pgdat);
 | |
| }
 | |
| 
 | |
| static void frag_stop(struct seq_file *m, void *arg)
 | |
| {
 | |
| }
 | |
| 
 | |
| /* 
 | |
|  * This walks the free areas for each zone.
 | |
|  */
 | |
| static int frag_show(struct seq_file *m, void *arg)
 | |
| {
 | |
| 	pg_data_t *pgdat = (pg_data_t *)arg;
 | |
| 	struct zone *zone;
 | |
| 	struct zone *node_zones = pgdat->node_zones;
 | |
| 	unsigned long flags;
 | |
| 	int order;
 | |
| 
 | |
| 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
 | |
| 		if (!populated_zone(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock_irqsave(&zone->lock, flags);
 | |
| 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
 | |
| 		for (order = 0; order < MAX_ORDER; ++order)
 | |
| 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
 | |
| 		spin_unlock_irqrestore(&zone->lock, flags);
 | |
| 		seq_putc(m, '\n');
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct seq_operations fragmentation_op = {
 | |
| 	.start	= frag_start,
 | |
| 	.next	= frag_next,
 | |
| 	.stop	= frag_stop,
 | |
| 	.show	= frag_show,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Output information about zones in @pgdat.
 | |
|  */
 | |
| static int zoneinfo_show(struct seq_file *m, void *arg)
 | |
| {
 | |
| 	pg_data_t *pgdat = arg;
 | |
| 	struct zone *zone;
 | |
| 	struct zone *node_zones = pgdat->node_zones;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
 | |
| 		int i;
 | |
| 
 | |
| 		if (!populated_zone(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock_irqsave(&zone->lock, flags);
 | |
| 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
 | |
| 		seq_printf(m,
 | |
| 			   "\n  pages free     %lu"
 | |
| 			   "\n        min      %lu"
 | |
| 			   "\n        low      %lu"
 | |
| 			   "\n        high     %lu"
 | |
| 			   "\n        active   %lu"
 | |
| 			   "\n        inactive %lu"
 | |
| 			   "\n        scanned  %lu (a: %lu i: %lu)"
 | |
| 			   "\n        spanned  %lu"
 | |
| 			   "\n        present  %lu",
 | |
| 			   zone->free_pages,
 | |
| 			   zone->pages_min,
 | |
| 			   zone->pages_low,
 | |
| 			   zone->pages_high,
 | |
| 			   zone->nr_active,
 | |
| 			   zone->nr_inactive,
 | |
| 			   zone->pages_scanned,
 | |
| 			   zone->nr_scan_active, zone->nr_scan_inactive,
 | |
| 			   zone->spanned_pages,
 | |
| 			   zone->present_pages);
 | |
| 		seq_printf(m,
 | |
| 			   "\n        protection: (%lu",
 | |
| 			   zone->lowmem_reserve[0]);
 | |
| 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
 | |
| 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
 | |
| 		seq_printf(m,
 | |
| 			   ")"
 | |
| 			   "\n  pagesets");
 | |
| 		for_each_online_cpu(i) {
 | |
| 			struct per_cpu_pageset *pageset;
 | |
| 			int j;
 | |
| 
 | |
| 			pageset = zone_pcp(zone, i);
 | |
| 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
 | |
| 				if (pageset->pcp[j].count)
 | |
| 					break;
 | |
| 			}
 | |
| 			if (j == ARRAY_SIZE(pageset->pcp))
 | |
| 				continue;
 | |
| 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
 | |
| 				seq_printf(m,
 | |
| 					   "\n    cpu: %i pcp: %i"
 | |
| 					   "\n              count: %i"
 | |
| 					   "\n              high:  %i"
 | |
| 					   "\n              batch: %i",
 | |
| 					   i, j,
 | |
| 					   pageset->pcp[j].count,
 | |
| 					   pageset->pcp[j].high,
 | |
| 					   pageset->pcp[j].batch);
 | |
| 			}
 | |
| #ifdef CONFIG_NUMA
 | |
| 			seq_printf(m,
 | |
| 				   "\n            numa_hit:       %lu"
 | |
| 				   "\n            numa_miss:      %lu"
 | |
| 				   "\n            numa_foreign:   %lu"
 | |
| 				   "\n            interleave_hit: %lu"
 | |
| 				   "\n            local_node:     %lu"
 | |
| 				   "\n            other_node:     %lu",
 | |
| 				   pageset->numa_hit,
 | |
| 				   pageset->numa_miss,
 | |
| 				   pageset->numa_foreign,
 | |
| 				   pageset->interleave_hit,
 | |
| 				   pageset->local_node,
 | |
| 				   pageset->other_node);
 | |
| #endif
 | |
| 		}
 | |
| 		seq_printf(m,
 | |
| 			   "\n  all_unreclaimable: %u"
 | |
| 			   "\n  prev_priority:     %i"
 | |
| 			   "\n  temp_priority:     %i"
 | |
| 			   "\n  start_pfn:         %lu",
 | |
| 			   zone->all_unreclaimable,
 | |
| 			   zone->prev_priority,
 | |
| 			   zone->temp_priority,
 | |
| 			   zone->zone_start_pfn);
 | |
| 		spin_unlock_irqrestore(&zone->lock, flags);
 | |
| 		seq_putc(m, '\n');
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct seq_operations zoneinfo_op = {
 | |
| 	.start	= frag_start, /* iterate over all zones. The same as in
 | |
| 			       * fragmentation. */
 | |
| 	.next	= frag_next,
 | |
| 	.stop	= frag_stop,
 | |
| 	.show	= zoneinfo_show,
 | |
| };
 | |
| 
 | |
| static char *vmstat_text[] = {
 | |
| 	"nr_dirty",
 | |
| 	"nr_writeback",
 | |
| 	"nr_unstable",
 | |
| 	"nr_page_table_pages",
 | |
| 	"nr_mapped",
 | |
| 	"nr_slab",
 | |
| 
 | |
| 	"pgpgin",
 | |
| 	"pgpgout",
 | |
| 	"pswpin",
 | |
| 	"pswpout",
 | |
| 
 | |
| 	"pgalloc_high",
 | |
| 	"pgalloc_normal",
 | |
| 	"pgalloc_dma32",
 | |
| 	"pgalloc_dma",
 | |
| 
 | |
| 	"pgfree",
 | |
| 	"pgactivate",
 | |
| 	"pgdeactivate",
 | |
| 
 | |
| 	"pgfault",
 | |
| 	"pgmajfault",
 | |
| 
 | |
| 	"pgrefill_high",
 | |
| 	"pgrefill_normal",
 | |
| 	"pgrefill_dma32",
 | |
| 	"pgrefill_dma",
 | |
| 
 | |
| 	"pgsteal_high",
 | |
| 	"pgsteal_normal",
 | |
| 	"pgsteal_dma32",
 | |
| 	"pgsteal_dma",
 | |
| 
 | |
| 	"pgscan_kswapd_high",
 | |
| 	"pgscan_kswapd_normal",
 | |
| 	"pgscan_kswapd_dma32",
 | |
| 	"pgscan_kswapd_dma",
 | |
| 
 | |
| 	"pgscan_direct_high",
 | |
| 	"pgscan_direct_normal",
 | |
| 	"pgscan_direct_dma32",
 | |
| 	"pgscan_direct_dma",
 | |
| 
 | |
| 	"pginodesteal",
 | |
| 	"slabs_scanned",
 | |
| 	"kswapd_steal",
 | |
| 	"kswapd_inodesteal",
 | |
| 	"pageoutrun",
 | |
| 	"allocstall",
 | |
| 
 | |
| 	"pgrotated",
 | |
| 	"nr_bounce",
 | |
| };
 | |
| 
 | |
| static void *vmstat_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	struct page_state *ps;
 | |
| 
 | |
| 	if (*pos >= ARRAY_SIZE(vmstat_text))
 | |
| 		return NULL;
 | |
| 
 | |
| 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
 | |
| 	m->private = ps;
 | |
| 	if (!ps)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	get_full_page_state(ps);
 | |
| 	ps->pgpgin /= 2;		/* sectors -> kbytes */
 | |
| 	ps->pgpgout /= 2;
 | |
| 	return (unsigned long *)ps + *pos;
 | |
| }
 | |
| 
 | |
| static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
 | |
| {
 | |
| 	(*pos)++;
 | |
| 	if (*pos >= ARRAY_SIZE(vmstat_text))
 | |
| 		return NULL;
 | |
| 	return (unsigned long *)m->private + *pos;
 | |
| }
 | |
| 
 | |
| static int vmstat_show(struct seq_file *m, void *arg)
 | |
| {
 | |
| 	unsigned long *l = arg;
 | |
| 	unsigned long off = l - (unsigned long *)m->private;
 | |
| 
 | |
| 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void vmstat_stop(struct seq_file *m, void *arg)
 | |
| {
 | |
| 	kfree(m->private);
 | |
| 	m->private = NULL;
 | |
| }
 | |
| 
 | |
| struct seq_operations vmstat_op = {
 | |
| 	.start	= vmstat_start,
 | |
| 	.next	= vmstat_next,
 | |
| 	.stop	= vmstat_stop,
 | |
| 	.show	= vmstat_show,
 | |
| };
 | |
| 
 | |
| #endif /* CONFIG_PROC_FS */
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| static int page_alloc_cpu_notify(struct notifier_block *self,
 | |
| 				 unsigned long action, void *hcpu)
 | |
| {
 | |
| 	int cpu = (unsigned long)hcpu;
 | |
| 	long *count;
 | |
| 	unsigned long *src, *dest;
 | |
| 
 | |
| 	if (action == CPU_DEAD) {
 | |
| 		int i;
 | |
| 
 | |
| 		/* Drain local pagecache count. */
 | |
| 		count = &per_cpu(nr_pagecache_local, cpu);
 | |
| 		atomic_add(*count, &nr_pagecache);
 | |
| 		*count = 0;
 | |
| 		local_irq_disable();
 | |
| 		__drain_pages(cpu);
 | |
| 
 | |
| 		/* Add dead cpu's page_states to our own. */
 | |
| 		dest = (unsigned long *)&__get_cpu_var(page_states);
 | |
| 		src = (unsigned long *)&per_cpu(page_states, cpu);
 | |
| 
 | |
| 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
 | |
| 				i++) {
 | |
| 			dest[i] += src[i];
 | |
| 			src[i] = 0;
 | |
| 		}
 | |
| 
 | |
| 		local_irq_enable();
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| void __init page_alloc_init(void)
 | |
| {
 | |
| 	hotcpu_notifier(page_alloc_cpu_notify, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
 | |
|  *	or min_free_kbytes changes.
 | |
|  */
 | |
| static void calculate_totalreserve_pages(void)
 | |
| {
 | |
| 	struct pglist_data *pgdat;
 | |
| 	unsigned long reserve_pages = 0;
 | |
| 	int i, j;
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat) {
 | |
| 		for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 			struct zone *zone = pgdat->node_zones + i;
 | |
| 			unsigned long max = 0;
 | |
| 
 | |
| 			/* Find valid and maximum lowmem_reserve in the zone */
 | |
| 			for (j = i; j < MAX_NR_ZONES; j++) {
 | |
| 				if (zone->lowmem_reserve[j] > max)
 | |
| 					max = zone->lowmem_reserve[j];
 | |
| 			}
 | |
| 
 | |
| 			/* we treat pages_high as reserved pages. */
 | |
| 			max += zone->pages_high;
 | |
| 
 | |
| 			if (max > zone->present_pages)
 | |
| 				max = zone->present_pages;
 | |
| 			reserve_pages += max;
 | |
| 		}
 | |
| 	}
 | |
| 	totalreserve_pages = reserve_pages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * setup_per_zone_lowmem_reserve - called whenever
 | |
|  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
 | |
|  *	has a correct pages reserved value, so an adequate number of
 | |
|  *	pages are left in the zone after a successful __alloc_pages().
 | |
|  */
 | |
| static void setup_per_zone_lowmem_reserve(void)
 | |
| {
 | |
| 	struct pglist_data *pgdat;
 | |
| 	int j, idx;
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat) {
 | |
| 		for (j = 0; j < MAX_NR_ZONES; j++) {
 | |
| 			struct zone *zone = pgdat->node_zones + j;
 | |
| 			unsigned long present_pages = zone->present_pages;
 | |
| 
 | |
| 			zone->lowmem_reserve[j] = 0;
 | |
| 
 | |
| 			for (idx = j-1; idx >= 0; idx--) {
 | |
| 				struct zone *lower_zone;
 | |
| 
 | |
| 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
 | |
| 					sysctl_lowmem_reserve_ratio[idx] = 1;
 | |
| 
 | |
| 				lower_zone = pgdat->node_zones + idx;
 | |
| 				lower_zone->lowmem_reserve[j] = present_pages /
 | |
| 					sysctl_lowmem_reserve_ratio[idx];
 | |
| 				present_pages += lower_zone->present_pages;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* update totalreserve_pages */
 | |
| 	calculate_totalreserve_pages();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures 
 | |
|  *	that the pages_{min,low,high} values for each zone are set correctly 
 | |
|  *	with respect to min_free_kbytes.
 | |
|  */
 | |
| void setup_per_zone_pages_min(void)
 | |
| {
 | |
| 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
 | |
| 	unsigned long lowmem_pages = 0;
 | |
| 	struct zone *zone;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Calculate total number of !ZONE_HIGHMEM pages */
 | |
| 	for_each_zone(zone) {
 | |
| 		if (!is_highmem(zone))
 | |
| 			lowmem_pages += zone->present_pages;
 | |
| 	}
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 		u64 tmp;
 | |
| 
 | |
| 		spin_lock_irqsave(&zone->lru_lock, flags);
 | |
| 		tmp = (u64)pages_min * zone->present_pages;
 | |
| 		do_div(tmp, lowmem_pages);
 | |
| 		if (is_highmem(zone)) {
 | |
| 			/*
 | |
| 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
 | |
| 			 * need highmem pages, so cap pages_min to a small
 | |
| 			 * value here.
 | |
| 			 *
 | |
| 			 * The (pages_high-pages_low) and (pages_low-pages_min)
 | |
| 			 * deltas controls asynch page reclaim, and so should
 | |
| 			 * not be capped for highmem.
 | |
| 			 */
 | |
| 			int min_pages;
 | |
| 
 | |
| 			min_pages = zone->present_pages / 1024;
 | |
| 			if (min_pages < SWAP_CLUSTER_MAX)
 | |
| 				min_pages = SWAP_CLUSTER_MAX;
 | |
| 			if (min_pages > 128)
 | |
| 				min_pages = 128;
 | |
| 			zone->pages_min = min_pages;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * If it's a lowmem zone, reserve a number of pages
 | |
| 			 * proportionate to the zone's size.
 | |
| 			 */
 | |
| 			zone->pages_min = tmp;
 | |
| 		}
 | |
| 
 | |
| 		zone->pages_low   = zone->pages_min + (tmp >> 2);
 | |
| 		zone->pages_high  = zone->pages_min + (tmp >> 1);
 | |
| 		spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	/* update totalreserve_pages */
 | |
| 	calculate_totalreserve_pages();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialise min_free_kbytes.
 | |
|  *
 | |
|  * For small machines we want it small (128k min).  For large machines
 | |
|  * we want it large (64MB max).  But it is not linear, because network
 | |
|  * bandwidth does not increase linearly with machine size.  We use
 | |
|  *
 | |
|  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
 | |
|  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 | |
|  *
 | |
|  * which yields
 | |
|  *
 | |
|  * 16MB:	512k
 | |
|  * 32MB:	724k
 | |
|  * 64MB:	1024k
 | |
|  * 128MB:	1448k
 | |
|  * 256MB:	2048k
 | |
|  * 512MB:	2896k
 | |
|  * 1024MB:	4096k
 | |
|  * 2048MB:	5792k
 | |
|  * 4096MB:	8192k
 | |
|  * 8192MB:	11584k
 | |
|  * 16384MB:	16384k
 | |
|  */
 | |
| static int __init init_per_zone_pages_min(void)
 | |
| {
 | |
| 	unsigned long lowmem_kbytes;
 | |
| 
 | |
| 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
 | |
| 
 | |
| 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
 | |
| 	if (min_free_kbytes < 128)
 | |
| 		min_free_kbytes = 128;
 | |
| 	if (min_free_kbytes > 65536)
 | |
| 		min_free_kbytes = 65536;
 | |
| 	setup_per_zone_pages_min();
 | |
| 	setup_per_zone_lowmem_reserve();
 | |
| 	return 0;
 | |
| }
 | |
| module_init(init_per_zone_pages_min)
 | |
| 
 | |
| /*
 | |
|  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 
 | |
|  *	that we can call two helper functions whenever min_free_kbytes
 | |
|  *	changes.
 | |
|  */
 | |
| int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 
 | |
| 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	proc_dointvec(table, write, file, buffer, length, ppos);
 | |
| 	setup_per_zone_pages_min();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 | |
|  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 | |
|  *	whenever sysctl_lowmem_reserve_ratio changes.
 | |
|  *
 | |
|  * The reserve ratio obviously has absolutely no relation with the
 | |
|  * pages_min watermarks. The lowmem reserve ratio can only make sense
 | |
|  * if in function of the boot time zone sizes.
 | |
|  */
 | |
| int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
 | |
| 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
 | |
| 	setup_per_zone_lowmem_reserve();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
 | |
|  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
 | |
|  * can have before it gets flushed back to buddy allocator.
 | |
|  */
 | |
| 
 | |
| int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
 | |
| 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned int cpu;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
 | |
| 	if (!write || (ret == -EINVAL))
 | |
| 		return ret;
 | |
| 	for_each_zone(zone) {
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			unsigned long  high;
 | |
| 			high = zone->present_pages / percpu_pagelist_fraction;
 | |
| 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| __initdata int hashdist = HASHDIST_DEFAULT;
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static int __init set_hashdist(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return 0;
 | |
| 	hashdist = simple_strtoul(str, &str, 0);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("hashdist=", set_hashdist);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * allocate a large system hash table from bootmem
 | |
|  * - it is assumed that the hash table must contain an exact power-of-2
 | |
|  *   quantity of entries
 | |
|  * - limit is the number of hash buckets, not the total allocation size
 | |
|  */
 | |
| void *__init alloc_large_system_hash(const char *tablename,
 | |
| 				     unsigned long bucketsize,
 | |
| 				     unsigned long numentries,
 | |
| 				     int scale,
 | |
| 				     int flags,
 | |
| 				     unsigned int *_hash_shift,
 | |
| 				     unsigned int *_hash_mask,
 | |
| 				     unsigned long limit)
 | |
| {
 | |
| 	unsigned long long max = limit;
 | |
| 	unsigned long log2qty, size;
 | |
| 	void *table = NULL;
 | |
| 
 | |
| 	/* allow the kernel cmdline to have a say */
 | |
| 	if (!numentries) {
 | |
| 		/* round applicable memory size up to nearest megabyte */
 | |
| 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
 | |
| 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
 | |
| 		numentries >>= 20 - PAGE_SHIFT;
 | |
| 		numentries <<= 20 - PAGE_SHIFT;
 | |
| 
 | |
| 		/* limit to 1 bucket per 2^scale bytes of low memory */
 | |
| 		if (scale > PAGE_SHIFT)
 | |
| 			numentries >>= (scale - PAGE_SHIFT);
 | |
| 		else
 | |
| 			numentries <<= (PAGE_SHIFT - scale);
 | |
| 	}
 | |
| 	numentries = roundup_pow_of_two(numentries);
 | |
| 
 | |
| 	/* limit allocation size to 1/16 total memory by default */
 | |
| 	if (max == 0) {
 | |
| 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
 | |
| 		do_div(max, bucketsize);
 | |
| 	}
 | |
| 
 | |
| 	if (numentries > max)
 | |
| 		numentries = max;
 | |
| 
 | |
| 	log2qty = long_log2(numentries);
 | |
| 
 | |
| 	do {
 | |
| 		size = bucketsize << log2qty;
 | |
| 		if (flags & HASH_EARLY)
 | |
| 			table = alloc_bootmem(size);
 | |
| 		else if (hashdist)
 | |
| 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
 | |
| 		else {
 | |
| 			unsigned long order;
 | |
| 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
 | |
| 				;
 | |
| 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
 | |
| 		}
 | |
| 	} while (!table && size > PAGE_SIZE && --log2qty);
 | |
| 
 | |
| 	if (!table)
 | |
| 		panic("Failed to allocate %s hash table\n", tablename);
 | |
| 
 | |
| 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
 | |
| 	       tablename,
 | |
| 	       (1U << log2qty),
 | |
| 	       long_log2(size) - PAGE_SHIFT,
 | |
| 	       size);
 | |
| 
 | |
| 	if (_hash_shift)
 | |
| 		*_hash_shift = log2qty;
 | |
| 	if (_hash_mask)
 | |
| 		*_hash_mask = (1 << log2qty) - 1;
 | |
| 
 | |
| 	return table;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
 | |
| /*
 | |
|  * pfn <-> page translation. out-of-line version.
 | |
|  * (see asm-generic/memory_model.h)
 | |
|  */
 | |
| #if defined(CONFIG_FLATMEM)
 | |
| struct page *pfn_to_page(unsigned long pfn)
 | |
| {
 | |
| 	return mem_map + (pfn - ARCH_PFN_OFFSET);
 | |
| }
 | |
| unsigned long page_to_pfn(struct page *page)
 | |
| {
 | |
| 	return (page - mem_map) + ARCH_PFN_OFFSET;
 | |
| }
 | |
| #elif defined(CONFIG_DISCONTIGMEM)
 | |
| struct page *pfn_to_page(unsigned long pfn)
 | |
| {
 | |
| 	int nid = arch_pfn_to_nid(pfn);
 | |
| 	return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid);
 | |
| }
 | |
| unsigned long page_to_pfn(struct page *page)
 | |
| {
 | |
| 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 | |
| 	return (page - pgdat->node_mem_map) + pgdat->node_start_pfn;
 | |
| }
 | |
| #elif defined(CONFIG_SPARSEMEM)
 | |
| struct page *pfn_to_page(unsigned long pfn)
 | |
| {
 | |
| 	return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn;
 | |
| }
 | |
| 
 | |
| unsigned long page_to_pfn(struct page *page)
 | |
| {
 | |
| 	long section_id = page_to_section(page);
 | |
| 	return page - __section_mem_map_addr(__nr_to_section(section_id));
 | |
| }
 | |
| #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
 | |
| EXPORT_SYMBOL(pfn_to_page);
 | |
| EXPORT_SYMBOL(page_to_pfn);
 | |
| #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
 |