mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-18 22:14:16 +00:00 
			
		
		
		
	 85ad1d13ee
			
		
	
	
		85ad1d13ee
		
	
	
	
	
		
			
			Some code waits for a metadata update by: 1. flagging that it is needed (MD_CHANGE_DEVS or MD_CHANGE_CLEAN) 2. setting MD_CHANGE_PENDING and waking the management thread 3. waiting for MD_CHANGE_PENDING to be cleared If the first two are done without locking, the code in md_update_sb() which checks if it needs to repeat might test if an update is needed before step 1, then clear MD_CHANGE_PENDING after step 2, resulting in the wait returning early. So make sure all places that set MD_CHANGE_PENDING are atomicial, and bit_clear_unless (suggested by Neil) is introduced for the purpose. Cc: Martin Kepplinger <martink@posteo.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: <linux-kernel@vger.kernel.org> Reviewed-by: NeilBrown <neilb@suse.com> Signed-off-by: Guoqing Jiang <gqjiang@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
		
			
				
	
	
		
			4664 lines
		
	
	
	
		
			128 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4664 lines
		
	
	
	
		
			128 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * raid10.c : Multiple Devices driver for Linux
 | |
|  *
 | |
|  * Copyright (C) 2000-2004 Neil Brown
 | |
|  *
 | |
|  * RAID-10 support for md.
 | |
|  *
 | |
|  * Base on code in raid1.c.  See raid1.c for further copyright information.
 | |
|  *
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2, or (at your option)
 | |
|  * any later version.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * (for example /usr/src/linux/COPYING); if not, write to the Free
 | |
|  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/kthread.h>
 | |
| #include "md.h"
 | |
| #include "raid10.h"
 | |
| #include "raid0.h"
 | |
| #include "bitmap.h"
 | |
| 
 | |
| /*
 | |
|  * RAID10 provides a combination of RAID0 and RAID1 functionality.
 | |
|  * The layout of data is defined by
 | |
|  *    chunk_size
 | |
|  *    raid_disks
 | |
|  *    near_copies (stored in low byte of layout)
 | |
|  *    far_copies (stored in second byte of layout)
 | |
|  *    far_offset (stored in bit 16 of layout )
 | |
|  *    use_far_sets (stored in bit 17 of layout )
 | |
|  *    use_far_sets_bugfixed (stored in bit 18 of layout )
 | |
|  *
 | |
|  * The data to be stored is divided into chunks using chunksize.  Each device
 | |
|  * is divided into far_copies sections.   In each section, chunks are laid out
 | |
|  * in a style similar to raid0, but near_copies copies of each chunk is stored
 | |
|  * (each on a different drive).  The starting device for each section is offset
 | |
|  * near_copies from the starting device of the previous section.  Thus there
 | |
|  * are (near_copies * far_copies) of each chunk, and each is on a different
 | |
|  * drive.  near_copies and far_copies must be at least one, and their product
 | |
|  * is at most raid_disks.
 | |
|  *
 | |
|  * If far_offset is true, then the far_copies are handled a bit differently.
 | |
|  * The copies are still in different stripes, but instead of being very far
 | |
|  * apart on disk, there are adjacent stripes.
 | |
|  *
 | |
|  * The far and offset algorithms are handled slightly differently if
 | |
|  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
 | |
|  * sets that are (near_copies * far_copies) in size.  The far copied stripes
 | |
|  * are still shifted by 'near_copies' devices, but this shifting stays confined
 | |
|  * to the set rather than the entire array.  This is done to improve the number
 | |
|  * of device combinations that can fail without causing the array to fail.
 | |
|  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
 | |
|  * on a device):
 | |
|  *    A B C D    A B C D E
 | |
|  *      ...         ...
 | |
|  *    D A B C    E A B C D
 | |
|  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
 | |
|  *    [A B] [C D]    [A B] [C D E]
 | |
|  *    |...| |...|    |...| | ... |
 | |
|  *    [B A] [D C]    [B A] [E C D]
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Number of guaranteed r10bios in case of extreme VM load:
 | |
|  */
 | |
| #define	NR_RAID10_BIOS 256
 | |
| 
 | |
| /* when we get a read error on a read-only array, we redirect to another
 | |
|  * device without failing the first device, or trying to over-write to
 | |
|  * correct the read error.  To keep track of bad blocks on a per-bio
 | |
|  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
 | |
|  */
 | |
| #define IO_BLOCKED ((struct bio *)1)
 | |
| /* When we successfully write to a known bad-block, we need to remove the
 | |
|  * bad-block marking which must be done from process context.  So we record
 | |
|  * the success by setting devs[n].bio to IO_MADE_GOOD
 | |
|  */
 | |
| #define IO_MADE_GOOD ((struct bio *)2)
 | |
| 
 | |
| #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
 | |
| 
 | |
| /* When there are this many requests queued to be written by
 | |
|  * the raid10 thread, we become 'congested' to provide back-pressure
 | |
|  * for writeback.
 | |
|  */
 | |
| static int max_queued_requests = 1024;
 | |
| 
 | |
| static void allow_barrier(struct r10conf *conf);
 | |
| static void lower_barrier(struct r10conf *conf);
 | |
| static int _enough(struct r10conf *conf, int previous, int ignore);
 | |
| static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 | |
| 				int *skipped);
 | |
| static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
 | |
| static void end_reshape_write(struct bio *bio);
 | |
| static void end_reshape(struct r10conf *conf);
 | |
| 
 | |
| static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 | |
| {
 | |
| 	struct r10conf *conf = data;
 | |
| 	int size = offsetof(struct r10bio, devs[conf->copies]);
 | |
| 
 | |
| 	/* allocate a r10bio with room for raid_disks entries in the
 | |
| 	 * bios array */
 | |
| 	return kzalloc(size, gfp_flags);
 | |
| }
 | |
| 
 | |
| static void r10bio_pool_free(void *r10_bio, void *data)
 | |
| {
 | |
| 	kfree(r10_bio);
 | |
| }
 | |
| 
 | |
| /* Maximum size of each resync request */
 | |
| #define RESYNC_BLOCK_SIZE (64*1024)
 | |
| #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
 | |
| /* amount of memory to reserve for resync requests */
 | |
| #define RESYNC_WINDOW (1024*1024)
 | |
| /* maximum number of concurrent requests, memory permitting */
 | |
| #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 | |
| 
 | |
| /*
 | |
|  * When performing a resync, we need to read and compare, so
 | |
|  * we need as many pages are there are copies.
 | |
|  * When performing a recovery, we need 2 bios, one for read,
 | |
|  * one for write (we recover only one drive per r10buf)
 | |
|  *
 | |
|  */
 | |
| static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 | |
| {
 | |
| 	struct r10conf *conf = data;
 | |
| 	struct page *page;
 | |
| 	struct r10bio *r10_bio;
 | |
| 	struct bio *bio;
 | |
| 	int i, j;
 | |
| 	int nalloc;
 | |
| 
 | |
| 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 | |
| 	if (!r10_bio)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 | |
| 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 | |
| 		nalloc = conf->copies; /* resync */
 | |
| 	else
 | |
| 		nalloc = 2; /* recovery */
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate bios.
 | |
| 	 */
 | |
| 	for (j = nalloc ; j-- ; ) {
 | |
| 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 | |
| 		if (!bio)
 | |
| 			goto out_free_bio;
 | |
| 		r10_bio->devs[j].bio = bio;
 | |
| 		if (!conf->have_replacement)
 | |
| 			continue;
 | |
| 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 | |
| 		if (!bio)
 | |
| 			goto out_free_bio;
 | |
| 		r10_bio->devs[j].repl_bio = bio;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Allocate RESYNC_PAGES data pages and attach them
 | |
| 	 * where needed.
 | |
| 	 */
 | |
| 	for (j = 0 ; j < nalloc; j++) {
 | |
| 		struct bio *rbio = r10_bio->devs[j].repl_bio;
 | |
| 		bio = r10_bio->devs[j].bio;
 | |
| 		for (i = 0; i < RESYNC_PAGES; i++) {
 | |
| 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
 | |
| 					       &conf->mddev->recovery)) {
 | |
| 				/* we can share bv_page's during recovery
 | |
| 				 * and reshape */
 | |
| 				struct bio *rbio = r10_bio->devs[0].bio;
 | |
| 				page = rbio->bi_io_vec[i].bv_page;
 | |
| 				get_page(page);
 | |
| 			} else
 | |
| 				page = alloc_page(gfp_flags);
 | |
| 			if (unlikely(!page))
 | |
| 				goto out_free_pages;
 | |
| 
 | |
| 			bio->bi_io_vec[i].bv_page = page;
 | |
| 			if (rbio)
 | |
| 				rbio->bi_io_vec[i].bv_page = page;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return r10_bio;
 | |
| 
 | |
| out_free_pages:
 | |
| 	for ( ; i > 0 ; i--)
 | |
| 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
 | |
| 	while (j--)
 | |
| 		for (i = 0; i < RESYNC_PAGES ; i++)
 | |
| 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 | |
| 	j = 0;
 | |
| out_free_bio:
 | |
| 	for ( ; j < nalloc; j++) {
 | |
| 		if (r10_bio->devs[j].bio)
 | |
| 			bio_put(r10_bio->devs[j].bio);
 | |
| 		if (r10_bio->devs[j].repl_bio)
 | |
| 			bio_put(r10_bio->devs[j].repl_bio);
 | |
| 	}
 | |
| 	r10bio_pool_free(r10_bio, conf);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void r10buf_pool_free(void *__r10_bio, void *data)
 | |
| {
 | |
| 	int i;
 | |
| 	struct r10conf *conf = data;
 | |
| 	struct r10bio *r10bio = __r10_bio;
 | |
| 	int j;
 | |
| 
 | |
| 	for (j=0; j < conf->copies; j++) {
 | |
| 		struct bio *bio = r10bio->devs[j].bio;
 | |
| 		if (bio) {
 | |
| 			for (i = 0; i < RESYNC_PAGES; i++) {
 | |
| 				safe_put_page(bio->bi_io_vec[i].bv_page);
 | |
| 				bio->bi_io_vec[i].bv_page = NULL;
 | |
| 			}
 | |
| 			bio_put(bio);
 | |
| 		}
 | |
| 		bio = r10bio->devs[j].repl_bio;
 | |
| 		if (bio)
 | |
| 			bio_put(bio);
 | |
| 	}
 | |
| 	r10bio_pool_free(r10bio, conf);
 | |
| }
 | |
| 
 | |
| static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < conf->copies; i++) {
 | |
| 		struct bio **bio = & r10_bio->devs[i].bio;
 | |
| 		if (!BIO_SPECIAL(*bio))
 | |
| 			bio_put(*bio);
 | |
| 		*bio = NULL;
 | |
| 		bio = &r10_bio->devs[i].repl_bio;
 | |
| 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 | |
| 			bio_put(*bio);
 | |
| 		*bio = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void free_r10bio(struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 
 | |
| 	put_all_bios(conf, r10_bio);
 | |
| 	mempool_free(r10_bio, conf->r10bio_pool);
 | |
| }
 | |
| 
 | |
| static void put_buf(struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 
 | |
| 	mempool_free(r10_bio, conf->r10buf_pool);
 | |
| 
 | |
| 	lower_barrier(conf);
 | |
| }
 | |
| 
 | |
| static void reschedule_retry(struct r10bio *r10_bio)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct mddev *mddev = r10_bio->mddev;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 	list_add(&r10_bio->retry_list, &conf->retry_list);
 | |
| 	conf->nr_queued ++;
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 
 | |
| 	/* wake up frozen array... */
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| 
 | |
| 	md_wakeup_thread(mddev->thread);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * raid_end_bio_io() is called when we have finished servicing a mirrored
 | |
|  * operation and are ready to return a success/failure code to the buffer
 | |
|  * cache layer.
 | |
|  */
 | |
| static void raid_end_bio_io(struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct bio *bio = r10_bio->master_bio;
 | |
| 	int done;
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 
 | |
| 	if (bio->bi_phys_segments) {
 | |
| 		unsigned long flags;
 | |
| 		spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 		bio->bi_phys_segments--;
 | |
| 		done = (bio->bi_phys_segments == 0);
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 	} else
 | |
| 		done = 1;
 | |
| 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 | |
| 		bio->bi_error = -EIO;
 | |
| 	if (done) {
 | |
| 		bio_endio(bio);
 | |
| 		/*
 | |
| 		 * Wake up any possible resync thread that waits for the device
 | |
| 		 * to go idle.
 | |
| 		 */
 | |
| 		allow_barrier(conf);
 | |
| 	}
 | |
| 	free_r10bio(r10_bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update disk head position estimator based on IRQ completion info.
 | |
|  */
 | |
| static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 
 | |
| 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 | |
| 		r10_bio->devs[slot].addr + (r10_bio->sectors);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the disk number which triggered given bio
 | |
|  */
 | |
| static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 | |
| 			 struct bio *bio, int *slotp, int *replp)
 | |
| {
 | |
| 	int slot;
 | |
| 	int repl = 0;
 | |
| 
 | |
| 	for (slot = 0; slot < conf->copies; slot++) {
 | |
| 		if (r10_bio->devs[slot].bio == bio)
 | |
| 			break;
 | |
| 		if (r10_bio->devs[slot].repl_bio == bio) {
 | |
| 			repl = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(slot == conf->copies);
 | |
| 	update_head_pos(slot, r10_bio);
 | |
| 
 | |
| 	if (slotp)
 | |
| 		*slotp = slot;
 | |
| 	if (replp)
 | |
| 		*replp = repl;
 | |
| 	return r10_bio->devs[slot].devnum;
 | |
| }
 | |
| 
 | |
| static void raid10_end_read_request(struct bio *bio)
 | |
| {
 | |
| 	int uptodate = !bio->bi_error;
 | |
| 	struct r10bio *r10_bio = bio->bi_private;
 | |
| 	int slot, dev;
 | |
| 	struct md_rdev *rdev;
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 
 | |
| 	slot = r10_bio->read_slot;
 | |
| 	dev = r10_bio->devs[slot].devnum;
 | |
| 	rdev = r10_bio->devs[slot].rdev;
 | |
| 	/*
 | |
| 	 * this branch is our 'one mirror IO has finished' event handler:
 | |
| 	 */
 | |
| 	update_head_pos(slot, r10_bio);
 | |
| 
 | |
| 	if (uptodate) {
 | |
| 		/*
 | |
| 		 * Set R10BIO_Uptodate in our master bio, so that
 | |
| 		 * we will return a good error code to the higher
 | |
| 		 * levels even if IO on some other mirrored buffer fails.
 | |
| 		 *
 | |
| 		 * The 'master' represents the composite IO operation to
 | |
| 		 * user-side. So if something waits for IO, then it will
 | |
| 		 * wait for the 'master' bio.
 | |
| 		 */
 | |
| 		set_bit(R10BIO_Uptodate, &r10_bio->state);
 | |
| 	} else {
 | |
| 		/* If all other devices that store this block have
 | |
| 		 * failed, we want to return the error upwards rather
 | |
| 		 * than fail the last device.  Here we redefine
 | |
| 		 * "uptodate" to mean "Don't want to retry"
 | |
| 		 */
 | |
| 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 | |
| 			     rdev->raid_disk))
 | |
| 			uptodate = 1;
 | |
| 	}
 | |
| 	if (uptodate) {
 | |
| 		raid_end_bio_io(r10_bio);
 | |
| 		rdev_dec_pending(rdev, conf->mddev);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * oops, read error - keep the refcount on the rdev
 | |
| 		 */
 | |
| 		char b[BDEVNAME_SIZE];
 | |
| 		printk_ratelimited(KERN_ERR
 | |
| 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
 | |
| 				   mdname(conf->mddev),
 | |
| 				   bdevname(rdev->bdev, b),
 | |
| 				   (unsigned long long)r10_bio->sector);
 | |
| 		set_bit(R10BIO_ReadError, &r10_bio->state);
 | |
| 		reschedule_retry(r10_bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void close_write(struct r10bio *r10_bio)
 | |
| {
 | |
| 	/* clear the bitmap if all writes complete successfully */
 | |
| 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 | |
| 			r10_bio->sectors,
 | |
| 			!test_bit(R10BIO_Degraded, &r10_bio->state),
 | |
| 			0);
 | |
| 	md_write_end(r10_bio->mddev);
 | |
| }
 | |
| 
 | |
| static void one_write_done(struct r10bio *r10_bio)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&r10_bio->remaining)) {
 | |
| 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 | |
| 			reschedule_retry(r10_bio);
 | |
| 		else {
 | |
| 			close_write(r10_bio);
 | |
| 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 | |
| 				reschedule_retry(r10_bio);
 | |
| 			else
 | |
| 				raid_end_bio_io(r10_bio);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void raid10_end_write_request(struct bio *bio)
 | |
| {
 | |
| 	struct r10bio *r10_bio = bio->bi_private;
 | |
| 	int dev;
 | |
| 	int dec_rdev = 1;
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 	int slot, repl;
 | |
| 	struct md_rdev *rdev = NULL;
 | |
| 
 | |
| 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 | |
| 
 | |
| 	if (repl)
 | |
| 		rdev = conf->mirrors[dev].replacement;
 | |
| 	if (!rdev) {
 | |
| 		smp_rmb();
 | |
| 		repl = 0;
 | |
| 		rdev = conf->mirrors[dev].rdev;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * this branch is our 'one mirror IO has finished' event handler:
 | |
| 	 */
 | |
| 	if (bio->bi_error) {
 | |
| 		if (repl)
 | |
| 			/* Never record new bad blocks to replacement,
 | |
| 			 * just fail it.
 | |
| 			 */
 | |
| 			md_error(rdev->mddev, rdev);
 | |
| 		else {
 | |
| 			set_bit(WriteErrorSeen,	&rdev->flags);
 | |
| 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 | |
| 				set_bit(MD_RECOVERY_NEEDED,
 | |
| 					&rdev->mddev->recovery);
 | |
| 			set_bit(R10BIO_WriteError, &r10_bio->state);
 | |
| 			dec_rdev = 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Set R10BIO_Uptodate in our master bio, so that
 | |
| 		 * we will return a good error code for to the higher
 | |
| 		 * levels even if IO on some other mirrored buffer fails.
 | |
| 		 *
 | |
| 		 * The 'master' represents the composite IO operation to
 | |
| 		 * user-side. So if something waits for IO, then it will
 | |
| 		 * wait for the 'master' bio.
 | |
| 		 */
 | |
| 		sector_t first_bad;
 | |
| 		int bad_sectors;
 | |
| 
 | |
| 		/*
 | |
| 		 * Do not set R10BIO_Uptodate if the current device is
 | |
| 		 * rebuilding or Faulty. This is because we cannot use
 | |
| 		 * such device for properly reading the data back (we could
 | |
| 		 * potentially use it, if the current write would have felt
 | |
| 		 * before rdev->recovery_offset, but for simplicity we don't
 | |
| 		 * check this here.
 | |
| 		 */
 | |
| 		if (test_bit(In_sync, &rdev->flags) &&
 | |
| 		    !test_bit(Faulty, &rdev->flags))
 | |
| 			set_bit(R10BIO_Uptodate, &r10_bio->state);
 | |
| 
 | |
| 		/* Maybe we can clear some bad blocks. */
 | |
| 		if (is_badblock(rdev,
 | |
| 				r10_bio->devs[slot].addr,
 | |
| 				r10_bio->sectors,
 | |
| 				&first_bad, &bad_sectors)) {
 | |
| 			bio_put(bio);
 | |
| 			if (repl)
 | |
| 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 | |
| 			else
 | |
| 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 | |
| 			dec_rdev = 0;
 | |
| 			set_bit(R10BIO_MadeGood, &r10_bio->state);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *
 | |
| 	 * Let's see if all mirrored write operations have finished
 | |
| 	 * already.
 | |
| 	 */
 | |
| 	one_write_done(r10_bio);
 | |
| 	if (dec_rdev)
 | |
| 		rdev_dec_pending(rdev, conf->mddev);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RAID10 layout manager
 | |
|  * As well as the chunksize and raid_disks count, there are two
 | |
|  * parameters: near_copies and far_copies.
 | |
|  * near_copies * far_copies must be <= raid_disks.
 | |
|  * Normally one of these will be 1.
 | |
|  * If both are 1, we get raid0.
 | |
|  * If near_copies == raid_disks, we get raid1.
 | |
|  *
 | |
|  * Chunks are laid out in raid0 style with near_copies copies of the
 | |
|  * first chunk, followed by near_copies copies of the next chunk and
 | |
|  * so on.
 | |
|  * If far_copies > 1, then after 1/far_copies of the array has been assigned
 | |
|  * as described above, we start again with a device offset of near_copies.
 | |
|  * So we effectively have another copy of the whole array further down all
 | |
|  * the drives, but with blocks on different drives.
 | |
|  * With this layout, and block is never stored twice on the one device.
 | |
|  *
 | |
|  * raid10_find_phys finds the sector offset of a given virtual sector
 | |
|  * on each device that it is on.
 | |
|  *
 | |
|  * raid10_find_virt does the reverse mapping, from a device and a
 | |
|  * sector offset to a virtual address
 | |
|  */
 | |
| 
 | |
| static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 | |
| {
 | |
| 	int n,f;
 | |
| 	sector_t sector;
 | |
| 	sector_t chunk;
 | |
| 	sector_t stripe;
 | |
| 	int dev;
 | |
| 	int slot = 0;
 | |
| 	int last_far_set_start, last_far_set_size;
 | |
| 
 | |
| 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 | |
| 	last_far_set_start *= geo->far_set_size;
 | |
| 
 | |
| 	last_far_set_size = geo->far_set_size;
 | |
| 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
 | |
| 
 | |
| 	/* now calculate first sector/dev */
 | |
| 	chunk = r10bio->sector >> geo->chunk_shift;
 | |
| 	sector = r10bio->sector & geo->chunk_mask;
 | |
| 
 | |
| 	chunk *= geo->near_copies;
 | |
| 	stripe = chunk;
 | |
| 	dev = sector_div(stripe, geo->raid_disks);
 | |
| 	if (geo->far_offset)
 | |
| 		stripe *= geo->far_copies;
 | |
| 
 | |
| 	sector += stripe << geo->chunk_shift;
 | |
| 
 | |
| 	/* and calculate all the others */
 | |
| 	for (n = 0; n < geo->near_copies; n++) {
 | |
| 		int d = dev;
 | |
| 		int set;
 | |
| 		sector_t s = sector;
 | |
| 		r10bio->devs[slot].devnum = d;
 | |
| 		r10bio->devs[slot].addr = s;
 | |
| 		slot++;
 | |
| 
 | |
| 		for (f = 1; f < geo->far_copies; f++) {
 | |
| 			set = d / geo->far_set_size;
 | |
| 			d += geo->near_copies;
 | |
| 
 | |
| 			if ((geo->raid_disks % geo->far_set_size) &&
 | |
| 			    (d > last_far_set_start)) {
 | |
| 				d -= last_far_set_start;
 | |
| 				d %= last_far_set_size;
 | |
| 				d += last_far_set_start;
 | |
| 			} else {
 | |
| 				d %= geo->far_set_size;
 | |
| 				d += geo->far_set_size * set;
 | |
| 			}
 | |
| 			s += geo->stride;
 | |
| 			r10bio->devs[slot].devnum = d;
 | |
| 			r10bio->devs[slot].addr = s;
 | |
| 			slot++;
 | |
| 		}
 | |
| 		dev++;
 | |
| 		if (dev >= geo->raid_disks) {
 | |
| 			dev = 0;
 | |
| 			sector += (geo->chunk_mask + 1);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 | |
| {
 | |
| 	struct geom *geo = &conf->geo;
 | |
| 
 | |
| 	if (conf->reshape_progress != MaxSector &&
 | |
| 	    ((r10bio->sector >= conf->reshape_progress) !=
 | |
| 	     conf->mddev->reshape_backwards)) {
 | |
| 		set_bit(R10BIO_Previous, &r10bio->state);
 | |
| 		geo = &conf->prev;
 | |
| 	} else
 | |
| 		clear_bit(R10BIO_Previous, &r10bio->state);
 | |
| 
 | |
| 	__raid10_find_phys(geo, r10bio);
 | |
| }
 | |
| 
 | |
| static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 | |
| {
 | |
| 	sector_t offset, chunk, vchunk;
 | |
| 	/* Never use conf->prev as this is only called during resync
 | |
| 	 * or recovery, so reshape isn't happening
 | |
| 	 */
 | |
| 	struct geom *geo = &conf->geo;
 | |
| 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 | |
| 	int far_set_size = geo->far_set_size;
 | |
| 	int last_far_set_start;
 | |
| 
 | |
| 	if (geo->raid_disks % geo->far_set_size) {
 | |
| 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 | |
| 		last_far_set_start *= geo->far_set_size;
 | |
| 
 | |
| 		if (dev >= last_far_set_start) {
 | |
| 			far_set_size = geo->far_set_size;
 | |
| 			far_set_size += (geo->raid_disks % geo->far_set_size);
 | |
| 			far_set_start = last_far_set_start;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	offset = sector & geo->chunk_mask;
 | |
| 	if (geo->far_offset) {
 | |
| 		int fc;
 | |
| 		chunk = sector >> geo->chunk_shift;
 | |
| 		fc = sector_div(chunk, geo->far_copies);
 | |
| 		dev -= fc * geo->near_copies;
 | |
| 		if (dev < far_set_start)
 | |
| 			dev += far_set_size;
 | |
| 	} else {
 | |
| 		while (sector >= geo->stride) {
 | |
| 			sector -= geo->stride;
 | |
| 			if (dev < (geo->near_copies + far_set_start))
 | |
| 				dev += far_set_size - geo->near_copies;
 | |
| 			else
 | |
| 				dev -= geo->near_copies;
 | |
| 		}
 | |
| 		chunk = sector >> geo->chunk_shift;
 | |
| 	}
 | |
| 	vchunk = chunk * geo->raid_disks + dev;
 | |
| 	sector_div(vchunk, geo->near_copies);
 | |
| 	return (vchunk << geo->chunk_shift) + offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine returns the disk from which the requested read should
 | |
|  * be done. There is a per-array 'next expected sequential IO' sector
 | |
|  * number - if this matches on the next IO then we use the last disk.
 | |
|  * There is also a per-disk 'last know head position' sector that is
 | |
|  * maintained from IRQ contexts, both the normal and the resync IO
 | |
|  * completion handlers update this position correctly. If there is no
 | |
|  * perfect sequential match then we pick the disk whose head is closest.
 | |
|  *
 | |
|  * If there are 2 mirrors in the same 2 devices, performance degrades
 | |
|  * because position is mirror, not device based.
 | |
|  *
 | |
|  * The rdev for the device selected will have nr_pending incremented.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * FIXME: possibly should rethink readbalancing and do it differently
 | |
|  * depending on near_copies / far_copies geometry.
 | |
|  */
 | |
| static struct md_rdev *read_balance(struct r10conf *conf,
 | |
| 				    struct r10bio *r10_bio,
 | |
| 				    int *max_sectors)
 | |
| {
 | |
| 	const sector_t this_sector = r10_bio->sector;
 | |
| 	int disk, slot;
 | |
| 	int sectors = r10_bio->sectors;
 | |
| 	int best_good_sectors;
 | |
| 	sector_t new_distance, best_dist;
 | |
| 	struct md_rdev *best_rdev, *rdev = NULL;
 | |
| 	int do_balance;
 | |
| 	int best_slot;
 | |
| 	struct geom *geo = &conf->geo;
 | |
| 
 | |
| 	raid10_find_phys(conf, r10_bio);
 | |
| 	rcu_read_lock();
 | |
| retry:
 | |
| 	sectors = r10_bio->sectors;
 | |
| 	best_slot = -1;
 | |
| 	best_rdev = NULL;
 | |
| 	best_dist = MaxSector;
 | |
| 	best_good_sectors = 0;
 | |
| 	do_balance = 1;
 | |
| 	/*
 | |
| 	 * Check if we can balance. We can balance on the whole
 | |
| 	 * device if no resync is going on (recovery is ok), or below
 | |
| 	 * the resync window. We take the first readable disk when
 | |
| 	 * above the resync window.
 | |
| 	 */
 | |
| 	if (conf->mddev->recovery_cp < MaxSector
 | |
| 	    && (this_sector + sectors >= conf->next_resync))
 | |
| 		do_balance = 0;
 | |
| 
 | |
| 	for (slot = 0; slot < conf->copies ; slot++) {
 | |
| 		sector_t first_bad;
 | |
| 		int bad_sectors;
 | |
| 		sector_t dev_sector;
 | |
| 
 | |
| 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 | |
| 			continue;
 | |
| 		disk = r10_bio->devs[slot].devnum;
 | |
| 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
 | |
| 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 | |
| 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 | |
| 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
 | |
| 		if (rdev == NULL ||
 | |
| 		    test_bit(Faulty, &rdev->flags))
 | |
| 			continue;
 | |
| 		if (!test_bit(In_sync, &rdev->flags) &&
 | |
| 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 | |
| 			continue;
 | |
| 
 | |
| 		dev_sector = r10_bio->devs[slot].addr;
 | |
| 		if (is_badblock(rdev, dev_sector, sectors,
 | |
| 				&first_bad, &bad_sectors)) {
 | |
| 			if (best_dist < MaxSector)
 | |
| 				/* Already have a better slot */
 | |
| 				continue;
 | |
| 			if (first_bad <= dev_sector) {
 | |
| 				/* Cannot read here.  If this is the
 | |
| 				 * 'primary' device, then we must not read
 | |
| 				 * beyond 'bad_sectors' from another device.
 | |
| 				 */
 | |
| 				bad_sectors -= (dev_sector - first_bad);
 | |
| 				if (!do_balance && sectors > bad_sectors)
 | |
| 					sectors = bad_sectors;
 | |
| 				if (best_good_sectors > sectors)
 | |
| 					best_good_sectors = sectors;
 | |
| 			} else {
 | |
| 				sector_t good_sectors =
 | |
| 					first_bad - dev_sector;
 | |
| 				if (good_sectors > best_good_sectors) {
 | |
| 					best_good_sectors = good_sectors;
 | |
| 					best_slot = slot;
 | |
| 					best_rdev = rdev;
 | |
| 				}
 | |
| 				if (!do_balance)
 | |
| 					/* Must read from here */
 | |
| 					break;
 | |
| 			}
 | |
| 			continue;
 | |
| 		} else
 | |
| 			best_good_sectors = sectors;
 | |
| 
 | |
| 		if (!do_balance)
 | |
| 			break;
 | |
| 
 | |
| 		/* This optimisation is debatable, and completely destroys
 | |
| 		 * sequential read speed for 'far copies' arrays.  So only
 | |
| 		 * keep it for 'near' arrays, and review those later.
 | |
| 		 */
 | |
| 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 | |
| 			break;
 | |
| 
 | |
| 		/* for far > 1 always use the lowest address */
 | |
| 		if (geo->far_copies > 1)
 | |
| 			new_distance = r10_bio->devs[slot].addr;
 | |
| 		else
 | |
| 			new_distance = abs(r10_bio->devs[slot].addr -
 | |
| 					   conf->mirrors[disk].head_position);
 | |
| 		if (new_distance < best_dist) {
 | |
| 			best_dist = new_distance;
 | |
| 			best_slot = slot;
 | |
| 			best_rdev = rdev;
 | |
| 		}
 | |
| 	}
 | |
| 	if (slot >= conf->copies) {
 | |
| 		slot = best_slot;
 | |
| 		rdev = best_rdev;
 | |
| 	}
 | |
| 
 | |
| 	if (slot >= 0) {
 | |
| 		atomic_inc(&rdev->nr_pending);
 | |
| 		if (test_bit(Faulty, &rdev->flags)) {
 | |
| 			/* Cannot risk returning a device that failed
 | |
| 			 * before we inc'ed nr_pending
 | |
| 			 */
 | |
| 			rdev_dec_pending(rdev, conf->mddev);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		r10_bio->read_slot = slot;
 | |
| 	} else
 | |
| 		rdev = NULL;
 | |
| 	rcu_read_unlock();
 | |
| 	*max_sectors = best_good_sectors;
 | |
| 
 | |
| 	return rdev;
 | |
| }
 | |
| 
 | |
| static int raid10_congested(struct mddev *mddev, int bits)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int i, ret = 0;
 | |
| 
 | |
| 	if ((bits & (1 << WB_async_congested)) &&
 | |
| 	    conf->pending_count >= max_queued_requests)
 | |
| 		return 1;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (i = 0;
 | |
| 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 | |
| 		     && ret == 0;
 | |
| 	     i++) {
 | |
| 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 | |
| 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 | |
| 			struct request_queue *q = bdev_get_queue(rdev->bdev);
 | |
| 
 | |
| 			ret |= bdi_congested(&q->backing_dev_info, bits);
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void flush_pending_writes(struct r10conf *conf)
 | |
| {
 | |
| 	/* Any writes that have been queued but are awaiting
 | |
| 	 * bitmap updates get flushed here.
 | |
| 	 */
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 
 | |
| 	if (conf->pending_bio_list.head) {
 | |
| 		struct bio *bio;
 | |
| 		bio = bio_list_get(&conf->pending_bio_list);
 | |
| 		conf->pending_count = 0;
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 		/* flush any pending bitmap writes to disk
 | |
| 		 * before proceeding w/ I/O */
 | |
| 		bitmap_unplug(conf->mddev->bitmap);
 | |
| 		wake_up(&conf->wait_barrier);
 | |
| 
 | |
| 		while (bio) { /* submit pending writes */
 | |
| 			struct bio *next = bio->bi_next;
 | |
| 			bio->bi_next = NULL;
 | |
| 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 | |
| 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 | |
| 				/* Just ignore it */
 | |
| 				bio_endio(bio);
 | |
| 			else
 | |
| 				generic_make_request(bio);
 | |
| 			bio = next;
 | |
| 		}
 | |
| 	} else
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| }
 | |
| 
 | |
| /* Barriers....
 | |
|  * Sometimes we need to suspend IO while we do something else,
 | |
|  * either some resync/recovery, or reconfigure the array.
 | |
|  * To do this we raise a 'barrier'.
 | |
|  * The 'barrier' is a counter that can be raised multiple times
 | |
|  * to count how many activities are happening which preclude
 | |
|  * normal IO.
 | |
|  * We can only raise the barrier if there is no pending IO.
 | |
|  * i.e. if nr_pending == 0.
 | |
|  * We choose only to raise the barrier if no-one is waiting for the
 | |
|  * barrier to go down.  This means that as soon as an IO request
 | |
|  * is ready, no other operations which require a barrier will start
 | |
|  * until the IO request has had a chance.
 | |
|  *
 | |
|  * So: regular IO calls 'wait_barrier'.  When that returns there
 | |
|  *    is no backgroup IO happening,  It must arrange to call
 | |
|  *    allow_barrier when it has finished its IO.
 | |
|  * backgroup IO calls must call raise_barrier.  Once that returns
 | |
|  *    there is no normal IO happeing.  It must arrange to call
 | |
|  *    lower_barrier when the particular background IO completes.
 | |
|  */
 | |
| 
 | |
| static void raise_barrier(struct r10conf *conf, int force)
 | |
| {
 | |
| 	BUG_ON(force && !conf->barrier);
 | |
| 	spin_lock_irq(&conf->resync_lock);
 | |
| 
 | |
| 	/* Wait until no block IO is waiting (unless 'force') */
 | |
| 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 | |
| 			    conf->resync_lock);
 | |
| 
 | |
| 	/* block any new IO from starting */
 | |
| 	conf->barrier++;
 | |
| 
 | |
| 	/* Now wait for all pending IO to complete */
 | |
| 	wait_event_lock_irq(conf->wait_barrier,
 | |
| 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 | |
| 			    conf->resync_lock);
 | |
| 
 | |
| 	spin_unlock_irq(&conf->resync_lock);
 | |
| }
 | |
| 
 | |
| static void lower_barrier(struct r10conf *conf)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	spin_lock_irqsave(&conf->resync_lock, flags);
 | |
| 	conf->barrier--;
 | |
| 	spin_unlock_irqrestore(&conf->resync_lock, flags);
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| }
 | |
| 
 | |
| static void wait_barrier(struct r10conf *conf)
 | |
| {
 | |
| 	spin_lock_irq(&conf->resync_lock);
 | |
| 	if (conf->barrier) {
 | |
| 		conf->nr_waiting++;
 | |
| 		/* Wait for the barrier to drop.
 | |
| 		 * However if there are already pending
 | |
| 		 * requests (preventing the barrier from
 | |
| 		 * rising completely), and the
 | |
| 		 * pre-process bio queue isn't empty,
 | |
| 		 * then don't wait, as we need to empty
 | |
| 		 * that queue to get the nr_pending
 | |
| 		 * count down.
 | |
| 		 */
 | |
| 		wait_event_lock_irq(conf->wait_barrier,
 | |
| 				    !conf->barrier ||
 | |
| 				    (conf->nr_pending &&
 | |
| 				     current->bio_list &&
 | |
| 				     !bio_list_empty(current->bio_list)),
 | |
| 				    conf->resync_lock);
 | |
| 		conf->nr_waiting--;
 | |
| 	}
 | |
| 	conf->nr_pending++;
 | |
| 	spin_unlock_irq(&conf->resync_lock);
 | |
| }
 | |
| 
 | |
| static void allow_barrier(struct r10conf *conf)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	spin_lock_irqsave(&conf->resync_lock, flags);
 | |
| 	conf->nr_pending--;
 | |
| 	spin_unlock_irqrestore(&conf->resync_lock, flags);
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| }
 | |
| 
 | |
| static void freeze_array(struct r10conf *conf, int extra)
 | |
| {
 | |
| 	/* stop syncio and normal IO and wait for everything to
 | |
| 	 * go quiet.
 | |
| 	 * We increment barrier and nr_waiting, and then
 | |
| 	 * wait until nr_pending match nr_queued+extra
 | |
| 	 * This is called in the context of one normal IO request
 | |
| 	 * that has failed. Thus any sync request that might be pending
 | |
| 	 * will be blocked by nr_pending, and we need to wait for
 | |
| 	 * pending IO requests to complete or be queued for re-try.
 | |
| 	 * Thus the number queued (nr_queued) plus this request (extra)
 | |
| 	 * must match the number of pending IOs (nr_pending) before
 | |
| 	 * we continue.
 | |
| 	 */
 | |
| 	spin_lock_irq(&conf->resync_lock);
 | |
| 	conf->barrier++;
 | |
| 	conf->nr_waiting++;
 | |
| 	wait_event_lock_irq_cmd(conf->wait_barrier,
 | |
| 				conf->nr_pending == conf->nr_queued+extra,
 | |
| 				conf->resync_lock,
 | |
| 				flush_pending_writes(conf));
 | |
| 
 | |
| 	spin_unlock_irq(&conf->resync_lock);
 | |
| }
 | |
| 
 | |
| static void unfreeze_array(struct r10conf *conf)
 | |
| {
 | |
| 	/* reverse the effect of the freeze */
 | |
| 	spin_lock_irq(&conf->resync_lock);
 | |
| 	conf->barrier--;
 | |
| 	conf->nr_waiting--;
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| 	spin_unlock_irq(&conf->resync_lock);
 | |
| }
 | |
| 
 | |
| static sector_t choose_data_offset(struct r10bio *r10_bio,
 | |
| 				   struct md_rdev *rdev)
 | |
| {
 | |
| 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
 | |
| 	    test_bit(R10BIO_Previous, &r10_bio->state))
 | |
| 		return rdev->data_offset;
 | |
| 	else
 | |
| 		return rdev->new_data_offset;
 | |
| }
 | |
| 
 | |
| struct raid10_plug_cb {
 | |
| 	struct blk_plug_cb	cb;
 | |
| 	struct bio_list		pending;
 | |
| 	int			pending_cnt;
 | |
| };
 | |
| 
 | |
| static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
 | |
| {
 | |
| 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
 | |
| 						   cb);
 | |
| 	struct mddev *mddev = plug->cb.data;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	if (from_schedule || current->bio_list) {
 | |
| 		spin_lock_irq(&conf->device_lock);
 | |
| 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
 | |
| 		conf->pending_count += plug->pending_cnt;
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 		wake_up(&conf->wait_barrier);
 | |
| 		md_wakeup_thread(mddev->thread);
 | |
| 		kfree(plug);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* we aren't scheduling, so we can do the write-out directly. */
 | |
| 	bio = bio_list_get(&plug->pending);
 | |
| 	bitmap_unplug(mddev->bitmap);
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| 
 | |
| 	while (bio) { /* submit pending writes */
 | |
| 		struct bio *next = bio->bi_next;
 | |
| 		bio->bi_next = NULL;
 | |
| 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 | |
| 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 | |
| 			/* Just ignore it */
 | |
| 			bio_endio(bio);
 | |
| 		else
 | |
| 			generic_make_request(bio);
 | |
| 		bio = next;
 | |
| 	}
 | |
| 	kfree(plug);
 | |
| }
 | |
| 
 | |
| static void __make_request(struct mddev *mddev, struct bio *bio)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct r10bio *r10_bio;
 | |
| 	struct bio *read_bio;
 | |
| 	int i;
 | |
| 	const int rw = bio_data_dir(bio);
 | |
| 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
 | |
| 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
 | |
| 	const unsigned long do_discard = (bio->bi_rw
 | |
| 					  & (REQ_DISCARD | REQ_SECURE));
 | |
| 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
 | |
| 	unsigned long flags;
 | |
| 	struct md_rdev *blocked_rdev;
 | |
| 	struct blk_plug_cb *cb;
 | |
| 	struct raid10_plug_cb *plug = NULL;
 | |
| 	int sectors_handled;
 | |
| 	int max_sectors;
 | |
| 	int sectors;
 | |
| 
 | |
| 	/*
 | |
| 	 * Register the new request and wait if the reconstruction
 | |
| 	 * thread has put up a bar for new requests.
 | |
| 	 * Continue immediately if no resync is active currently.
 | |
| 	 */
 | |
| 	wait_barrier(conf);
 | |
| 
 | |
| 	sectors = bio_sectors(bio);
 | |
| 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
 | |
| 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
 | |
| 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
 | |
| 		/* IO spans the reshape position.  Need to wait for
 | |
| 		 * reshape to pass
 | |
| 		 */
 | |
| 		allow_barrier(conf);
 | |
| 		wait_event(conf->wait_barrier,
 | |
| 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
 | |
| 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
 | |
| 			   sectors);
 | |
| 		wait_barrier(conf);
 | |
| 	}
 | |
| 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
 | |
| 	    bio_data_dir(bio) == WRITE &&
 | |
| 	    (mddev->reshape_backwards
 | |
| 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
 | |
| 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
 | |
| 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
 | |
| 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
 | |
| 		/* Need to update reshape_position in metadata */
 | |
| 		mddev->reshape_position = conf->reshape_progress;
 | |
| 		set_mask_bits(&mddev->flags, 0,
 | |
| 			      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
 | |
| 		md_wakeup_thread(mddev->thread);
 | |
| 		wait_event(mddev->sb_wait,
 | |
| 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
 | |
| 
 | |
| 		conf->reshape_safe = mddev->reshape_position;
 | |
| 	}
 | |
| 
 | |
| 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 | |
| 
 | |
| 	r10_bio->master_bio = bio;
 | |
| 	r10_bio->sectors = sectors;
 | |
| 
 | |
| 	r10_bio->mddev = mddev;
 | |
| 	r10_bio->sector = bio->bi_iter.bi_sector;
 | |
| 	r10_bio->state = 0;
 | |
| 
 | |
| 	/* We might need to issue multiple reads to different
 | |
| 	 * devices if there are bad blocks around, so we keep
 | |
| 	 * track of the number of reads in bio->bi_phys_segments.
 | |
| 	 * If this is 0, there is only one r10_bio and no locking
 | |
| 	 * will be needed when the request completes.  If it is
 | |
| 	 * non-zero, then it is the number of not-completed requests.
 | |
| 	 */
 | |
| 	bio->bi_phys_segments = 0;
 | |
| 	bio_clear_flag(bio, BIO_SEG_VALID);
 | |
| 
 | |
| 	if (rw == READ) {
 | |
| 		/*
 | |
| 		 * read balancing logic:
 | |
| 		 */
 | |
| 		struct md_rdev *rdev;
 | |
| 		int slot;
 | |
| 
 | |
| read_again:
 | |
| 		rdev = read_balance(conf, r10_bio, &max_sectors);
 | |
| 		if (!rdev) {
 | |
| 			raid_end_bio_io(r10_bio);
 | |
| 			return;
 | |
| 		}
 | |
| 		slot = r10_bio->read_slot;
 | |
| 
 | |
| 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 | |
| 		bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
 | |
| 			 max_sectors);
 | |
| 
 | |
| 		r10_bio->devs[slot].bio = read_bio;
 | |
| 		r10_bio->devs[slot].rdev = rdev;
 | |
| 
 | |
| 		read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
 | |
| 			choose_data_offset(r10_bio, rdev);
 | |
| 		read_bio->bi_bdev = rdev->bdev;
 | |
| 		read_bio->bi_end_io = raid10_end_read_request;
 | |
| 		read_bio->bi_rw = READ | do_sync;
 | |
| 		read_bio->bi_private = r10_bio;
 | |
| 
 | |
| 		if (max_sectors < r10_bio->sectors) {
 | |
| 			/* Could not read all from this device, so we will
 | |
| 			 * need another r10_bio.
 | |
| 			 */
 | |
| 			sectors_handled = (r10_bio->sector + max_sectors
 | |
| 					   - bio->bi_iter.bi_sector);
 | |
| 			r10_bio->sectors = max_sectors;
 | |
| 			spin_lock_irq(&conf->device_lock);
 | |
| 			if (bio->bi_phys_segments == 0)
 | |
| 				bio->bi_phys_segments = 2;
 | |
| 			else
 | |
| 				bio->bi_phys_segments++;
 | |
| 			spin_unlock_irq(&conf->device_lock);
 | |
| 			/* Cannot call generic_make_request directly
 | |
| 			 * as that will be queued in __generic_make_request
 | |
| 			 * and subsequent mempool_alloc might block
 | |
| 			 * waiting for it.  so hand bio over to raid10d.
 | |
| 			 */
 | |
| 			reschedule_retry(r10_bio);
 | |
| 
 | |
| 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 | |
| 
 | |
| 			r10_bio->master_bio = bio;
 | |
| 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
 | |
| 			r10_bio->state = 0;
 | |
| 			r10_bio->mddev = mddev;
 | |
| 			r10_bio->sector = bio->bi_iter.bi_sector +
 | |
| 				sectors_handled;
 | |
| 			goto read_again;
 | |
| 		} else
 | |
| 			generic_make_request(read_bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * WRITE:
 | |
| 	 */
 | |
| 	if (conf->pending_count >= max_queued_requests) {
 | |
| 		md_wakeup_thread(mddev->thread);
 | |
| 		wait_event(conf->wait_barrier,
 | |
| 			   conf->pending_count < max_queued_requests);
 | |
| 	}
 | |
| 	/* first select target devices under rcu_lock and
 | |
| 	 * inc refcount on their rdev.  Record them by setting
 | |
| 	 * bios[x] to bio
 | |
| 	 * If there are known/acknowledged bad blocks on any device
 | |
| 	 * on which we have seen a write error, we want to avoid
 | |
| 	 * writing to those blocks.  This potentially requires several
 | |
| 	 * writes to write around the bad blocks.  Each set of writes
 | |
| 	 * gets its own r10_bio with a set of bios attached.  The number
 | |
| 	 * of r10_bios is recored in bio->bi_phys_segments just as with
 | |
| 	 * the read case.
 | |
| 	 */
 | |
| 
 | |
| 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
 | |
| 	raid10_find_phys(conf, r10_bio);
 | |
| retry_write:
 | |
| 	blocked_rdev = NULL;
 | |
| 	rcu_read_lock();
 | |
| 	max_sectors = r10_bio->sectors;
 | |
| 
 | |
| 	for (i = 0;  i < conf->copies; i++) {
 | |
| 		int d = r10_bio->devs[i].devnum;
 | |
| 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
 | |
| 		struct md_rdev *rrdev = rcu_dereference(
 | |
| 			conf->mirrors[d].replacement);
 | |
| 		if (rdev == rrdev)
 | |
| 			rrdev = NULL;
 | |
| 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 			blocked_rdev = rdev;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
 | |
| 			atomic_inc(&rrdev->nr_pending);
 | |
| 			blocked_rdev = rrdev;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (rdev && (test_bit(Faulty, &rdev->flags)))
 | |
| 			rdev = NULL;
 | |
| 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
 | |
| 			rrdev = NULL;
 | |
| 
 | |
| 		r10_bio->devs[i].bio = NULL;
 | |
| 		r10_bio->devs[i].repl_bio = NULL;
 | |
| 
 | |
| 		if (!rdev && !rrdev) {
 | |
| 			set_bit(R10BIO_Degraded, &r10_bio->state);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
 | |
| 			sector_t first_bad;
 | |
| 			sector_t dev_sector = r10_bio->devs[i].addr;
 | |
| 			int bad_sectors;
 | |
| 			int is_bad;
 | |
| 
 | |
| 			is_bad = is_badblock(rdev, dev_sector,
 | |
| 					     max_sectors,
 | |
| 					     &first_bad, &bad_sectors);
 | |
| 			if (is_bad < 0) {
 | |
| 				/* Mustn't write here until the bad block
 | |
| 				 * is acknowledged
 | |
| 				 */
 | |
| 				atomic_inc(&rdev->nr_pending);
 | |
| 				set_bit(BlockedBadBlocks, &rdev->flags);
 | |
| 				blocked_rdev = rdev;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (is_bad && first_bad <= dev_sector) {
 | |
| 				/* Cannot write here at all */
 | |
| 				bad_sectors -= (dev_sector - first_bad);
 | |
| 				if (bad_sectors < max_sectors)
 | |
| 					/* Mustn't write more than bad_sectors
 | |
| 					 * to other devices yet
 | |
| 					 */
 | |
| 					max_sectors = bad_sectors;
 | |
| 				/* We don't set R10BIO_Degraded as that
 | |
| 				 * only applies if the disk is missing,
 | |
| 				 * so it might be re-added, and we want to
 | |
| 				 * know to recover this chunk.
 | |
| 				 * In this case the device is here, and the
 | |
| 				 * fact that this chunk is not in-sync is
 | |
| 				 * recorded in the bad block log.
 | |
| 				 */
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (is_bad) {
 | |
| 				int good_sectors = first_bad - dev_sector;
 | |
| 				if (good_sectors < max_sectors)
 | |
| 					max_sectors = good_sectors;
 | |
| 			}
 | |
| 		}
 | |
| 		if (rdev) {
 | |
| 			r10_bio->devs[i].bio = bio;
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 		}
 | |
| 		if (rrdev) {
 | |
| 			r10_bio->devs[i].repl_bio = bio;
 | |
| 			atomic_inc(&rrdev->nr_pending);
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (unlikely(blocked_rdev)) {
 | |
| 		/* Have to wait for this device to get unblocked, then retry */
 | |
| 		int j;
 | |
| 		int d;
 | |
| 
 | |
| 		for (j = 0; j < i; j++) {
 | |
| 			if (r10_bio->devs[j].bio) {
 | |
| 				d = r10_bio->devs[j].devnum;
 | |
| 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
 | |
| 			}
 | |
| 			if (r10_bio->devs[j].repl_bio) {
 | |
| 				struct md_rdev *rdev;
 | |
| 				d = r10_bio->devs[j].devnum;
 | |
| 				rdev = conf->mirrors[d].replacement;
 | |
| 				if (!rdev) {
 | |
| 					/* Race with remove_disk */
 | |
| 					smp_mb();
 | |
| 					rdev = conf->mirrors[d].rdev;
 | |
| 				}
 | |
| 				rdev_dec_pending(rdev, mddev);
 | |
| 			}
 | |
| 		}
 | |
| 		allow_barrier(conf);
 | |
| 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
 | |
| 		wait_barrier(conf);
 | |
| 		goto retry_write;
 | |
| 	}
 | |
| 
 | |
| 	if (max_sectors < r10_bio->sectors) {
 | |
| 		/* We are splitting this into multiple parts, so
 | |
| 		 * we need to prepare for allocating another r10_bio.
 | |
| 		 */
 | |
| 		r10_bio->sectors = max_sectors;
 | |
| 		spin_lock_irq(&conf->device_lock);
 | |
| 		if (bio->bi_phys_segments == 0)
 | |
| 			bio->bi_phys_segments = 2;
 | |
| 		else
 | |
| 			bio->bi_phys_segments++;
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 	}
 | |
| 	sectors_handled = r10_bio->sector + max_sectors -
 | |
| 		bio->bi_iter.bi_sector;
 | |
| 
 | |
| 	atomic_set(&r10_bio->remaining, 1);
 | |
| 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
 | |
| 
 | |
| 	for (i = 0; i < conf->copies; i++) {
 | |
| 		struct bio *mbio;
 | |
| 		int d = r10_bio->devs[i].devnum;
 | |
| 		if (r10_bio->devs[i].bio) {
 | |
| 			struct md_rdev *rdev = conf->mirrors[d].rdev;
 | |
| 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 | |
| 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
 | |
| 				 max_sectors);
 | |
| 			r10_bio->devs[i].bio = mbio;
 | |
| 
 | |
| 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
 | |
| 					   choose_data_offset(r10_bio,
 | |
| 							      rdev));
 | |
| 			mbio->bi_bdev = rdev->bdev;
 | |
| 			mbio->bi_end_io	= raid10_end_write_request;
 | |
| 			mbio->bi_rw =
 | |
| 				WRITE | do_sync | do_fua | do_discard | do_same;
 | |
| 			mbio->bi_private = r10_bio;
 | |
| 
 | |
| 			atomic_inc(&r10_bio->remaining);
 | |
| 
 | |
| 			cb = blk_check_plugged(raid10_unplug, mddev,
 | |
| 					       sizeof(*plug));
 | |
| 			if (cb)
 | |
| 				plug = container_of(cb, struct raid10_plug_cb,
 | |
| 						    cb);
 | |
| 			else
 | |
| 				plug = NULL;
 | |
| 			spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 			if (plug) {
 | |
| 				bio_list_add(&plug->pending, mbio);
 | |
| 				plug->pending_cnt++;
 | |
| 			} else {
 | |
| 				bio_list_add(&conf->pending_bio_list, mbio);
 | |
| 				conf->pending_count++;
 | |
| 			}
 | |
| 			spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 			if (!plug)
 | |
| 				md_wakeup_thread(mddev->thread);
 | |
| 		}
 | |
| 
 | |
| 		if (r10_bio->devs[i].repl_bio) {
 | |
| 			struct md_rdev *rdev = conf->mirrors[d].replacement;
 | |
| 			if (rdev == NULL) {
 | |
| 				/* Replacement just got moved to main 'rdev' */
 | |
| 				smp_mb();
 | |
| 				rdev = conf->mirrors[d].rdev;
 | |
| 			}
 | |
| 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 | |
| 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
 | |
| 				 max_sectors);
 | |
| 			r10_bio->devs[i].repl_bio = mbio;
 | |
| 
 | |
| 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
 | |
| 					   choose_data_offset(
 | |
| 						   r10_bio, rdev));
 | |
| 			mbio->bi_bdev = rdev->bdev;
 | |
| 			mbio->bi_end_io	= raid10_end_write_request;
 | |
| 			mbio->bi_rw =
 | |
| 				WRITE | do_sync | do_fua | do_discard | do_same;
 | |
| 			mbio->bi_private = r10_bio;
 | |
| 
 | |
| 			atomic_inc(&r10_bio->remaining);
 | |
| 			spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 			bio_list_add(&conf->pending_bio_list, mbio);
 | |
| 			conf->pending_count++;
 | |
| 			spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 			if (!mddev_check_plugged(mddev))
 | |
| 				md_wakeup_thread(mddev->thread);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Don't remove the bias on 'remaining' (one_write_done) until
 | |
| 	 * after checking if we need to go around again.
 | |
| 	 */
 | |
| 
 | |
| 	if (sectors_handled < bio_sectors(bio)) {
 | |
| 		one_write_done(r10_bio);
 | |
| 		/* We need another r10_bio.  It has already been counted
 | |
| 		 * in bio->bi_phys_segments.
 | |
| 		 */
 | |
| 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 | |
| 
 | |
| 		r10_bio->master_bio = bio;
 | |
| 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
 | |
| 
 | |
| 		r10_bio->mddev = mddev;
 | |
| 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
 | |
| 		r10_bio->state = 0;
 | |
| 		goto retry_write;
 | |
| 	}
 | |
| 	one_write_done(r10_bio);
 | |
| }
 | |
| 
 | |
| static void raid10_make_request(struct mddev *mddev, struct bio *bio)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
 | |
| 	int chunk_sects = chunk_mask + 1;
 | |
| 
 | |
| 	struct bio *split;
 | |
| 
 | |
| 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
 | |
| 		md_flush_request(mddev, bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	md_write_start(mddev, bio);
 | |
| 
 | |
| 	do {
 | |
| 
 | |
| 		/*
 | |
| 		 * If this request crosses a chunk boundary, we need to split
 | |
| 		 * it.
 | |
| 		 */
 | |
| 		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
 | |
| 			     bio_sectors(bio) > chunk_sects
 | |
| 			     && (conf->geo.near_copies < conf->geo.raid_disks
 | |
| 				 || conf->prev.near_copies <
 | |
| 				 conf->prev.raid_disks))) {
 | |
| 			split = bio_split(bio, chunk_sects -
 | |
| 					  (bio->bi_iter.bi_sector &
 | |
| 					   (chunk_sects - 1)),
 | |
| 					  GFP_NOIO, fs_bio_set);
 | |
| 			bio_chain(split, bio);
 | |
| 		} else {
 | |
| 			split = bio;
 | |
| 		}
 | |
| 
 | |
| 		__make_request(mddev, split);
 | |
| 	} while (split != bio);
 | |
| 
 | |
| 	/* In case raid10d snuck in to freeze_array */
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| }
 | |
| 
 | |
| static void raid10_status(struct seq_file *seq, struct mddev *mddev)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int i;
 | |
| 
 | |
| 	if (conf->geo.near_copies < conf->geo.raid_disks)
 | |
| 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
 | |
| 	if (conf->geo.near_copies > 1)
 | |
| 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
 | |
| 	if (conf->geo.far_copies > 1) {
 | |
| 		if (conf->geo.far_offset)
 | |
| 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
 | |
| 		else
 | |
| 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
 | |
| 		if (conf->geo.far_set_size != conf->geo.raid_disks)
 | |
| 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
 | |
| 	}
 | |
| 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
 | |
| 					conf->geo.raid_disks - mddev->degraded);
 | |
| 	for (i = 0; i < conf->geo.raid_disks; i++)
 | |
| 		seq_printf(seq, "%s",
 | |
| 			      conf->mirrors[i].rdev &&
 | |
| 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
 | |
| 	seq_printf(seq, "]");
 | |
| }
 | |
| 
 | |
| /* check if there are enough drives for
 | |
|  * every block to appear on atleast one.
 | |
|  * Don't consider the device numbered 'ignore'
 | |
|  * as we might be about to remove it.
 | |
|  */
 | |
| static int _enough(struct r10conf *conf, int previous, int ignore)
 | |
| {
 | |
| 	int first = 0;
 | |
| 	int has_enough = 0;
 | |
| 	int disks, ncopies;
 | |
| 	if (previous) {
 | |
| 		disks = conf->prev.raid_disks;
 | |
| 		ncopies = conf->prev.near_copies;
 | |
| 	} else {
 | |
| 		disks = conf->geo.raid_disks;
 | |
| 		ncopies = conf->geo.near_copies;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	do {
 | |
| 		int n = conf->copies;
 | |
| 		int cnt = 0;
 | |
| 		int this = first;
 | |
| 		while (n--) {
 | |
| 			struct md_rdev *rdev;
 | |
| 			if (this != ignore &&
 | |
| 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
 | |
| 			    test_bit(In_sync, &rdev->flags))
 | |
| 				cnt++;
 | |
| 			this = (this+1) % disks;
 | |
| 		}
 | |
| 		if (cnt == 0)
 | |
| 			goto out;
 | |
| 		first = (first + ncopies) % disks;
 | |
| 	} while (first != 0);
 | |
| 	has_enough = 1;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return has_enough;
 | |
| }
 | |
| 
 | |
| static int enough(struct r10conf *conf, int ignore)
 | |
| {
 | |
| 	/* when calling 'enough', both 'prev' and 'geo' must
 | |
| 	 * be stable.
 | |
| 	 * This is ensured if ->reconfig_mutex or ->device_lock
 | |
| 	 * is held.
 | |
| 	 */
 | |
| 	return _enough(conf, 0, ignore) &&
 | |
| 		_enough(conf, 1, ignore);
 | |
| }
 | |
| 
 | |
| static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	char b[BDEVNAME_SIZE];
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * If it is not operational, then we have already marked it as dead
 | |
| 	 * else if it is the last working disks, ignore the error, let the
 | |
| 	 * next level up know.
 | |
| 	 * else mark the drive as failed
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 	if (test_bit(In_sync, &rdev->flags)
 | |
| 	    && !enough(conf, rdev->raid_disk)) {
 | |
| 		/*
 | |
| 		 * Don't fail the drive, just return an IO error.
 | |
| 		 */
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (test_and_clear_bit(In_sync, &rdev->flags))
 | |
| 		mddev->degraded++;
 | |
| 	/*
 | |
| 	 * If recovery is running, make sure it aborts.
 | |
| 	 */
 | |
| 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 | |
| 	set_bit(Blocked, &rdev->flags);
 | |
| 	set_bit(Faulty, &rdev->flags);
 | |
| 	set_mask_bits(&mddev->flags, 0,
 | |
| 		      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 	printk(KERN_ALERT
 | |
| 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
 | |
| 	       "md/raid10:%s: Operation continuing on %d devices.\n",
 | |
| 	       mdname(mddev), bdevname(rdev->bdev, b),
 | |
| 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
 | |
| }
 | |
| 
 | |
| static void print_conf(struct r10conf *conf)
 | |
| {
 | |
| 	int i;
 | |
| 	struct raid10_info *tmp;
 | |
| 
 | |
| 	printk(KERN_DEBUG "RAID10 conf printout:\n");
 | |
| 	if (!conf) {
 | |
| 		printk(KERN_DEBUG "(!conf)\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
 | |
| 		conf->geo.raid_disks);
 | |
| 
 | |
| 	for (i = 0; i < conf->geo.raid_disks; i++) {
 | |
| 		char b[BDEVNAME_SIZE];
 | |
| 		tmp = conf->mirrors + i;
 | |
| 		if (tmp->rdev)
 | |
| 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
 | |
| 				i, !test_bit(In_sync, &tmp->rdev->flags),
 | |
| 			        !test_bit(Faulty, &tmp->rdev->flags),
 | |
| 				bdevname(tmp->rdev->bdev,b));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void close_sync(struct r10conf *conf)
 | |
| {
 | |
| 	wait_barrier(conf);
 | |
| 	allow_barrier(conf);
 | |
| 
 | |
| 	mempool_destroy(conf->r10buf_pool);
 | |
| 	conf->r10buf_pool = NULL;
 | |
| }
 | |
| 
 | |
| static int raid10_spare_active(struct mddev *mddev)
 | |
| {
 | |
| 	int i;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct raid10_info *tmp;
 | |
| 	int count = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find all non-in_sync disks within the RAID10 configuration
 | |
| 	 * and mark them in_sync
 | |
| 	 */
 | |
| 	for (i = 0; i < conf->geo.raid_disks; i++) {
 | |
| 		tmp = conf->mirrors + i;
 | |
| 		if (tmp->replacement
 | |
| 		    && tmp->replacement->recovery_offset == MaxSector
 | |
| 		    && !test_bit(Faulty, &tmp->replacement->flags)
 | |
| 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
 | |
| 			/* Replacement has just become active */
 | |
| 			if (!tmp->rdev
 | |
| 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
 | |
| 				count++;
 | |
| 			if (tmp->rdev) {
 | |
| 				/* Replaced device not technically faulty,
 | |
| 				 * but we need to be sure it gets removed
 | |
| 				 * and never re-added.
 | |
| 				 */
 | |
| 				set_bit(Faulty, &tmp->rdev->flags);
 | |
| 				sysfs_notify_dirent_safe(
 | |
| 					tmp->rdev->sysfs_state);
 | |
| 			}
 | |
| 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
 | |
| 		} else if (tmp->rdev
 | |
| 			   && tmp->rdev->recovery_offset == MaxSector
 | |
| 			   && !test_bit(Faulty, &tmp->rdev->flags)
 | |
| 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
 | |
| 			count++;
 | |
| 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 	mddev->degraded -= count;
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int err = -EEXIST;
 | |
| 	int mirror;
 | |
| 	int first = 0;
 | |
| 	int last = conf->geo.raid_disks - 1;
 | |
| 
 | |
| 	if (mddev->recovery_cp < MaxSector)
 | |
| 		/* only hot-add to in-sync arrays, as recovery is
 | |
| 		 * very different from resync
 | |
| 		 */
 | |
| 		return -EBUSY;
 | |
| 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (md_integrity_add_rdev(rdev, mddev))
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	if (rdev->raid_disk >= 0)
 | |
| 		first = last = rdev->raid_disk;
 | |
| 
 | |
| 	if (rdev->saved_raid_disk >= first &&
 | |
| 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
 | |
| 		mirror = rdev->saved_raid_disk;
 | |
| 	else
 | |
| 		mirror = first;
 | |
| 	for ( ; mirror <= last ; mirror++) {
 | |
| 		struct raid10_info *p = &conf->mirrors[mirror];
 | |
| 		if (p->recovery_disabled == mddev->recovery_disabled)
 | |
| 			continue;
 | |
| 		if (p->rdev) {
 | |
| 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
 | |
| 			    p->replacement != NULL)
 | |
| 				continue;
 | |
| 			clear_bit(In_sync, &rdev->flags);
 | |
| 			set_bit(Replacement, &rdev->flags);
 | |
| 			rdev->raid_disk = mirror;
 | |
| 			err = 0;
 | |
| 			if (mddev->gendisk)
 | |
| 				disk_stack_limits(mddev->gendisk, rdev->bdev,
 | |
| 						  rdev->data_offset << 9);
 | |
| 			conf->fullsync = 1;
 | |
| 			rcu_assign_pointer(p->replacement, rdev);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (mddev->gendisk)
 | |
| 			disk_stack_limits(mddev->gendisk, rdev->bdev,
 | |
| 					  rdev->data_offset << 9);
 | |
| 
 | |
| 		p->head_position = 0;
 | |
| 		p->recovery_disabled = mddev->recovery_disabled - 1;
 | |
| 		rdev->raid_disk = mirror;
 | |
| 		err = 0;
 | |
| 		if (rdev->saved_raid_disk != mirror)
 | |
| 			conf->fullsync = 1;
 | |
| 		rcu_assign_pointer(p->rdev, rdev);
 | |
| 		break;
 | |
| 	}
 | |
| 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
 | |
| 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int err = 0;
 | |
| 	int number = rdev->raid_disk;
 | |
| 	struct md_rdev **rdevp;
 | |
| 	struct raid10_info *p = conf->mirrors + number;
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	if (rdev == p->rdev)
 | |
| 		rdevp = &p->rdev;
 | |
| 	else if (rdev == p->replacement)
 | |
| 		rdevp = &p->replacement;
 | |
| 	else
 | |
| 		return 0;
 | |
| 
 | |
| 	if (test_bit(In_sync, &rdev->flags) ||
 | |
| 	    atomic_read(&rdev->nr_pending)) {
 | |
| 		err = -EBUSY;
 | |
| 		goto abort;
 | |
| 	}
 | |
| 	/* Only remove faulty devices if recovery
 | |
| 	 * is not possible.
 | |
| 	 */
 | |
| 	if (!test_bit(Faulty, &rdev->flags) &&
 | |
| 	    mddev->recovery_disabled != p->recovery_disabled &&
 | |
| 	    (!p->replacement || p->replacement == rdev) &&
 | |
| 	    number < conf->geo.raid_disks &&
 | |
| 	    enough(conf, -1)) {
 | |
| 		err = -EBUSY;
 | |
| 		goto abort;
 | |
| 	}
 | |
| 	*rdevp = NULL;
 | |
| 	synchronize_rcu();
 | |
| 	if (atomic_read(&rdev->nr_pending)) {
 | |
| 		/* lost the race, try later */
 | |
| 		err = -EBUSY;
 | |
| 		*rdevp = rdev;
 | |
| 		goto abort;
 | |
| 	} else if (p->replacement) {
 | |
| 		/* We must have just cleared 'rdev' */
 | |
| 		p->rdev = p->replacement;
 | |
| 		clear_bit(Replacement, &p->replacement->flags);
 | |
| 		smp_mb(); /* Make sure other CPUs may see both as identical
 | |
| 			   * but will never see neither -- if they are careful.
 | |
| 			   */
 | |
| 		p->replacement = NULL;
 | |
| 		clear_bit(WantReplacement, &rdev->flags);
 | |
| 	} else
 | |
| 		/* We might have just remove the Replacement as faulty
 | |
| 		 * Clear the flag just in case
 | |
| 		 */
 | |
| 		clear_bit(WantReplacement, &rdev->flags);
 | |
| 
 | |
| 	err = md_integrity_register(mddev);
 | |
| 
 | |
| abort:
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void end_sync_read(struct bio *bio)
 | |
| {
 | |
| 	struct r10bio *r10_bio = bio->bi_private;
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 	int d;
 | |
| 
 | |
| 	if (bio == r10_bio->master_bio) {
 | |
| 		/* this is a reshape read */
 | |
| 		d = r10_bio->read_slot; /* really the read dev */
 | |
| 	} else
 | |
| 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
 | |
| 
 | |
| 	if (!bio->bi_error)
 | |
| 		set_bit(R10BIO_Uptodate, &r10_bio->state);
 | |
| 	else
 | |
| 		/* The write handler will notice the lack of
 | |
| 		 * R10BIO_Uptodate and record any errors etc
 | |
| 		 */
 | |
| 		atomic_add(r10_bio->sectors,
 | |
| 			   &conf->mirrors[d].rdev->corrected_errors);
 | |
| 
 | |
| 	/* for reconstruct, we always reschedule after a read.
 | |
| 	 * for resync, only after all reads
 | |
| 	 */
 | |
| 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
 | |
| 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
 | |
| 	    atomic_dec_and_test(&r10_bio->remaining)) {
 | |
| 		/* we have read all the blocks,
 | |
| 		 * do the comparison in process context in raid10d
 | |
| 		 */
 | |
| 		reschedule_retry(r10_bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void end_sync_request(struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct mddev *mddev = r10_bio->mddev;
 | |
| 
 | |
| 	while (atomic_dec_and_test(&r10_bio->remaining)) {
 | |
| 		if (r10_bio->master_bio == NULL) {
 | |
| 			/* the primary of several recovery bios */
 | |
| 			sector_t s = r10_bio->sectors;
 | |
| 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
 | |
| 			    test_bit(R10BIO_WriteError, &r10_bio->state))
 | |
| 				reschedule_retry(r10_bio);
 | |
| 			else
 | |
| 				put_buf(r10_bio);
 | |
| 			md_done_sync(mddev, s, 1);
 | |
| 			break;
 | |
| 		} else {
 | |
| 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
 | |
| 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
 | |
| 			    test_bit(R10BIO_WriteError, &r10_bio->state))
 | |
| 				reschedule_retry(r10_bio);
 | |
| 			else
 | |
| 				put_buf(r10_bio);
 | |
| 			r10_bio = r10_bio2;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void end_sync_write(struct bio *bio)
 | |
| {
 | |
| 	struct r10bio *r10_bio = bio->bi_private;
 | |
| 	struct mddev *mddev = r10_bio->mddev;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int d;
 | |
| 	sector_t first_bad;
 | |
| 	int bad_sectors;
 | |
| 	int slot;
 | |
| 	int repl;
 | |
| 	struct md_rdev *rdev = NULL;
 | |
| 
 | |
| 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 | |
| 	if (repl)
 | |
| 		rdev = conf->mirrors[d].replacement;
 | |
| 	else
 | |
| 		rdev = conf->mirrors[d].rdev;
 | |
| 
 | |
| 	if (bio->bi_error) {
 | |
| 		if (repl)
 | |
| 			md_error(mddev, rdev);
 | |
| 		else {
 | |
| 			set_bit(WriteErrorSeen, &rdev->flags);
 | |
| 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 | |
| 				set_bit(MD_RECOVERY_NEEDED,
 | |
| 					&rdev->mddev->recovery);
 | |
| 			set_bit(R10BIO_WriteError, &r10_bio->state);
 | |
| 		}
 | |
| 	} else if (is_badblock(rdev,
 | |
| 			     r10_bio->devs[slot].addr,
 | |
| 			     r10_bio->sectors,
 | |
| 			     &first_bad, &bad_sectors))
 | |
| 		set_bit(R10BIO_MadeGood, &r10_bio->state);
 | |
| 
 | |
| 	rdev_dec_pending(rdev, mddev);
 | |
| 
 | |
| 	end_sync_request(r10_bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: sync and recover and handled very differently for raid10
 | |
|  * This code is for resync.
 | |
|  * For resync, we read through virtual addresses and read all blocks.
 | |
|  * If there is any error, we schedule a write.  The lowest numbered
 | |
|  * drive is authoritative.
 | |
|  * However requests come for physical address, so we need to map.
 | |
|  * For every physical address there are raid_disks/copies virtual addresses,
 | |
|  * which is always are least one, but is not necessarly an integer.
 | |
|  * This means that a physical address can span multiple chunks, so we may
 | |
|  * have to submit multiple io requests for a single sync request.
 | |
|  */
 | |
| /*
 | |
|  * We check if all blocks are in-sync and only write to blocks that
 | |
|  * aren't in sync
 | |
|  */
 | |
| static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int i, first;
 | |
| 	struct bio *tbio, *fbio;
 | |
| 	int vcnt;
 | |
| 
 | |
| 	atomic_set(&r10_bio->remaining, 1);
 | |
| 
 | |
| 	/* find the first device with a block */
 | |
| 	for (i=0; i<conf->copies; i++)
 | |
| 		if (!r10_bio->devs[i].bio->bi_error)
 | |
| 			break;
 | |
| 
 | |
| 	if (i == conf->copies)
 | |
| 		goto done;
 | |
| 
 | |
| 	first = i;
 | |
| 	fbio = r10_bio->devs[i].bio;
 | |
| 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
 | |
| 	fbio->bi_iter.bi_idx = 0;
 | |
| 
 | |
| 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
 | |
| 	/* now find blocks with errors */
 | |
| 	for (i=0 ; i < conf->copies ; i++) {
 | |
| 		int  j, d;
 | |
| 
 | |
| 		tbio = r10_bio->devs[i].bio;
 | |
| 
 | |
| 		if (tbio->bi_end_io != end_sync_read)
 | |
| 			continue;
 | |
| 		if (i == first)
 | |
| 			continue;
 | |
| 		if (!r10_bio->devs[i].bio->bi_error) {
 | |
| 			/* We know that the bi_io_vec layout is the same for
 | |
| 			 * both 'first' and 'i', so we just compare them.
 | |
| 			 * All vec entries are PAGE_SIZE;
 | |
| 			 */
 | |
| 			int sectors = r10_bio->sectors;
 | |
| 			for (j = 0; j < vcnt; j++) {
 | |
| 				int len = PAGE_SIZE;
 | |
| 				if (sectors < (len / 512))
 | |
| 					len = sectors * 512;
 | |
| 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
 | |
| 					   page_address(tbio->bi_io_vec[j].bv_page),
 | |
| 					   len))
 | |
| 					break;
 | |
| 				sectors -= len/512;
 | |
| 			}
 | |
| 			if (j == vcnt)
 | |
| 				continue;
 | |
| 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
 | |
| 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
 | |
| 				/* Don't fix anything. */
 | |
| 				continue;
 | |
| 		}
 | |
| 		/* Ok, we need to write this bio, either to correct an
 | |
| 		 * inconsistency or to correct an unreadable block.
 | |
| 		 * First we need to fixup bv_offset, bv_len and
 | |
| 		 * bi_vecs, as the read request might have corrupted these
 | |
| 		 */
 | |
| 		bio_reset(tbio);
 | |
| 
 | |
| 		tbio->bi_vcnt = vcnt;
 | |
| 		tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
 | |
| 		tbio->bi_rw = WRITE;
 | |
| 		tbio->bi_private = r10_bio;
 | |
| 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
 | |
| 		tbio->bi_end_io = end_sync_write;
 | |
| 
 | |
| 		bio_copy_data(tbio, fbio);
 | |
| 
 | |
| 		d = r10_bio->devs[i].devnum;
 | |
| 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
 | |
| 		atomic_inc(&r10_bio->remaining);
 | |
| 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
 | |
| 
 | |
| 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
 | |
| 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
 | |
| 		generic_make_request(tbio);
 | |
| 	}
 | |
| 
 | |
| 	/* Now write out to any replacement devices
 | |
| 	 * that are active
 | |
| 	 */
 | |
| 	for (i = 0; i < conf->copies; i++) {
 | |
| 		int d;
 | |
| 
 | |
| 		tbio = r10_bio->devs[i].repl_bio;
 | |
| 		if (!tbio || !tbio->bi_end_io)
 | |
| 			continue;
 | |
| 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
 | |
| 		    && r10_bio->devs[i].bio != fbio)
 | |
| 			bio_copy_data(tbio, fbio);
 | |
| 		d = r10_bio->devs[i].devnum;
 | |
| 		atomic_inc(&r10_bio->remaining);
 | |
| 		md_sync_acct(conf->mirrors[d].replacement->bdev,
 | |
| 			     bio_sectors(tbio));
 | |
| 		generic_make_request(tbio);
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	if (atomic_dec_and_test(&r10_bio->remaining)) {
 | |
| 		md_done_sync(mddev, r10_bio->sectors, 1);
 | |
| 		put_buf(r10_bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Now for the recovery code.
 | |
|  * Recovery happens across physical sectors.
 | |
|  * We recover all non-is_sync drives by finding the virtual address of
 | |
|  * each, and then choose a working drive that also has that virt address.
 | |
|  * There is a separate r10_bio for each non-in_sync drive.
 | |
|  * Only the first two slots are in use. The first for reading,
 | |
|  * The second for writing.
 | |
|  *
 | |
|  */
 | |
| static void fix_recovery_read_error(struct r10bio *r10_bio)
 | |
| {
 | |
| 	/* We got a read error during recovery.
 | |
| 	 * We repeat the read in smaller page-sized sections.
 | |
| 	 * If a read succeeds, write it to the new device or record
 | |
| 	 * a bad block if we cannot.
 | |
| 	 * If a read fails, record a bad block on both old and
 | |
| 	 * new devices.
 | |
| 	 */
 | |
| 	struct mddev *mddev = r10_bio->mddev;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct bio *bio = r10_bio->devs[0].bio;
 | |
| 	sector_t sect = 0;
 | |
| 	int sectors = r10_bio->sectors;
 | |
| 	int idx = 0;
 | |
| 	int dr = r10_bio->devs[0].devnum;
 | |
| 	int dw = r10_bio->devs[1].devnum;
 | |
| 
 | |
| 	while (sectors) {
 | |
| 		int s = sectors;
 | |
| 		struct md_rdev *rdev;
 | |
| 		sector_t addr;
 | |
| 		int ok;
 | |
| 
 | |
| 		if (s > (PAGE_SIZE>>9))
 | |
| 			s = PAGE_SIZE >> 9;
 | |
| 
 | |
| 		rdev = conf->mirrors[dr].rdev;
 | |
| 		addr = r10_bio->devs[0].addr + sect,
 | |
| 		ok = sync_page_io(rdev,
 | |
| 				  addr,
 | |
| 				  s << 9,
 | |
| 				  bio->bi_io_vec[idx].bv_page,
 | |
| 				  READ, false);
 | |
| 		if (ok) {
 | |
| 			rdev = conf->mirrors[dw].rdev;
 | |
| 			addr = r10_bio->devs[1].addr + sect;
 | |
| 			ok = sync_page_io(rdev,
 | |
| 					  addr,
 | |
| 					  s << 9,
 | |
| 					  bio->bi_io_vec[idx].bv_page,
 | |
| 					  WRITE, false);
 | |
| 			if (!ok) {
 | |
| 				set_bit(WriteErrorSeen, &rdev->flags);
 | |
| 				if (!test_and_set_bit(WantReplacement,
 | |
| 						      &rdev->flags))
 | |
| 					set_bit(MD_RECOVERY_NEEDED,
 | |
| 						&rdev->mddev->recovery);
 | |
| 			}
 | |
| 		}
 | |
| 		if (!ok) {
 | |
| 			/* We don't worry if we cannot set a bad block -
 | |
| 			 * it really is bad so there is no loss in not
 | |
| 			 * recording it yet
 | |
| 			 */
 | |
| 			rdev_set_badblocks(rdev, addr, s, 0);
 | |
| 
 | |
| 			if (rdev != conf->mirrors[dw].rdev) {
 | |
| 				/* need bad block on destination too */
 | |
| 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
 | |
| 				addr = r10_bio->devs[1].addr + sect;
 | |
| 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
 | |
| 				if (!ok) {
 | |
| 					/* just abort the recovery */
 | |
| 					printk(KERN_NOTICE
 | |
| 					       "md/raid10:%s: recovery aborted"
 | |
| 					       " due to read error\n",
 | |
| 					       mdname(mddev));
 | |
| 
 | |
| 					conf->mirrors[dw].recovery_disabled
 | |
| 						= mddev->recovery_disabled;
 | |
| 					set_bit(MD_RECOVERY_INTR,
 | |
| 						&mddev->recovery);
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		sectors -= s;
 | |
| 		sect += s;
 | |
| 		idx++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int d;
 | |
| 	struct bio *wbio, *wbio2;
 | |
| 
 | |
| 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
 | |
| 		fix_recovery_read_error(r10_bio);
 | |
| 		end_sync_request(r10_bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * share the pages with the first bio
 | |
| 	 * and submit the write request
 | |
| 	 */
 | |
| 	d = r10_bio->devs[1].devnum;
 | |
| 	wbio = r10_bio->devs[1].bio;
 | |
| 	wbio2 = r10_bio->devs[1].repl_bio;
 | |
| 	/* Need to test wbio2->bi_end_io before we call
 | |
| 	 * generic_make_request as if the former is NULL,
 | |
| 	 * the latter is free to free wbio2.
 | |
| 	 */
 | |
| 	if (wbio2 && !wbio2->bi_end_io)
 | |
| 		wbio2 = NULL;
 | |
| 	if (wbio->bi_end_io) {
 | |
| 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
 | |
| 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
 | |
| 		generic_make_request(wbio);
 | |
| 	}
 | |
| 	if (wbio2) {
 | |
| 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
 | |
| 		md_sync_acct(conf->mirrors[d].replacement->bdev,
 | |
| 			     bio_sectors(wbio2));
 | |
| 		generic_make_request(wbio2);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used by fix_read_error() to decay the per rdev read_errors.
 | |
|  * We halve the read error count for every hour that has elapsed
 | |
|  * since the last recorded read error.
 | |
|  *
 | |
|  */
 | |
| static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct timespec cur_time_mon;
 | |
| 	unsigned long hours_since_last;
 | |
| 	unsigned int read_errors = atomic_read(&rdev->read_errors);
 | |
| 
 | |
| 	ktime_get_ts(&cur_time_mon);
 | |
| 
 | |
| 	if (rdev->last_read_error.tv_sec == 0 &&
 | |
| 	    rdev->last_read_error.tv_nsec == 0) {
 | |
| 		/* first time we've seen a read error */
 | |
| 		rdev->last_read_error = cur_time_mon;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	hours_since_last = (cur_time_mon.tv_sec -
 | |
| 			    rdev->last_read_error.tv_sec) / 3600;
 | |
| 
 | |
| 	rdev->last_read_error = cur_time_mon;
 | |
| 
 | |
| 	/*
 | |
| 	 * if hours_since_last is > the number of bits in read_errors
 | |
| 	 * just set read errors to 0. We do this to avoid
 | |
| 	 * overflowing the shift of read_errors by hours_since_last.
 | |
| 	 */
 | |
| 	if (hours_since_last >= 8 * sizeof(read_errors))
 | |
| 		atomic_set(&rdev->read_errors, 0);
 | |
| 	else
 | |
| 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
 | |
| }
 | |
| 
 | |
| static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
 | |
| 			    int sectors, struct page *page, int rw)
 | |
| {
 | |
| 	sector_t first_bad;
 | |
| 	int bad_sectors;
 | |
| 
 | |
| 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
 | |
| 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
 | |
| 		return -1;
 | |
| 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
 | |
| 		/* success */
 | |
| 		return 1;
 | |
| 	if (rw == WRITE) {
 | |
| 		set_bit(WriteErrorSeen, &rdev->flags);
 | |
| 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 | |
| 			set_bit(MD_RECOVERY_NEEDED,
 | |
| 				&rdev->mddev->recovery);
 | |
| 	}
 | |
| 	/* need to record an error - either for the block or the device */
 | |
| 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
 | |
| 		md_error(rdev->mddev, rdev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a kernel thread which:
 | |
|  *
 | |
|  *	1.	Retries failed read operations on working mirrors.
 | |
|  *	2.	Updates the raid superblock when problems encounter.
 | |
|  *	3.	Performs writes following reads for array synchronising.
 | |
|  */
 | |
| 
 | |
| static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
 | |
| {
 | |
| 	int sect = 0; /* Offset from r10_bio->sector */
 | |
| 	int sectors = r10_bio->sectors;
 | |
| 	struct md_rdev*rdev;
 | |
| 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
 | |
| 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
 | |
| 
 | |
| 	/* still own a reference to this rdev, so it cannot
 | |
| 	 * have been cleared recently.
 | |
| 	 */
 | |
| 	rdev = conf->mirrors[d].rdev;
 | |
| 
 | |
| 	if (test_bit(Faulty, &rdev->flags))
 | |
| 		/* drive has already been failed, just ignore any
 | |
| 		   more fix_read_error() attempts */
 | |
| 		return;
 | |
| 
 | |
| 	check_decay_read_errors(mddev, rdev);
 | |
| 	atomic_inc(&rdev->read_errors);
 | |
| 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
 | |
| 		char b[BDEVNAME_SIZE];
 | |
| 		bdevname(rdev->bdev, b);
 | |
| 
 | |
| 		printk(KERN_NOTICE
 | |
| 		       "md/raid10:%s: %s: Raid device exceeded "
 | |
| 		       "read_error threshold [cur %d:max %d]\n",
 | |
| 		       mdname(mddev), b,
 | |
| 		       atomic_read(&rdev->read_errors), max_read_errors);
 | |
| 		printk(KERN_NOTICE
 | |
| 		       "md/raid10:%s: %s: Failing raid device\n",
 | |
| 		       mdname(mddev), b);
 | |
| 		md_error(mddev, conf->mirrors[d].rdev);
 | |
| 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	while(sectors) {
 | |
| 		int s = sectors;
 | |
| 		int sl = r10_bio->read_slot;
 | |
| 		int success = 0;
 | |
| 		int start;
 | |
| 
 | |
| 		if (s > (PAGE_SIZE>>9))
 | |
| 			s = PAGE_SIZE >> 9;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		do {
 | |
| 			sector_t first_bad;
 | |
| 			int bad_sectors;
 | |
| 
 | |
| 			d = r10_bio->devs[sl].devnum;
 | |
| 			rdev = rcu_dereference(conf->mirrors[d].rdev);
 | |
| 			if (rdev &&
 | |
| 			    test_bit(In_sync, &rdev->flags) &&
 | |
| 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
 | |
| 					&first_bad, &bad_sectors) == 0) {
 | |
| 				atomic_inc(&rdev->nr_pending);
 | |
| 				rcu_read_unlock();
 | |
| 				success = sync_page_io(rdev,
 | |
| 						       r10_bio->devs[sl].addr +
 | |
| 						       sect,
 | |
| 						       s<<9,
 | |
| 						       conf->tmppage, READ, false);
 | |
| 				rdev_dec_pending(rdev, mddev);
 | |
| 				rcu_read_lock();
 | |
| 				if (success)
 | |
| 					break;
 | |
| 			}
 | |
| 			sl++;
 | |
| 			if (sl == conf->copies)
 | |
| 				sl = 0;
 | |
| 		} while (!success && sl != r10_bio->read_slot);
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		if (!success) {
 | |
| 			/* Cannot read from anywhere, just mark the block
 | |
| 			 * as bad on the first device to discourage future
 | |
| 			 * reads.
 | |
| 			 */
 | |
| 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
 | |
| 			rdev = conf->mirrors[dn].rdev;
 | |
| 
 | |
| 			if (!rdev_set_badblocks(
 | |
| 				    rdev,
 | |
| 				    r10_bio->devs[r10_bio->read_slot].addr
 | |
| 				    + sect,
 | |
| 				    s, 0)) {
 | |
| 				md_error(mddev, rdev);
 | |
| 				r10_bio->devs[r10_bio->read_slot].bio
 | |
| 					= IO_BLOCKED;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		start = sl;
 | |
| 		/* write it back and re-read */
 | |
| 		rcu_read_lock();
 | |
| 		while (sl != r10_bio->read_slot) {
 | |
| 			char b[BDEVNAME_SIZE];
 | |
| 
 | |
| 			if (sl==0)
 | |
| 				sl = conf->copies;
 | |
| 			sl--;
 | |
| 			d = r10_bio->devs[sl].devnum;
 | |
| 			rdev = rcu_dereference(conf->mirrors[d].rdev);
 | |
| 			if (!rdev ||
 | |
| 			    !test_bit(In_sync, &rdev->flags))
 | |
| 				continue;
 | |
| 
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 			rcu_read_unlock();
 | |
| 			if (r10_sync_page_io(rdev,
 | |
| 					     r10_bio->devs[sl].addr +
 | |
| 					     sect,
 | |
| 					     s, conf->tmppage, WRITE)
 | |
| 			    == 0) {
 | |
| 				/* Well, this device is dead */
 | |
| 				printk(KERN_NOTICE
 | |
| 				       "md/raid10:%s: read correction "
 | |
| 				       "write failed"
 | |
| 				       " (%d sectors at %llu on %s)\n",
 | |
| 				       mdname(mddev), s,
 | |
| 				       (unsigned long long)(
 | |
| 					       sect +
 | |
| 					       choose_data_offset(r10_bio,
 | |
| 								  rdev)),
 | |
| 				       bdevname(rdev->bdev, b));
 | |
| 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
 | |
| 				       "drive\n",
 | |
| 				       mdname(mddev),
 | |
| 				       bdevname(rdev->bdev, b));
 | |
| 			}
 | |
| 			rdev_dec_pending(rdev, mddev);
 | |
| 			rcu_read_lock();
 | |
| 		}
 | |
| 		sl = start;
 | |
| 		while (sl != r10_bio->read_slot) {
 | |
| 			char b[BDEVNAME_SIZE];
 | |
| 
 | |
| 			if (sl==0)
 | |
| 				sl = conf->copies;
 | |
| 			sl--;
 | |
| 			d = r10_bio->devs[sl].devnum;
 | |
| 			rdev = rcu_dereference(conf->mirrors[d].rdev);
 | |
| 			if (!rdev ||
 | |
| 			    !test_bit(In_sync, &rdev->flags))
 | |
| 				continue;
 | |
| 
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 			rcu_read_unlock();
 | |
| 			switch (r10_sync_page_io(rdev,
 | |
| 					     r10_bio->devs[sl].addr +
 | |
| 					     sect,
 | |
| 					     s, conf->tmppage,
 | |
| 						 READ)) {
 | |
| 			case 0:
 | |
| 				/* Well, this device is dead */
 | |
| 				printk(KERN_NOTICE
 | |
| 				       "md/raid10:%s: unable to read back "
 | |
| 				       "corrected sectors"
 | |
| 				       " (%d sectors at %llu on %s)\n",
 | |
| 				       mdname(mddev), s,
 | |
| 				       (unsigned long long)(
 | |
| 					       sect +
 | |
| 					       choose_data_offset(r10_bio, rdev)),
 | |
| 				       bdevname(rdev->bdev, b));
 | |
| 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
 | |
| 				       "drive\n",
 | |
| 				       mdname(mddev),
 | |
| 				       bdevname(rdev->bdev, b));
 | |
| 				break;
 | |
| 			case 1:
 | |
| 				printk(KERN_INFO
 | |
| 				       "md/raid10:%s: read error corrected"
 | |
| 				       " (%d sectors at %llu on %s)\n",
 | |
| 				       mdname(mddev), s,
 | |
| 				       (unsigned long long)(
 | |
| 					       sect +
 | |
| 					       choose_data_offset(r10_bio, rdev)),
 | |
| 				       bdevname(rdev->bdev, b));
 | |
| 				atomic_add(s, &rdev->corrected_errors);
 | |
| 			}
 | |
| 
 | |
| 			rdev_dec_pending(rdev, mddev);
 | |
| 			rcu_read_lock();
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		sectors -= s;
 | |
| 		sect += s;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int narrow_write_error(struct r10bio *r10_bio, int i)
 | |
| {
 | |
| 	struct bio *bio = r10_bio->master_bio;
 | |
| 	struct mddev *mddev = r10_bio->mddev;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
 | |
| 	/* bio has the data to be written to slot 'i' where
 | |
| 	 * we just recently had a write error.
 | |
| 	 * We repeatedly clone the bio and trim down to one block,
 | |
| 	 * then try the write.  Where the write fails we record
 | |
| 	 * a bad block.
 | |
| 	 * It is conceivable that the bio doesn't exactly align with
 | |
| 	 * blocks.  We must handle this.
 | |
| 	 *
 | |
| 	 * We currently own a reference to the rdev.
 | |
| 	 */
 | |
| 
 | |
| 	int block_sectors;
 | |
| 	sector_t sector;
 | |
| 	int sectors;
 | |
| 	int sect_to_write = r10_bio->sectors;
 | |
| 	int ok = 1;
 | |
| 
 | |
| 	if (rdev->badblocks.shift < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	block_sectors = roundup(1 << rdev->badblocks.shift,
 | |
| 				bdev_logical_block_size(rdev->bdev) >> 9);
 | |
| 	sector = r10_bio->sector;
 | |
| 	sectors = ((r10_bio->sector + block_sectors)
 | |
| 		   & ~(sector_t)(block_sectors - 1))
 | |
| 		- sector;
 | |
| 
 | |
| 	while (sect_to_write) {
 | |
| 		struct bio *wbio;
 | |
| 		if (sectors > sect_to_write)
 | |
| 			sectors = sect_to_write;
 | |
| 		/* Write at 'sector' for 'sectors' */
 | |
| 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 | |
| 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
 | |
| 		wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
 | |
| 				   choose_data_offset(r10_bio, rdev) +
 | |
| 				   (sector - r10_bio->sector));
 | |
| 		wbio->bi_bdev = rdev->bdev;
 | |
| 		if (submit_bio_wait(WRITE, wbio) < 0)
 | |
| 			/* Failure! */
 | |
| 			ok = rdev_set_badblocks(rdev, sector,
 | |
| 						sectors, 0)
 | |
| 				&& ok;
 | |
| 
 | |
| 		bio_put(wbio);
 | |
| 		sect_to_write -= sectors;
 | |
| 		sector += sectors;
 | |
| 		sectors = block_sectors;
 | |
| 	}
 | |
| 	return ok;
 | |
| }
 | |
| 
 | |
| static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
 | |
| {
 | |
| 	int slot = r10_bio->read_slot;
 | |
| 	struct bio *bio;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
 | |
| 	char b[BDEVNAME_SIZE];
 | |
| 	unsigned long do_sync;
 | |
| 	int max_sectors;
 | |
| 
 | |
| 	/* we got a read error. Maybe the drive is bad.  Maybe just
 | |
| 	 * the block and we can fix it.
 | |
| 	 * We freeze all other IO, and try reading the block from
 | |
| 	 * other devices.  When we find one, we re-write
 | |
| 	 * and check it that fixes the read error.
 | |
| 	 * This is all done synchronously while the array is
 | |
| 	 * frozen.
 | |
| 	 */
 | |
| 	bio = r10_bio->devs[slot].bio;
 | |
| 	bdevname(bio->bi_bdev, b);
 | |
| 	bio_put(bio);
 | |
| 	r10_bio->devs[slot].bio = NULL;
 | |
| 
 | |
| 	if (mddev->ro == 0) {
 | |
| 		freeze_array(conf, 1);
 | |
| 		fix_read_error(conf, mddev, r10_bio);
 | |
| 		unfreeze_array(conf);
 | |
| 	} else
 | |
| 		r10_bio->devs[slot].bio = IO_BLOCKED;
 | |
| 
 | |
| 	rdev_dec_pending(rdev, mddev);
 | |
| 
 | |
| read_more:
 | |
| 	rdev = read_balance(conf, r10_bio, &max_sectors);
 | |
| 	if (rdev == NULL) {
 | |
| 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
 | |
| 		       " read error for block %llu\n",
 | |
| 		       mdname(mddev), b,
 | |
| 		       (unsigned long long)r10_bio->sector);
 | |
| 		raid_end_bio_io(r10_bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
 | |
| 	slot = r10_bio->read_slot;
 | |
| 	printk_ratelimited(
 | |
| 		KERN_ERR
 | |
| 		"md/raid10:%s: %s: redirecting "
 | |
| 		"sector %llu to another mirror\n",
 | |
| 		mdname(mddev),
 | |
| 		bdevname(rdev->bdev, b),
 | |
| 		(unsigned long long)r10_bio->sector);
 | |
| 	bio = bio_clone_mddev(r10_bio->master_bio,
 | |
| 			      GFP_NOIO, mddev);
 | |
| 	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
 | |
| 	r10_bio->devs[slot].bio = bio;
 | |
| 	r10_bio->devs[slot].rdev = rdev;
 | |
| 	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
 | |
| 		+ choose_data_offset(r10_bio, rdev);
 | |
| 	bio->bi_bdev = rdev->bdev;
 | |
| 	bio->bi_rw = READ | do_sync;
 | |
| 	bio->bi_private = r10_bio;
 | |
| 	bio->bi_end_io = raid10_end_read_request;
 | |
| 	if (max_sectors < r10_bio->sectors) {
 | |
| 		/* Drat - have to split this up more */
 | |
| 		struct bio *mbio = r10_bio->master_bio;
 | |
| 		int sectors_handled =
 | |
| 			r10_bio->sector + max_sectors
 | |
| 			- mbio->bi_iter.bi_sector;
 | |
| 		r10_bio->sectors = max_sectors;
 | |
| 		spin_lock_irq(&conf->device_lock);
 | |
| 		if (mbio->bi_phys_segments == 0)
 | |
| 			mbio->bi_phys_segments = 2;
 | |
| 		else
 | |
| 			mbio->bi_phys_segments++;
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 		generic_make_request(bio);
 | |
| 
 | |
| 		r10_bio = mempool_alloc(conf->r10bio_pool,
 | |
| 					GFP_NOIO);
 | |
| 		r10_bio->master_bio = mbio;
 | |
| 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
 | |
| 		r10_bio->state = 0;
 | |
| 		set_bit(R10BIO_ReadError,
 | |
| 			&r10_bio->state);
 | |
| 		r10_bio->mddev = mddev;
 | |
| 		r10_bio->sector = mbio->bi_iter.bi_sector
 | |
| 			+ sectors_handled;
 | |
| 
 | |
| 		goto read_more;
 | |
| 	} else
 | |
| 		generic_make_request(bio);
 | |
| }
 | |
| 
 | |
| static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
 | |
| {
 | |
| 	/* Some sort of write request has finished and it
 | |
| 	 * succeeded in writing where we thought there was a
 | |
| 	 * bad block.  So forget the bad block.
 | |
| 	 * Or possibly if failed and we need to record
 | |
| 	 * a bad block.
 | |
| 	 */
 | |
| 	int m;
 | |
| 	struct md_rdev *rdev;
 | |
| 
 | |
| 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
 | |
| 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
 | |
| 		for (m = 0; m < conf->copies; m++) {
 | |
| 			int dev = r10_bio->devs[m].devnum;
 | |
| 			rdev = conf->mirrors[dev].rdev;
 | |
| 			if (r10_bio->devs[m].bio == NULL)
 | |
| 				continue;
 | |
| 			if (!r10_bio->devs[m].bio->bi_error) {
 | |
| 				rdev_clear_badblocks(
 | |
| 					rdev,
 | |
| 					r10_bio->devs[m].addr,
 | |
| 					r10_bio->sectors, 0);
 | |
| 			} else {
 | |
| 				if (!rdev_set_badblocks(
 | |
| 					    rdev,
 | |
| 					    r10_bio->devs[m].addr,
 | |
| 					    r10_bio->sectors, 0))
 | |
| 					md_error(conf->mddev, rdev);
 | |
| 			}
 | |
| 			rdev = conf->mirrors[dev].replacement;
 | |
| 			if (r10_bio->devs[m].repl_bio == NULL)
 | |
| 				continue;
 | |
| 
 | |
| 			if (!r10_bio->devs[m].repl_bio->bi_error) {
 | |
| 				rdev_clear_badblocks(
 | |
| 					rdev,
 | |
| 					r10_bio->devs[m].addr,
 | |
| 					r10_bio->sectors, 0);
 | |
| 			} else {
 | |
| 				if (!rdev_set_badblocks(
 | |
| 					    rdev,
 | |
| 					    r10_bio->devs[m].addr,
 | |
| 					    r10_bio->sectors, 0))
 | |
| 					md_error(conf->mddev, rdev);
 | |
| 			}
 | |
| 		}
 | |
| 		put_buf(r10_bio);
 | |
| 	} else {
 | |
| 		bool fail = false;
 | |
| 		for (m = 0; m < conf->copies; m++) {
 | |
| 			int dev = r10_bio->devs[m].devnum;
 | |
| 			struct bio *bio = r10_bio->devs[m].bio;
 | |
| 			rdev = conf->mirrors[dev].rdev;
 | |
| 			if (bio == IO_MADE_GOOD) {
 | |
| 				rdev_clear_badblocks(
 | |
| 					rdev,
 | |
| 					r10_bio->devs[m].addr,
 | |
| 					r10_bio->sectors, 0);
 | |
| 				rdev_dec_pending(rdev, conf->mddev);
 | |
| 			} else if (bio != NULL && bio->bi_error) {
 | |
| 				fail = true;
 | |
| 				if (!narrow_write_error(r10_bio, m)) {
 | |
| 					md_error(conf->mddev, rdev);
 | |
| 					set_bit(R10BIO_Degraded,
 | |
| 						&r10_bio->state);
 | |
| 				}
 | |
| 				rdev_dec_pending(rdev, conf->mddev);
 | |
| 			}
 | |
| 			bio = r10_bio->devs[m].repl_bio;
 | |
| 			rdev = conf->mirrors[dev].replacement;
 | |
| 			if (rdev && bio == IO_MADE_GOOD) {
 | |
| 				rdev_clear_badblocks(
 | |
| 					rdev,
 | |
| 					r10_bio->devs[m].addr,
 | |
| 					r10_bio->sectors, 0);
 | |
| 				rdev_dec_pending(rdev, conf->mddev);
 | |
| 			}
 | |
| 		}
 | |
| 		if (fail) {
 | |
| 			spin_lock_irq(&conf->device_lock);
 | |
| 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
 | |
| 			conf->nr_queued++;
 | |
| 			spin_unlock_irq(&conf->device_lock);
 | |
| 			md_wakeup_thread(conf->mddev->thread);
 | |
| 		} else {
 | |
| 			if (test_bit(R10BIO_WriteError,
 | |
| 				     &r10_bio->state))
 | |
| 				close_write(r10_bio);
 | |
| 			raid_end_bio_io(r10_bio);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void raid10d(struct md_thread *thread)
 | |
| {
 | |
| 	struct mddev *mddev = thread->mddev;
 | |
| 	struct r10bio *r10_bio;
 | |
| 	unsigned long flags;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct list_head *head = &conf->retry_list;
 | |
| 	struct blk_plug plug;
 | |
| 
 | |
| 	md_check_recovery(mddev);
 | |
| 
 | |
| 	if (!list_empty_careful(&conf->bio_end_io_list) &&
 | |
| 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
 | |
| 		LIST_HEAD(tmp);
 | |
| 		spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
 | |
| 			while (!list_empty(&conf->bio_end_io_list)) {
 | |
| 				list_move(conf->bio_end_io_list.prev, &tmp);
 | |
| 				conf->nr_queued--;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 		while (!list_empty(&tmp)) {
 | |
| 			r10_bio = list_first_entry(&tmp, struct r10bio,
 | |
| 						   retry_list);
 | |
| 			list_del(&r10_bio->retry_list);
 | |
| 			if (mddev->degraded)
 | |
| 				set_bit(R10BIO_Degraded, &r10_bio->state);
 | |
| 
 | |
| 			if (test_bit(R10BIO_WriteError,
 | |
| 				     &r10_bio->state))
 | |
| 				close_write(r10_bio);
 | |
| 			raid_end_bio_io(r10_bio);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	for (;;) {
 | |
| 
 | |
| 		flush_pending_writes(conf);
 | |
| 
 | |
| 		spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 		if (list_empty(head)) {
 | |
| 			spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 			break;
 | |
| 		}
 | |
| 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
 | |
| 		list_del(head->prev);
 | |
| 		conf->nr_queued--;
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 
 | |
| 		mddev = r10_bio->mddev;
 | |
| 		conf = mddev->private;
 | |
| 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
 | |
| 		    test_bit(R10BIO_WriteError, &r10_bio->state))
 | |
| 			handle_write_completed(conf, r10_bio);
 | |
| 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
 | |
| 			reshape_request_write(mddev, r10_bio);
 | |
| 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
 | |
| 			sync_request_write(mddev, r10_bio);
 | |
| 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
 | |
| 			recovery_request_write(mddev, r10_bio);
 | |
| 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
 | |
| 			handle_read_error(mddev, r10_bio);
 | |
| 		else {
 | |
| 			/* just a partial read to be scheduled from a
 | |
| 			 * separate context
 | |
| 			 */
 | |
| 			int slot = r10_bio->read_slot;
 | |
| 			generic_make_request(r10_bio->devs[slot].bio);
 | |
| 		}
 | |
| 
 | |
| 		cond_resched();
 | |
| 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
 | |
| 			md_check_recovery(mddev);
 | |
| 	}
 | |
| 	blk_finish_plug(&plug);
 | |
| }
 | |
| 
 | |
| static int init_resync(struct r10conf *conf)
 | |
| {
 | |
| 	int buffs;
 | |
| 	int i;
 | |
| 
 | |
| 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
 | |
| 	BUG_ON(conf->r10buf_pool);
 | |
| 	conf->have_replacement = 0;
 | |
| 	for (i = 0; i < conf->geo.raid_disks; i++)
 | |
| 		if (conf->mirrors[i].replacement)
 | |
| 			conf->have_replacement = 1;
 | |
| 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
 | |
| 	if (!conf->r10buf_pool)
 | |
| 		return -ENOMEM;
 | |
| 	conf->next_resync = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * perform a "sync" on one "block"
 | |
|  *
 | |
|  * We need to make sure that no normal I/O request - particularly write
 | |
|  * requests - conflict with active sync requests.
 | |
|  *
 | |
|  * This is achieved by tracking pending requests and a 'barrier' concept
 | |
|  * that can be installed to exclude normal IO requests.
 | |
|  *
 | |
|  * Resync and recovery are handled very differently.
 | |
|  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
 | |
|  *
 | |
|  * For resync, we iterate over virtual addresses, read all copies,
 | |
|  * and update if there are differences.  If only one copy is live,
 | |
|  * skip it.
 | |
|  * For recovery, we iterate over physical addresses, read a good
 | |
|  * value for each non-in_sync drive, and over-write.
 | |
|  *
 | |
|  * So, for recovery we may have several outstanding complex requests for a
 | |
|  * given address, one for each out-of-sync device.  We model this by allocating
 | |
|  * a number of r10_bio structures, one for each out-of-sync device.
 | |
|  * As we setup these structures, we collect all bio's together into a list
 | |
|  * which we then process collectively to add pages, and then process again
 | |
|  * to pass to generic_make_request.
 | |
|  *
 | |
|  * The r10_bio structures are linked using a borrowed master_bio pointer.
 | |
|  * This link is counted in ->remaining.  When the r10_bio that points to NULL
 | |
|  * has its remaining count decremented to 0, the whole complex operation
 | |
|  * is complete.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
 | |
| 			     int *skipped)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct r10bio *r10_bio;
 | |
| 	struct bio *biolist = NULL, *bio;
 | |
| 	sector_t max_sector, nr_sectors;
 | |
| 	int i;
 | |
| 	int max_sync;
 | |
| 	sector_t sync_blocks;
 | |
| 	sector_t sectors_skipped = 0;
 | |
| 	int chunks_skipped = 0;
 | |
| 	sector_t chunk_mask = conf->geo.chunk_mask;
 | |
| 
 | |
| 	if (!conf->r10buf_pool)
 | |
| 		if (init_resync(conf))
 | |
| 			return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow skipping a full rebuild for incremental assembly
 | |
| 	 * of a clean array, like RAID1 does.
 | |
| 	 */
 | |
| 	if (mddev->bitmap == NULL &&
 | |
| 	    mddev->recovery_cp == MaxSector &&
 | |
| 	    mddev->reshape_position == MaxSector &&
 | |
| 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
 | |
| 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
 | |
| 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
 | |
| 	    conf->fullsync == 0) {
 | |
| 		*skipped = 1;
 | |
| 		return mddev->dev_sectors - sector_nr;
 | |
| 	}
 | |
| 
 | |
|  skipped:
 | |
| 	max_sector = mddev->dev_sectors;
 | |
| 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
 | |
| 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
 | |
| 		max_sector = mddev->resync_max_sectors;
 | |
| 	if (sector_nr >= max_sector) {
 | |
| 		/* If we aborted, we need to abort the
 | |
| 		 * sync on the 'current' bitmap chucks (there can
 | |
| 		 * be several when recovering multiple devices).
 | |
| 		 * as we may have started syncing it but not finished.
 | |
| 		 * We can find the current address in
 | |
| 		 * mddev->curr_resync, but for recovery,
 | |
| 		 * we need to convert that to several
 | |
| 		 * virtual addresses.
 | |
| 		 */
 | |
| 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
 | |
| 			end_reshape(conf);
 | |
| 			close_sync(conf);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (mddev->curr_resync < max_sector) { /* aborted */
 | |
| 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
 | |
| 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
 | |
| 						&sync_blocks, 1);
 | |
| 			else for (i = 0; i < conf->geo.raid_disks; i++) {
 | |
| 				sector_t sect =
 | |
| 					raid10_find_virt(conf, mddev->curr_resync, i);
 | |
| 				bitmap_end_sync(mddev->bitmap, sect,
 | |
| 						&sync_blocks, 1);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* completed sync */
 | |
| 			if ((!mddev->bitmap || conf->fullsync)
 | |
| 			    && conf->have_replacement
 | |
| 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
 | |
| 				/* Completed a full sync so the replacements
 | |
| 				 * are now fully recovered.
 | |
| 				 */
 | |
| 				for (i = 0; i < conf->geo.raid_disks; i++)
 | |
| 					if (conf->mirrors[i].replacement)
 | |
| 						conf->mirrors[i].replacement
 | |
| 							->recovery_offset
 | |
| 							= MaxSector;
 | |
| 			}
 | |
| 			conf->fullsync = 0;
 | |
| 		}
 | |
| 		bitmap_close_sync(mddev->bitmap);
 | |
| 		close_sync(conf);
 | |
| 		*skipped = 1;
 | |
| 		return sectors_skipped;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
 | |
| 		return reshape_request(mddev, sector_nr, skipped);
 | |
| 
 | |
| 	if (chunks_skipped >= conf->geo.raid_disks) {
 | |
| 		/* if there has been nothing to do on any drive,
 | |
| 		 * then there is nothing to do at all..
 | |
| 		 */
 | |
| 		*skipped = 1;
 | |
| 		return (max_sector - sector_nr) + sectors_skipped;
 | |
| 	}
 | |
| 
 | |
| 	if (max_sector > mddev->resync_max)
 | |
| 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
 | |
| 
 | |
| 	/* make sure whole request will fit in a chunk - if chunks
 | |
| 	 * are meaningful
 | |
| 	 */
 | |
| 	if (conf->geo.near_copies < conf->geo.raid_disks &&
 | |
| 	    max_sector > (sector_nr | chunk_mask))
 | |
| 		max_sector = (sector_nr | chunk_mask) + 1;
 | |
| 
 | |
| 	/* Again, very different code for resync and recovery.
 | |
| 	 * Both must result in an r10bio with a list of bios that
 | |
| 	 * have bi_end_io, bi_sector, bi_bdev set,
 | |
| 	 * and bi_private set to the r10bio.
 | |
| 	 * For recovery, we may actually create several r10bios
 | |
| 	 * with 2 bios in each, that correspond to the bios in the main one.
 | |
| 	 * In this case, the subordinate r10bios link back through a
 | |
| 	 * borrowed master_bio pointer, and the counter in the master
 | |
| 	 * includes a ref from each subordinate.
 | |
| 	 */
 | |
| 	/* First, we decide what to do and set ->bi_end_io
 | |
| 	 * To end_sync_read if we want to read, and
 | |
| 	 * end_sync_write if we will want to write.
 | |
| 	 */
 | |
| 
 | |
| 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
 | |
| 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
 | |
| 		/* recovery... the complicated one */
 | |
| 		int j;
 | |
| 		r10_bio = NULL;
 | |
| 
 | |
| 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
 | |
| 			int still_degraded;
 | |
| 			struct r10bio *rb2;
 | |
| 			sector_t sect;
 | |
| 			int must_sync;
 | |
| 			int any_working;
 | |
| 			struct raid10_info *mirror = &conf->mirrors[i];
 | |
| 
 | |
| 			if ((mirror->rdev == NULL ||
 | |
| 			     test_bit(In_sync, &mirror->rdev->flags))
 | |
| 			    &&
 | |
| 			    (mirror->replacement == NULL ||
 | |
| 			     test_bit(Faulty,
 | |
| 				      &mirror->replacement->flags)))
 | |
| 				continue;
 | |
| 
 | |
| 			still_degraded = 0;
 | |
| 			/* want to reconstruct this device */
 | |
| 			rb2 = r10_bio;
 | |
| 			sect = raid10_find_virt(conf, sector_nr, i);
 | |
| 			if (sect >= mddev->resync_max_sectors) {
 | |
| 				/* last stripe is not complete - don't
 | |
| 				 * try to recover this sector.
 | |
| 				 */
 | |
| 				continue;
 | |
| 			}
 | |
| 			/* Unless we are doing a full sync, or a replacement
 | |
| 			 * we only need to recover the block if it is set in
 | |
| 			 * the bitmap
 | |
| 			 */
 | |
| 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
 | |
| 						      &sync_blocks, 1);
 | |
| 			if (sync_blocks < max_sync)
 | |
| 				max_sync = sync_blocks;
 | |
| 			if (!must_sync &&
 | |
| 			    mirror->replacement == NULL &&
 | |
| 			    !conf->fullsync) {
 | |
| 				/* yep, skip the sync_blocks here, but don't assume
 | |
| 				 * that there will never be anything to do here
 | |
| 				 */
 | |
| 				chunks_skipped = -1;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 | |
| 			r10_bio->state = 0;
 | |
| 			raise_barrier(conf, rb2 != NULL);
 | |
| 			atomic_set(&r10_bio->remaining, 0);
 | |
| 
 | |
| 			r10_bio->master_bio = (struct bio*)rb2;
 | |
| 			if (rb2)
 | |
| 				atomic_inc(&rb2->remaining);
 | |
| 			r10_bio->mddev = mddev;
 | |
| 			set_bit(R10BIO_IsRecover, &r10_bio->state);
 | |
| 			r10_bio->sector = sect;
 | |
| 
 | |
| 			raid10_find_phys(conf, r10_bio);
 | |
| 
 | |
| 			/* Need to check if the array will still be
 | |
| 			 * degraded
 | |
| 			 */
 | |
| 			for (j = 0; j < conf->geo.raid_disks; j++)
 | |
| 				if (conf->mirrors[j].rdev == NULL ||
 | |
| 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
 | |
| 					still_degraded = 1;
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
 | |
| 						      &sync_blocks, still_degraded);
 | |
| 
 | |
| 			any_working = 0;
 | |
| 			for (j=0; j<conf->copies;j++) {
 | |
| 				int k;
 | |
| 				int d = r10_bio->devs[j].devnum;
 | |
| 				sector_t from_addr, to_addr;
 | |
| 				struct md_rdev *rdev;
 | |
| 				sector_t sector, first_bad;
 | |
| 				int bad_sectors;
 | |
| 				if (!conf->mirrors[d].rdev ||
 | |
| 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
 | |
| 					continue;
 | |
| 				/* This is where we read from */
 | |
| 				any_working = 1;
 | |
| 				rdev = conf->mirrors[d].rdev;
 | |
| 				sector = r10_bio->devs[j].addr;
 | |
| 
 | |
| 				if (is_badblock(rdev, sector, max_sync,
 | |
| 						&first_bad, &bad_sectors)) {
 | |
| 					if (first_bad > sector)
 | |
| 						max_sync = first_bad - sector;
 | |
| 					else {
 | |
| 						bad_sectors -= (sector
 | |
| 								- first_bad);
 | |
| 						if (max_sync > bad_sectors)
 | |
| 							max_sync = bad_sectors;
 | |
| 						continue;
 | |
| 					}
 | |
| 				}
 | |
| 				bio = r10_bio->devs[0].bio;
 | |
| 				bio_reset(bio);
 | |
| 				bio->bi_next = biolist;
 | |
| 				biolist = bio;
 | |
| 				bio->bi_private = r10_bio;
 | |
| 				bio->bi_end_io = end_sync_read;
 | |
| 				bio->bi_rw = READ;
 | |
| 				from_addr = r10_bio->devs[j].addr;
 | |
| 				bio->bi_iter.bi_sector = from_addr +
 | |
| 					rdev->data_offset;
 | |
| 				bio->bi_bdev = rdev->bdev;
 | |
| 				atomic_inc(&rdev->nr_pending);
 | |
| 				/* and we write to 'i' (if not in_sync) */
 | |
| 
 | |
| 				for (k=0; k<conf->copies; k++)
 | |
| 					if (r10_bio->devs[k].devnum == i)
 | |
| 						break;
 | |
| 				BUG_ON(k == conf->copies);
 | |
| 				to_addr = r10_bio->devs[k].addr;
 | |
| 				r10_bio->devs[0].devnum = d;
 | |
| 				r10_bio->devs[0].addr = from_addr;
 | |
| 				r10_bio->devs[1].devnum = i;
 | |
| 				r10_bio->devs[1].addr = to_addr;
 | |
| 
 | |
| 				rdev = mirror->rdev;
 | |
| 				if (!test_bit(In_sync, &rdev->flags)) {
 | |
| 					bio = r10_bio->devs[1].bio;
 | |
| 					bio_reset(bio);
 | |
| 					bio->bi_next = biolist;
 | |
| 					biolist = bio;
 | |
| 					bio->bi_private = r10_bio;
 | |
| 					bio->bi_end_io = end_sync_write;
 | |
| 					bio->bi_rw = WRITE;
 | |
| 					bio->bi_iter.bi_sector = to_addr
 | |
| 						+ rdev->data_offset;
 | |
| 					bio->bi_bdev = rdev->bdev;
 | |
| 					atomic_inc(&r10_bio->remaining);
 | |
| 				} else
 | |
| 					r10_bio->devs[1].bio->bi_end_io = NULL;
 | |
| 
 | |
| 				/* and maybe write to replacement */
 | |
| 				bio = r10_bio->devs[1].repl_bio;
 | |
| 				if (bio)
 | |
| 					bio->bi_end_io = NULL;
 | |
| 				rdev = mirror->replacement;
 | |
| 				/* Note: if rdev != NULL, then bio
 | |
| 				 * cannot be NULL as r10buf_pool_alloc will
 | |
| 				 * have allocated it.
 | |
| 				 * So the second test here is pointless.
 | |
| 				 * But it keeps semantic-checkers happy, and
 | |
| 				 * this comment keeps human reviewers
 | |
| 				 * happy.
 | |
| 				 */
 | |
| 				if (rdev == NULL || bio == NULL ||
 | |
| 				    test_bit(Faulty, &rdev->flags))
 | |
| 					break;
 | |
| 				bio_reset(bio);
 | |
| 				bio->bi_next = biolist;
 | |
| 				biolist = bio;
 | |
| 				bio->bi_private = r10_bio;
 | |
| 				bio->bi_end_io = end_sync_write;
 | |
| 				bio->bi_rw = WRITE;
 | |
| 				bio->bi_iter.bi_sector = to_addr +
 | |
| 					rdev->data_offset;
 | |
| 				bio->bi_bdev = rdev->bdev;
 | |
| 				atomic_inc(&r10_bio->remaining);
 | |
| 				break;
 | |
| 			}
 | |
| 			if (j == conf->copies) {
 | |
| 				/* Cannot recover, so abort the recovery or
 | |
| 				 * record a bad block */
 | |
| 				if (any_working) {
 | |
| 					/* problem is that there are bad blocks
 | |
| 					 * on other device(s)
 | |
| 					 */
 | |
| 					int k;
 | |
| 					for (k = 0; k < conf->copies; k++)
 | |
| 						if (r10_bio->devs[k].devnum == i)
 | |
| 							break;
 | |
| 					if (!test_bit(In_sync,
 | |
| 						      &mirror->rdev->flags)
 | |
| 					    && !rdev_set_badblocks(
 | |
| 						    mirror->rdev,
 | |
| 						    r10_bio->devs[k].addr,
 | |
| 						    max_sync, 0))
 | |
| 						any_working = 0;
 | |
| 					if (mirror->replacement &&
 | |
| 					    !rdev_set_badblocks(
 | |
| 						    mirror->replacement,
 | |
| 						    r10_bio->devs[k].addr,
 | |
| 						    max_sync, 0))
 | |
| 						any_working = 0;
 | |
| 				}
 | |
| 				if (!any_working)  {
 | |
| 					if (!test_and_set_bit(MD_RECOVERY_INTR,
 | |
| 							      &mddev->recovery))
 | |
| 						printk(KERN_INFO "md/raid10:%s: insufficient "
 | |
| 						       "working devices for recovery.\n",
 | |
| 						       mdname(mddev));
 | |
| 					mirror->recovery_disabled
 | |
| 						= mddev->recovery_disabled;
 | |
| 				}
 | |
| 				put_buf(r10_bio);
 | |
| 				if (rb2)
 | |
| 					atomic_dec(&rb2->remaining);
 | |
| 				r10_bio = rb2;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (biolist == NULL) {
 | |
| 			while (r10_bio) {
 | |
| 				struct r10bio *rb2 = r10_bio;
 | |
| 				r10_bio = (struct r10bio*) rb2->master_bio;
 | |
| 				rb2->master_bio = NULL;
 | |
| 				put_buf(rb2);
 | |
| 			}
 | |
| 			goto giveup;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* resync. Schedule a read for every block at this virt offset */
 | |
| 		int count = 0;
 | |
| 
 | |
| 		bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
 | |
| 
 | |
| 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
 | |
| 				       &sync_blocks, mddev->degraded) &&
 | |
| 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
 | |
| 						 &mddev->recovery)) {
 | |
| 			/* We can skip this block */
 | |
| 			*skipped = 1;
 | |
| 			return sync_blocks + sectors_skipped;
 | |
| 		}
 | |
| 		if (sync_blocks < max_sync)
 | |
| 			max_sync = sync_blocks;
 | |
| 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 | |
| 		r10_bio->state = 0;
 | |
| 
 | |
| 		r10_bio->mddev = mddev;
 | |
| 		atomic_set(&r10_bio->remaining, 0);
 | |
| 		raise_barrier(conf, 0);
 | |
| 		conf->next_resync = sector_nr;
 | |
| 
 | |
| 		r10_bio->master_bio = NULL;
 | |
| 		r10_bio->sector = sector_nr;
 | |
| 		set_bit(R10BIO_IsSync, &r10_bio->state);
 | |
| 		raid10_find_phys(conf, r10_bio);
 | |
| 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
 | |
| 
 | |
| 		for (i = 0; i < conf->copies; i++) {
 | |
| 			int d = r10_bio->devs[i].devnum;
 | |
| 			sector_t first_bad, sector;
 | |
| 			int bad_sectors;
 | |
| 
 | |
| 			if (r10_bio->devs[i].repl_bio)
 | |
| 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
 | |
| 
 | |
| 			bio = r10_bio->devs[i].bio;
 | |
| 			bio_reset(bio);
 | |
| 			bio->bi_error = -EIO;
 | |
| 			if (conf->mirrors[d].rdev == NULL ||
 | |
| 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
 | |
| 				continue;
 | |
| 			sector = r10_bio->devs[i].addr;
 | |
| 			if (is_badblock(conf->mirrors[d].rdev,
 | |
| 					sector, max_sync,
 | |
| 					&first_bad, &bad_sectors)) {
 | |
| 				if (first_bad > sector)
 | |
| 					max_sync = first_bad - sector;
 | |
| 				else {
 | |
| 					bad_sectors -= (sector - first_bad);
 | |
| 					if (max_sync > bad_sectors)
 | |
| 						max_sync = bad_sectors;
 | |
| 					continue;
 | |
| 				}
 | |
| 			}
 | |
| 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
 | |
| 			atomic_inc(&r10_bio->remaining);
 | |
| 			bio->bi_next = biolist;
 | |
| 			biolist = bio;
 | |
| 			bio->bi_private = r10_bio;
 | |
| 			bio->bi_end_io = end_sync_read;
 | |
| 			bio->bi_rw = READ;
 | |
| 			bio->bi_iter.bi_sector = sector +
 | |
| 				conf->mirrors[d].rdev->data_offset;
 | |
| 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
 | |
| 			count++;
 | |
| 
 | |
| 			if (conf->mirrors[d].replacement == NULL ||
 | |
| 			    test_bit(Faulty,
 | |
| 				     &conf->mirrors[d].replacement->flags))
 | |
| 				continue;
 | |
| 
 | |
| 			/* Need to set up for writing to the replacement */
 | |
| 			bio = r10_bio->devs[i].repl_bio;
 | |
| 			bio_reset(bio);
 | |
| 			bio->bi_error = -EIO;
 | |
| 
 | |
| 			sector = r10_bio->devs[i].addr;
 | |
| 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
 | |
| 			bio->bi_next = biolist;
 | |
| 			biolist = bio;
 | |
| 			bio->bi_private = r10_bio;
 | |
| 			bio->bi_end_io = end_sync_write;
 | |
| 			bio->bi_rw = WRITE;
 | |
| 			bio->bi_iter.bi_sector = sector +
 | |
| 				conf->mirrors[d].replacement->data_offset;
 | |
| 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
 | |
| 			count++;
 | |
| 		}
 | |
| 
 | |
| 		if (count < 2) {
 | |
| 			for (i=0; i<conf->copies; i++) {
 | |
| 				int d = r10_bio->devs[i].devnum;
 | |
| 				if (r10_bio->devs[i].bio->bi_end_io)
 | |
| 					rdev_dec_pending(conf->mirrors[d].rdev,
 | |
| 							 mddev);
 | |
| 				if (r10_bio->devs[i].repl_bio &&
 | |
| 				    r10_bio->devs[i].repl_bio->bi_end_io)
 | |
| 					rdev_dec_pending(
 | |
| 						conf->mirrors[d].replacement,
 | |
| 						mddev);
 | |
| 			}
 | |
| 			put_buf(r10_bio);
 | |
| 			biolist = NULL;
 | |
| 			goto giveup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	nr_sectors = 0;
 | |
| 	if (sector_nr + max_sync < max_sector)
 | |
| 		max_sector = sector_nr + max_sync;
 | |
| 	do {
 | |
| 		struct page *page;
 | |
| 		int len = PAGE_SIZE;
 | |
| 		if (sector_nr + (len>>9) > max_sector)
 | |
| 			len = (max_sector - sector_nr) << 9;
 | |
| 		if (len == 0)
 | |
| 			break;
 | |
| 		for (bio= biolist ; bio ; bio=bio->bi_next) {
 | |
| 			struct bio *bio2;
 | |
| 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
 | |
| 			if (bio_add_page(bio, page, len, 0))
 | |
| 				continue;
 | |
| 
 | |
| 			/* stop here */
 | |
| 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
 | |
| 			for (bio2 = biolist;
 | |
| 			     bio2 && bio2 != bio;
 | |
| 			     bio2 = bio2->bi_next) {
 | |
| 				/* remove last page from this bio */
 | |
| 				bio2->bi_vcnt--;
 | |
| 				bio2->bi_iter.bi_size -= len;
 | |
| 				bio_clear_flag(bio2, BIO_SEG_VALID);
 | |
| 			}
 | |
| 			goto bio_full;
 | |
| 		}
 | |
| 		nr_sectors += len>>9;
 | |
| 		sector_nr += len>>9;
 | |
| 	} while (biolist->bi_vcnt < RESYNC_PAGES);
 | |
|  bio_full:
 | |
| 	r10_bio->sectors = nr_sectors;
 | |
| 
 | |
| 	while (biolist) {
 | |
| 		bio = biolist;
 | |
| 		biolist = biolist->bi_next;
 | |
| 
 | |
| 		bio->bi_next = NULL;
 | |
| 		r10_bio = bio->bi_private;
 | |
| 		r10_bio->sectors = nr_sectors;
 | |
| 
 | |
| 		if (bio->bi_end_io == end_sync_read) {
 | |
| 			md_sync_acct(bio->bi_bdev, nr_sectors);
 | |
| 			bio->bi_error = 0;
 | |
| 			generic_make_request(bio);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sectors_skipped)
 | |
| 		/* pretend they weren't skipped, it makes
 | |
| 		 * no important difference in this case
 | |
| 		 */
 | |
| 		md_done_sync(mddev, sectors_skipped, 1);
 | |
| 
 | |
| 	return sectors_skipped + nr_sectors;
 | |
|  giveup:
 | |
| 	/* There is nowhere to write, so all non-sync
 | |
| 	 * drives must be failed or in resync, all drives
 | |
| 	 * have a bad block, so try the next chunk...
 | |
| 	 */
 | |
| 	if (sector_nr + max_sync < max_sector)
 | |
| 		max_sector = sector_nr + max_sync;
 | |
| 
 | |
| 	sectors_skipped += (max_sector - sector_nr);
 | |
| 	chunks_skipped ++;
 | |
| 	sector_nr = max_sector;
 | |
| 	goto skipped;
 | |
| }
 | |
| 
 | |
| static sector_t
 | |
| raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
 | |
| {
 | |
| 	sector_t size;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 
 | |
| 	if (!raid_disks)
 | |
| 		raid_disks = min(conf->geo.raid_disks,
 | |
| 				 conf->prev.raid_disks);
 | |
| 	if (!sectors)
 | |
| 		sectors = conf->dev_sectors;
 | |
| 
 | |
| 	size = sectors >> conf->geo.chunk_shift;
 | |
| 	sector_div(size, conf->geo.far_copies);
 | |
| 	size = size * raid_disks;
 | |
| 	sector_div(size, conf->geo.near_copies);
 | |
| 
 | |
| 	return size << conf->geo.chunk_shift;
 | |
| }
 | |
| 
 | |
| static void calc_sectors(struct r10conf *conf, sector_t size)
 | |
| {
 | |
| 	/* Calculate the number of sectors-per-device that will
 | |
| 	 * actually be used, and set conf->dev_sectors and
 | |
| 	 * conf->stride
 | |
| 	 */
 | |
| 
 | |
| 	size = size >> conf->geo.chunk_shift;
 | |
| 	sector_div(size, conf->geo.far_copies);
 | |
| 	size = size * conf->geo.raid_disks;
 | |
| 	sector_div(size, conf->geo.near_copies);
 | |
| 	/* 'size' is now the number of chunks in the array */
 | |
| 	/* calculate "used chunks per device" */
 | |
| 	size = size * conf->copies;
 | |
| 
 | |
| 	/* We need to round up when dividing by raid_disks to
 | |
| 	 * get the stride size.
 | |
| 	 */
 | |
| 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
 | |
| 
 | |
| 	conf->dev_sectors = size << conf->geo.chunk_shift;
 | |
| 
 | |
| 	if (conf->geo.far_offset)
 | |
| 		conf->geo.stride = 1 << conf->geo.chunk_shift;
 | |
| 	else {
 | |
| 		sector_div(size, conf->geo.far_copies);
 | |
| 		conf->geo.stride = size << conf->geo.chunk_shift;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| enum geo_type {geo_new, geo_old, geo_start};
 | |
| static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
 | |
| {
 | |
| 	int nc, fc, fo;
 | |
| 	int layout, chunk, disks;
 | |
| 	switch (new) {
 | |
| 	case geo_old:
 | |
| 		layout = mddev->layout;
 | |
| 		chunk = mddev->chunk_sectors;
 | |
| 		disks = mddev->raid_disks - mddev->delta_disks;
 | |
| 		break;
 | |
| 	case geo_new:
 | |
| 		layout = mddev->new_layout;
 | |
| 		chunk = mddev->new_chunk_sectors;
 | |
| 		disks = mddev->raid_disks;
 | |
| 		break;
 | |
| 	default: /* avoid 'may be unused' warnings */
 | |
| 	case geo_start: /* new when starting reshape - raid_disks not
 | |
| 			 * updated yet. */
 | |
| 		layout = mddev->new_layout;
 | |
| 		chunk = mddev->new_chunk_sectors;
 | |
| 		disks = mddev->raid_disks + mddev->delta_disks;
 | |
| 		break;
 | |
| 	}
 | |
| 	if (layout >> 19)
 | |
| 		return -1;
 | |
| 	if (chunk < (PAGE_SIZE >> 9) ||
 | |
| 	    !is_power_of_2(chunk))
 | |
| 		return -2;
 | |
| 	nc = layout & 255;
 | |
| 	fc = (layout >> 8) & 255;
 | |
| 	fo = layout & (1<<16);
 | |
| 	geo->raid_disks = disks;
 | |
| 	geo->near_copies = nc;
 | |
| 	geo->far_copies = fc;
 | |
| 	geo->far_offset = fo;
 | |
| 	switch (layout >> 17) {
 | |
| 	case 0:	/* original layout.  simple but not always optimal */
 | |
| 		geo->far_set_size = disks;
 | |
| 		break;
 | |
| 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
 | |
| 		 * actually using this, but leave code here just in case.*/
 | |
| 		geo->far_set_size = disks/fc;
 | |
| 		WARN(geo->far_set_size < fc,
 | |
| 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
 | |
| 		break;
 | |
| 	case 2: /* "improved" layout fixed to match documentation */
 | |
| 		geo->far_set_size = fc * nc;
 | |
| 		break;
 | |
| 	default: /* Not a valid layout */
 | |
| 		return -1;
 | |
| 	}
 | |
| 	geo->chunk_mask = chunk - 1;
 | |
| 	geo->chunk_shift = ffz(~chunk);
 | |
| 	return nc*fc;
 | |
| }
 | |
| 
 | |
| static struct r10conf *setup_conf(struct mddev *mddev)
 | |
| {
 | |
| 	struct r10conf *conf = NULL;
 | |
| 	int err = -EINVAL;
 | |
| 	struct geom geo;
 | |
| 	int copies;
 | |
| 
 | |
| 	copies = setup_geo(&geo, mddev, geo_new);
 | |
| 
 | |
| 	if (copies == -2) {
 | |
| 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
 | |
| 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
 | |
| 		       mdname(mddev), PAGE_SIZE);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (copies < 2 || copies > mddev->raid_disks) {
 | |
| 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
 | |
| 		       mdname(mddev), mddev->new_layout);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
 | |
| 	if (!conf)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* FIXME calc properly */
 | |
| 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
 | |
| 							    max(0,-mddev->delta_disks)),
 | |
| 				GFP_KERNEL);
 | |
| 	if (!conf->mirrors)
 | |
| 		goto out;
 | |
| 
 | |
| 	conf->tmppage = alloc_page(GFP_KERNEL);
 | |
| 	if (!conf->tmppage)
 | |
| 		goto out;
 | |
| 
 | |
| 	conf->geo = geo;
 | |
| 	conf->copies = copies;
 | |
| 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
 | |
| 					   r10bio_pool_free, conf);
 | |
| 	if (!conf->r10bio_pool)
 | |
| 		goto out;
 | |
| 
 | |
| 	calc_sectors(conf, mddev->dev_sectors);
 | |
| 	if (mddev->reshape_position == MaxSector) {
 | |
| 		conf->prev = conf->geo;
 | |
| 		conf->reshape_progress = MaxSector;
 | |
| 	} else {
 | |
| 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
 | |
| 			err = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		conf->reshape_progress = mddev->reshape_position;
 | |
| 		if (conf->prev.far_offset)
 | |
| 			conf->prev.stride = 1 << conf->prev.chunk_shift;
 | |
| 		else
 | |
| 			/* far_copies must be 1 */
 | |
| 			conf->prev.stride = conf->dev_sectors;
 | |
| 	}
 | |
| 	conf->reshape_safe = conf->reshape_progress;
 | |
| 	spin_lock_init(&conf->device_lock);
 | |
| 	INIT_LIST_HEAD(&conf->retry_list);
 | |
| 	INIT_LIST_HEAD(&conf->bio_end_io_list);
 | |
| 
 | |
| 	spin_lock_init(&conf->resync_lock);
 | |
| 	init_waitqueue_head(&conf->wait_barrier);
 | |
| 
 | |
| 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
 | |
| 	if (!conf->thread)
 | |
| 		goto out;
 | |
| 
 | |
| 	conf->mddev = mddev;
 | |
| 	return conf;
 | |
| 
 | |
|  out:
 | |
| 	if (err == -ENOMEM)
 | |
| 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
 | |
| 		       mdname(mddev));
 | |
| 	if (conf) {
 | |
| 		mempool_destroy(conf->r10bio_pool);
 | |
| 		kfree(conf->mirrors);
 | |
| 		safe_put_page(conf->tmppage);
 | |
| 		kfree(conf);
 | |
| 	}
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static int raid10_run(struct mddev *mddev)
 | |
| {
 | |
| 	struct r10conf *conf;
 | |
| 	int i, disk_idx, chunk_size;
 | |
| 	struct raid10_info *disk;
 | |
| 	struct md_rdev *rdev;
 | |
| 	sector_t size;
 | |
| 	sector_t min_offset_diff = 0;
 | |
| 	int first = 1;
 | |
| 	bool discard_supported = false;
 | |
| 
 | |
| 	if (mddev->private == NULL) {
 | |
| 		conf = setup_conf(mddev);
 | |
| 		if (IS_ERR(conf))
 | |
| 			return PTR_ERR(conf);
 | |
| 		mddev->private = conf;
 | |
| 	}
 | |
| 	conf = mddev->private;
 | |
| 	if (!conf)
 | |
| 		goto out;
 | |
| 
 | |
| 	mddev->thread = conf->thread;
 | |
| 	conf->thread = NULL;
 | |
| 
 | |
| 	chunk_size = mddev->chunk_sectors << 9;
 | |
| 	if (mddev->queue) {
 | |
| 		blk_queue_max_discard_sectors(mddev->queue,
 | |
| 					      mddev->chunk_sectors);
 | |
| 		blk_queue_max_write_same_sectors(mddev->queue, 0);
 | |
| 		blk_queue_io_min(mddev->queue, chunk_size);
 | |
| 		if (conf->geo.raid_disks % conf->geo.near_copies)
 | |
| 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
 | |
| 		else
 | |
| 			blk_queue_io_opt(mddev->queue, chunk_size *
 | |
| 					 (conf->geo.raid_disks / conf->geo.near_copies));
 | |
| 	}
 | |
| 
 | |
| 	rdev_for_each(rdev, mddev) {
 | |
| 		long long diff;
 | |
| 		struct request_queue *q;
 | |
| 
 | |
| 		disk_idx = rdev->raid_disk;
 | |
| 		if (disk_idx < 0)
 | |
| 			continue;
 | |
| 		if (disk_idx >= conf->geo.raid_disks &&
 | |
| 		    disk_idx >= conf->prev.raid_disks)
 | |
| 			continue;
 | |
| 		disk = conf->mirrors + disk_idx;
 | |
| 
 | |
| 		if (test_bit(Replacement, &rdev->flags)) {
 | |
| 			if (disk->replacement)
 | |
| 				goto out_free_conf;
 | |
| 			disk->replacement = rdev;
 | |
| 		} else {
 | |
| 			if (disk->rdev)
 | |
| 				goto out_free_conf;
 | |
| 			disk->rdev = rdev;
 | |
| 		}
 | |
| 		q = bdev_get_queue(rdev->bdev);
 | |
| 		diff = (rdev->new_data_offset - rdev->data_offset);
 | |
| 		if (!mddev->reshape_backwards)
 | |
| 			diff = -diff;
 | |
| 		if (diff < 0)
 | |
| 			diff = 0;
 | |
| 		if (first || diff < min_offset_diff)
 | |
| 			min_offset_diff = diff;
 | |
| 
 | |
| 		if (mddev->gendisk)
 | |
| 			disk_stack_limits(mddev->gendisk, rdev->bdev,
 | |
| 					  rdev->data_offset << 9);
 | |
| 
 | |
| 		disk->head_position = 0;
 | |
| 
 | |
| 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
 | |
| 			discard_supported = true;
 | |
| 	}
 | |
| 
 | |
| 	if (mddev->queue) {
 | |
| 		if (discard_supported)
 | |
| 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
 | |
| 						mddev->queue);
 | |
| 		else
 | |
| 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
 | |
| 						  mddev->queue);
 | |
| 	}
 | |
| 	/* need to check that every block has at least one working mirror */
 | |
| 	if (!enough(conf, -1)) {
 | |
| 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
 | |
| 		       mdname(mddev));
 | |
| 		goto out_free_conf;
 | |
| 	}
 | |
| 
 | |
| 	if (conf->reshape_progress != MaxSector) {
 | |
| 		/* must ensure that shape change is supported */
 | |
| 		if (conf->geo.far_copies != 1 &&
 | |
| 		    conf->geo.far_offset == 0)
 | |
| 			goto out_free_conf;
 | |
| 		if (conf->prev.far_copies != 1 &&
 | |
| 		    conf->prev.far_offset == 0)
 | |
| 			goto out_free_conf;
 | |
| 	}
 | |
| 
 | |
| 	mddev->degraded = 0;
 | |
| 	for (i = 0;
 | |
| 	     i < conf->geo.raid_disks
 | |
| 		     || i < conf->prev.raid_disks;
 | |
| 	     i++) {
 | |
| 
 | |
| 		disk = conf->mirrors + i;
 | |
| 
 | |
| 		if (!disk->rdev && disk->replacement) {
 | |
| 			/* The replacement is all we have - use it */
 | |
| 			disk->rdev = disk->replacement;
 | |
| 			disk->replacement = NULL;
 | |
| 			clear_bit(Replacement, &disk->rdev->flags);
 | |
| 		}
 | |
| 
 | |
| 		if (!disk->rdev ||
 | |
| 		    !test_bit(In_sync, &disk->rdev->flags)) {
 | |
| 			disk->head_position = 0;
 | |
| 			mddev->degraded++;
 | |
| 			if (disk->rdev &&
 | |
| 			    disk->rdev->saved_raid_disk < 0)
 | |
| 				conf->fullsync = 1;
 | |
| 		}
 | |
| 		disk->recovery_disabled = mddev->recovery_disabled - 1;
 | |
| 	}
 | |
| 
 | |
| 	if (mddev->recovery_cp != MaxSector)
 | |
| 		printk(KERN_NOTICE "md/raid10:%s: not clean"
 | |
| 		       " -- starting background reconstruction\n",
 | |
| 		       mdname(mddev));
 | |
| 	printk(KERN_INFO
 | |
| 		"md/raid10:%s: active with %d out of %d devices\n",
 | |
| 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
 | |
| 		conf->geo.raid_disks);
 | |
| 	/*
 | |
| 	 * Ok, everything is just fine now
 | |
| 	 */
 | |
| 	mddev->dev_sectors = conf->dev_sectors;
 | |
| 	size = raid10_size(mddev, 0, 0);
 | |
| 	md_set_array_sectors(mddev, size);
 | |
| 	mddev->resync_max_sectors = size;
 | |
| 
 | |
| 	if (mddev->queue) {
 | |
| 		int stripe = conf->geo.raid_disks *
 | |
| 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
 | |
| 
 | |
| 		/* Calculate max read-ahead size.
 | |
| 		 * We need to readahead at least twice a whole stripe....
 | |
| 		 * maybe...
 | |
| 		 */
 | |
| 		stripe /= conf->geo.near_copies;
 | |
| 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
 | |
| 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
 | |
| 	}
 | |
| 
 | |
| 	if (md_integrity_register(mddev))
 | |
| 		goto out_free_conf;
 | |
| 
 | |
| 	if (conf->reshape_progress != MaxSector) {
 | |
| 		unsigned long before_length, after_length;
 | |
| 
 | |
| 		before_length = ((1 << conf->prev.chunk_shift) *
 | |
| 				 conf->prev.far_copies);
 | |
| 		after_length = ((1 << conf->geo.chunk_shift) *
 | |
| 				conf->geo.far_copies);
 | |
| 
 | |
| 		if (max(before_length, after_length) > min_offset_diff) {
 | |
| 			/* This cannot work */
 | |
| 			printk("md/raid10: offset difference not enough to continue reshape\n");
 | |
| 			goto out_free_conf;
 | |
| 		}
 | |
| 		conf->offset_diff = min_offset_diff;
 | |
| 
 | |
| 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
 | |
| 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
 | |
| 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
 | |
| 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
 | |
| 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
 | |
| 							"reshape");
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free_conf:
 | |
| 	md_unregister_thread(&mddev->thread);
 | |
| 	mempool_destroy(conf->r10bio_pool);
 | |
| 	safe_put_page(conf->tmppage);
 | |
| 	kfree(conf->mirrors);
 | |
| 	kfree(conf);
 | |
| 	mddev->private = NULL;
 | |
| out:
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| static void raid10_free(struct mddev *mddev, void *priv)
 | |
| {
 | |
| 	struct r10conf *conf = priv;
 | |
| 
 | |
| 	mempool_destroy(conf->r10bio_pool);
 | |
| 	safe_put_page(conf->tmppage);
 | |
| 	kfree(conf->mirrors);
 | |
| 	kfree(conf->mirrors_old);
 | |
| 	kfree(conf->mirrors_new);
 | |
| 	kfree(conf);
 | |
| }
 | |
| 
 | |
| static void raid10_quiesce(struct mddev *mddev, int state)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 
 | |
| 	switch(state) {
 | |
| 	case 1:
 | |
| 		raise_barrier(conf, 0);
 | |
| 		break;
 | |
| 	case 0:
 | |
| 		lower_barrier(conf);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int raid10_resize(struct mddev *mddev, sector_t sectors)
 | |
| {
 | |
| 	/* Resize of 'far' arrays is not supported.
 | |
| 	 * For 'near' and 'offset' arrays we can set the
 | |
| 	 * number of sectors used to be an appropriate multiple
 | |
| 	 * of the chunk size.
 | |
| 	 * For 'offset', this is far_copies*chunksize.
 | |
| 	 * For 'near' the multiplier is the LCM of
 | |
| 	 * near_copies and raid_disks.
 | |
| 	 * So if far_copies > 1 && !far_offset, fail.
 | |
| 	 * Else find LCM(raid_disks, near_copy)*far_copies and
 | |
| 	 * multiply by chunk_size.  Then round to this number.
 | |
| 	 * This is mostly done by raid10_size()
 | |
| 	 */
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	sector_t oldsize, size;
 | |
| 
 | |
| 	if (mddev->reshape_position != MaxSector)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	oldsize = raid10_size(mddev, 0, 0);
 | |
| 	size = raid10_size(mddev, sectors, 0);
 | |
| 	if (mddev->external_size &&
 | |
| 	    mddev->array_sectors > size)
 | |
| 		return -EINVAL;
 | |
| 	if (mddev->bitmap) {
 | |
| 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	md_set_array_sectors(mddev, size);
 | |
| 	if (mddev->queue) {
 | |
| 		set_capacity(mddev->gendisk, mddev->array_sectors);
 | |
| 		revalidate_disk(mddev->gendisk);
 | |
| 	}
 | |
| 	if (sectors > mddev->dev_sectors &&
 | |
| 	    mddev->recovery_cp > oldsize) {
 | |
| 		mddev->recovery_cp = oldsize;
 | |
| 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 | |
| 	}
 | |
| 	calc_sectors(conf, sectors);
 | |
| 	mddev->dev_sectors = conf->dev_sectors;
 | |
| 	mddev->resync_max_sectors = size;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
 | |
| {
 | |
| 	struct md_rdev *rdev;
 | |
| 	struct r10conf *conf;
 | |
| 
 | |
| 	if (mddev->degraded > 0) {
 | |
| 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
 | |
| 		       mdname(mddev));
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 	sector_div(size, devs);
 | |
| 
 | |
| 	/* Set new parameters */
 | |
| 	mddev->new_level = 10;
 | |
| 	/* new layout: far_copies = 1, near_copies = 2 */
 | |
| 	mddev->new_layout = (1<<8) + 2;
 | |
| 	mddev->new_chunk_sectors = mddev->chunk_sectors;
 | |
| 	mddev->delta_disks = mddev->raid_disks;
 | |
| 	mddev->raid_disks *= 2;
 | |
| 	/* make sure it will be not marked as dirty */
 | |
| 	mddev->recovery_cp = MaxSector;
 | |
| 	mddev->dev_sectors = size;
 | |
| 
 | |
| 	conf = setup_conf(mddev);
 | |
| 	if (!IS_ERR(conf)) {
 | |
| 		rdev_for_each(rdev, mddev)
 | |
| 			if (rdev->raid_disk >= 0) {
 | |
| 				rdev->new_raid_disk = rdev->raid_disk * 2;
 | |
| 				rdev->sectors = size;
 | |
| 			}
 | |
| 		conf->barrier = 1;
 | |
| 	}
 | |
| 
 | |
| 	return conf;
 | |
| }
 | |
| 
 | |
| static void *raid10_takeover(struct mddev *mddev)
 | |
| {
 | |
| 	struct r0conf *raid0_conf;
 | |
| 
 | |
| 	/* raid10 can take over:
 | |
| 	 *  raid0 - providing it has only two drives
 | |
| 	 */
 | |
| 	if (mddev->level == 0) {
 | |
| 		/* for raid0 takeover only one zone is supported */
 | |
| 		raid0_conf = mddev->private;
 | |
| 		if (raid0_conf->nr_strip_zones > 1) {
 | |
| 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
 | |
| 			       " with more than one zone.\n",
 | |
| 			       mdname(mddev));
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 		}
 | |
| 		return raid10_takeover_raid0(mddev,
 | |
| 			raid0_conf->strip_zone->zone_end,
 | |
| 			raid0_conf->strip_zone->nb_dev);
 | |
| 	}
 | |
| 	return ERR_PTR(-EINVAL);
 | |
| }
 | |
| 
 | |
| static int raid10_check_reshape(struct mddev *mddev)
 | |
| {
 | |
| 	/* Called when there is a request to change
 | |
| 	 * - layout (to ->new_layout)
 | |
| 	 * - chunk size (to ->new_chunk_sectors)
 | |
| 	 * - raid_disks (by delta_disks)
 | |
| 	 * or when trying to restart a reshape that was ongoing.
 | |
| 	 *
 | |
| 	 * We need to validate the request and possibly allocate
 | |
| 	 * space if that might be an issue later.
 | |
| 	 *
 | |
| 	 * Currently we reject any reshape of a 'far' mode array,
 | |
| 	 * allow chunk size to change if new is generally acceptable,
 | |
| 	 * allow raid_disks to increase, and allow
 | |
| 	 * a switch between 'near' mode and 'offset' mode.
 | |
| 	 */
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct geom geo;
 | |
| 
 | |
| 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
 | |
| 		/* mustn't change number of copies */
 | |
| 		return -EINVAL;
 | |
| 	if (geo.far_copies > 1 && !geo.far_offset)
 | |
| 		/* Cannot switch to 'far' mode */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (mddev->array_sectors & geo.chunk_mask)
 | |
| 			/* not factor of array size */
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 	if (!enough(conf, -1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	kfree(conf->mirrors_new);
 | |
| 	conf->mirrors_new = NULL;
 | |
| 	if (mddev->delta_disks > 0) {
 | |
| 		/* allocate new 'mirrors' list */
 | |
| 		conf->mirrors_new = kzalloc(
 | |
| 			sizeof(struct raid10_info)
 | |
| 			*(mddev->raid_disks +
 | |
| 			  mddev->delta_disks),
 | |
| 			GFP_KERNEL);
 | |
| 		if (!conf->mirrors_new)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Need to check if array has failed when deciding whether to:
 | |
|  *  - start an array
 | |
|  *  - remove non-faulty devices
 | |
|  *  - add a spare
 | |
|  *  - allow a reshape
 | |
|  * This determination is simple when no reshape is happening.
 | |
|  * However if there is a reshape, we need to carefully check
 | |
|  * both the before and after sections.
 | |
|  * This is because some failed devices may only affect one
 | |
|  * of the two sections, and some non-in_sync devices may
 | |
|  * be insync in the section most affected by failed devices.
 | |
|  */
 | |
| static int calc_degraded(struct r10conf *conf)
 | |
| {
 | |
| 	int degraded, degraded2;
 | |
| 	int i;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	degraded = 0;
 | |
| 	/* 'prev' section first */
 | |
| 	for (i = 0; i < conf->prev.raid_disks; i++) {
 | |
| 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 | |
| 		if (!rdev || test_bit(Faulty, &rdev->flags))
 | |
| 			degraded++;
 | |
| 		else if (!test_bit(In_sync, &rdev->flags))
 | |
| 			/* When we can reduce the number of devices in
 | |
| 			 * an array, this might not contribute to
 | |
| 			 * 'degraded'.  It does now.
 | |
| 			 */
 | |
| 			degraded++;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	if (conf->geo.raid_disks == conf->prev.raid_disks)
 | |
| 		return degraded;
 | |
| 	rcu_read_lock();
 | |
| 	degraded2 = 0;
 | |
| 	for (i = 0; i < conf->geo.raid_disks; i++) {
 | |
| 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 | |
| 		if (!rdev || test_bit(Faulty, &rdev->flags))
 | |
| 			degraded2++;
 | |
| 		else if (!test_bit(In_sync, &rdev->flags)) {
 | |
| 			/* If reshape is increasing the number of devices,
 | |
| 			 * this section has already been recovered, so
 | |
| 			 * it doesn't contribute to degraded.
 | |
| 			 * else it does.
 | |
| 			 */
 | |
| 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
 | |
| 				degraded2++;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	if (degraded2 > degraded)
 | |
| 		return degraded2;
 | |
| 	return degraded;
 | |
| }
 | |
| 
 | |
| static int raid10_start_reshape(struct mddev *mddev)
 | |
| {
 | |
| 	/* A 'reshape' has been requested. This commits
 | |
| 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
 | |
| 	 * This also checks if there are enough spares and adds them
 | |
| 	 * to the array.
 | |
| 	 * We currently require enough spares to make the final
 | |
| 	 * array non-degraded.  We also require that the difference
 | |
| 	 * between old and new data_offset - on each device - is
 | |
| 	 * enough that we never risk over-writing.
 | |
| 	 */
 | |
| 
 | |
| 	unsigned long before_length, after_length;
 | |
| 	sector_t min_offset_diff = 0;
 | |
| 	int first = 1;
 | |
| 	struct geom new;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct md_rdev *rdev;
 | |
| 	int spares = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	before_length = ((1 << conf->prev.chunk_shift) *
 | |
| 			 conf->prev.far_copies);
 | |
| 	after_length = ((1 << conf->geo.chunk_shift) *
 | |
| 			conf->geo.far_copies);
 | |
| 
 | |
| 	rdev_for_each(rdev, mddev) {
 | |
| 		if (!test_bit(In_sync, &rdev->flags)
 | |
| 		    && !test_bit(Faulty, &rdev->flags))
 | |
| 			spares++;
 | |
| 		if (rdev->raid_disk >= 0) {
 | |
| 			long long diff = (rdev->new_data_offset
 | |
| 					  - rdev->data_offset);
 | |
| 			if (!mddev->reshape_backwards)
 | |
| 				diff = -diff;
 | |
| 			if (diff < 0)
 | |
| 				diff = 0;
 | |
| 			if (first || diff < min_offset_diff)
 | |
| 				min_offset_diff = diff;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (max(before_length, after_length) > min_offset_diff)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (spares < mddev->delta_disks)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	conf->offset_diff = min_offset_diff;
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 	if (conf->mirrors_new) {
 | |
| 		memcpy(conf->mirrors_new, conf->mirrors,
 | |
| 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
 | |
| 		smp_mb();
 | |
| 		kfree(conf->mirrors_old);
 | |
| 		conf->mirrors_old = conf->mirrors;
 | |
| 		conf->mirrors = conf->mirrors_new;
 | |
| 		conf->mirrors_new = NULL;
 | |
| 	}
 | |
| 	setup_geo(&conf->geo, mddev, geo_start);
 | |
| 	smp_mb();
 | |
| 	if (mddev->reshape_backwards) {
 | |
| 		sector_t size = raid10_size(mddev, 0, 0);
 | |
| 		if (size < mddev->array_sectors) {
 | |
| 			spin_unlock_irq(&conf->device_lock);
 | |
| 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
 | |
| 			       mdname(mddev));
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		mddev->resync_max_sectors = size;
 | |
| 		conf->reshape_progress = size;
 | |
| 	} else
 | |
| 		conf->reshape_progress = 0;
 | |
| 	conf->reshape_safe = conf->reshape_progress;
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| 
 | |
| 	if (mddev->delta_disks && mddev->bitmap) {
 | |
| 		ret = bitmap_resize(mddev->bitmap,
 | |
| 				    raid10_size(mddev, 0,
 | |
| 						conf->geo.raid_disks),
 | |
| 				    0, 0);
 | |
| 		if (ret)
 | |
| 			goto abort;
 | |
| 	}
 | |
| 	if (mddev->delta_disks > 0) {
 | |
| 		rdev_for_each(rdev, mddev)
 | |
| 			if (rdev->raid_disk < 0 &&
 | |
| 			    !test_bit(Faulty, &rdev->flags)) {
 | |
| 				if (raid10_add_disk(mddev, rdev) == 0) {
 | |
| 					if (rdev->raid_disk >=
 | |
| 					    conf->prev.raid_disks)
 | |
| 						set_bit(In_sync, &rdev->flags);
 | |
| 					else
 | |
| 						rdev->recovery_offset = 0;
 | |
| 
 | |
| 					if (sysfs_link_rdev(mddev, rdev))
 | |
| 						/* Failure here  is OK */;
 | |
| 				}
 | |
| 			} else if (rdev->raid_disk >= conf->prev.raid_disks
 | |
| 				   && !test_bit(Faulty, &rdev->flags)) {
 | |
| 				/* This is a spare that was manually added */
 | |
| 				set_bit(In_sync, &rdev->flags);
 | |
| 			}
 | |
| 	}
 | |
| 	/* When a reshape changes the number of devices,
 | |
| 	 * ->degraded is measured against the larger of the
 | |
| 	 * pre and  post numbers.
 | |
| 	 */
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 	mddev->degraded = calc_degraded(conf);
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| 	mddev->raid_disks = conf->geo.raid_disks;
 | |
| 	mddev->reshape_position = conf->reshape_progress;
 | |
| 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
 | |
| 
 | |
| 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
 | |
| 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
 | |
| 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
 | |
| 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
 | |
| 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
 | |
| 
 | |
| 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
 | |
| 						"reshape");
 | |
| 	if (!mddev->sync_thread) {
 | |
| 		ret = -EAGAIN;
 | |
| 		goto abort;
 | |
| 	}
 | |
| 	conf->reshape_checkpoint = jiffies;
 | |
| 	md_wakeup_thread(mddev->sync_thread);
 | |
| 	md_new_event(mddev);
 | |
| 	return 0;
 | |
| 
 | |
| abort:
 | |
| 	mddev->recovery = 0;
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 	conf->geo = conf->prev;
 | |
| 	mddev->raid_disks = conf->geo.raid_disks;
 | |
| 	rdev_for_each(rdev, mddev)
 | |
| 		rdev->new_data_offset = rdev->data_offset;
 | |
| 	smp_wmb();
 | |
| 	conf->reshape_progress = MaxSector;
 | |
| 	conf->reshape_safe = MaxSector;
 | |
| 	mddev->reshape_position = MaxSector;
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Calculate the last device-address that could contain
 | |
|  * any block from the chunk that includes the array-address 's'
 | |
|  * and report the next address.
 | |
|  * i.e. the address returned will be chunk-aligned and after
 | |
|  * any data that is in the chunk containing 's'.
 | |
|  */
 | |
| static sector_t last_dev_address(sector_t s, struct geom *geo)
 | |
| {
 | |
| 	s = (s | geo->chunk_mask) + 1;
 | |
| 	s >>= geo->chunk_shift;
 | |
| 	s *= geo->near_copies;
 | |
| 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
 | |
| 	s *= geo->far_copies;
 | |
| 	s <<= geo->chunk_shift;
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| /* Calculate the first device-address that could contain
 | |
|  * any block from the chunk that includes the array-address 's'.
 | |
|  * This too will be the start of a chunk
 | |
|  */
 | |
| static sector_t first_dev_address(sector_t s, struct geom *geo)
 | |
| {
 | |
| 	s >>= geo->chunk_shift;
 | |
| 	s *= geo->near_copies;
 | |
| 	sector_div(s, geo->raid_disks);
 | |
| 	s *= geo->far_copies;
 | |
| 	s <<= geo->chunk_shift;
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 | |
| 				int *skipped)
 | |
| {
 | |
| 	/* We simply copy at most one chunk (smallest of old and new)
 | |
| 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
 | |
| 	 * or we hit a bad block or something.
 | |
| 	 * This might mean we pause for normal IO in the middle of
 | |
| 	 * a chunk, but that is not a problem as mddev->reshape_position
 | |
| 	 * can record any location.
 | |
| 	 *
 | |
| 	 * If we will want to write to a location that isn't
 | |
| 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
 | |
| 	 * we need to flush all reshape requests and update the metadata.
 | |
| 	 *
 | |
| 	 * When reshaping forwards (e.g. to more devices), we interpret
 | |
| 	 * 'safe' as the earliest block which might not have been copied
 | |
| 	 * down yet.  We divide this by previous stripe size and multiply
 | |
| 	 * by previous stripe length to get lowest device offset that we
 | |
| 	 * cannot write to yet.
 | |
| 	 * We interpret 'sector_nr' as an address that we want to write to.
 | |
| 	 * From this we use last_device_address() to find where we might
 | |
| 	 * write to, and first_device_address on the  'safe' position.
 | |
| 	 * If this 'next' write position is after the 'safe' position,
 | |
| 	 * we must update the metadata to increase the 'safe' position.
 | |
| 	 *
 | |
| 	 * When reshaping backwards, we round in the opposite direction
 | |
| 	 * and perform the reverse test:  next write position must not be
 | |
| 	 * less than current safe position.
 | |
| 	 *
 | |
| 	 * In all this the minimum difference in data offsets
 | |
| 	 * (conf->offset_diff - always positive) allows a bit of slack,
 | |
| 	 * so next can be after 'safe', but not by more than offset_diff
 | |
| 	 *
 | |
| 	 * We need to prepare all the bios here before we start any IO
 | |
| 	 * to ensure the size we choose is acceptable to all devices.
 | |
| 	 * The means one for each copy for write-out and an extra one for
 | |
| 	 * read-in.
 | |
| 	 * We store the read-in bio in ->master_bio and the others in
 | |
| 	 * ->devs[x].bio and ->devs[x].repl_bio.
 | |
| 	 */
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct r10bio *r10_bio;
 | |
| 	sector_t next, safe, last;
 | |
| 	int max_sectors;
 | |
| 	int nr_sectors;
 | |
| 	int s;
 | |
| 	struct md_rdev *rdev;
 | |
| 	int need_flush = 0;
 | |
| 	struct bio *blist;
 | |
| 	struct bio *bio, *read_bio;
 | |
| 	int sectors_done = 0;
 | |
| 
 | |
| 	if (sector_nr == 0) {
 | |
| 		/* If restarting in the middle, skip the initial sectors */
 | |
| 		if (mddev->reshape_backwards &&
 | |
| 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
 | |
| 			sector_nr = (raid10_size(mddev, 0, 0)
 | |
| 				     - conf->reshape_progress);
 | |
| 		} else if (!mddev->reshape_backwards &&
 | |
| 			   conf->reshape_progress > 0)
 | |
| 			sector_nr = conf->reshape_progress;
 | |
| 		if (sector_nr) {
 | |
| 			mddev->curr_resync_completed = sector_nr;
 | |
| 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
 | |
| 			*skipped = 1;
 | |
| 			return sector_nr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* We don't use sector_nr to track where we are up to
 | |
| 	 * as that doesn't work well for ->reshape_backwards.
 | |
| 	 * So just use ->reshape_progress.
 | |
| 	 */
 | |
| 	if (mddev->reshape_backwards) {
 | |
| 		/* 'next' is the earliest device address that we might
 | |
| 		 * write to for this chunk in the new layout
 | |
| 		 */
 | |
| 		next = first_dev_address(conf->reshape_progress - 1,
 | |
| 					 &conf->geo);
 | |
| 
 | |
| 		/* 'safe' is the last device address that we might read from
 | |
| 		 * in the old layout after a restart
 | |
| 		 */
 | |
| 		safe = last_dev_address(conf->reshape_safe - 1,
 | |
| 					&conf->prev);
 | |
| 
 | |
| 		if (next + conf->offset_diff < safe)
 | |
| 			need_flush = 1;
 | |
| 
 | |
| 		last = conf->reshape_progress - 1;
 | |
| 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
 | |
| 					       & conf->prev.chunk_mask);
 | |
| 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
 | |
| 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
 | |
| 	} else {
 | |
| 		/* 'next' is after the last device address that we
 | |
| 		 * might write to for this chunk in the new layout
 | |
| 		 */
 | |
| 		next = last_dev_address(conf->reshape_progress, &conf->geo);
 | |
| 
 | |
| 		/* 'safe' is the earliest device address that we might
 | |
| 		 * read from in the old layout after a restart
 | |
| 		 */
 | |
| 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
 | |
| 
 | |
| 		/* Need to update metadata if 'next' might be beyond 'safe'
 | |
| 		 * as that would possibly corrupt data
 | |
| 		 */
 | |
| 		if (next > safe + conf->offset_diff)
 | |
| 			need_flush = 1;
 | |
| 
 | |
| 		sector_nr = conf->reshape_progress;
 | |
| 		last  = sector_nr | (conf->geo.chunk_mask
 | |
| 				     & conf->prev.chunk_mask);
 | |
| 
 | |
| 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
 | |
| 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
 | |
| 	}
 | |
| 
 | |
| 	if (need_flush ||
 | |
| 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
 | |
| 		/* Need to update reshape_position in metadata */
 | |
| 		wait_barrier(conf);
 | |
| 		mddev->reshape_position = conf->reshape_progress;
 | |
| 		if (mddev->reshape_backwards)
 | |
| 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
 | |
| 				- conf->reshape_progress;
 | |
| 		else
 | |
| 			mddev->curr_resync_completed = conf->reshape_progress;
 | |
| 		conf->reshape_checkpoint = jiffies;
 | |
| 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
 | |
| 		md_wakeup_thread(mddev->thread);
 | |
| 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
 | |
| 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
 | |
| 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
 | |
| 			allow_barrier(conf);
 | |
| 			return sectors_done;
 | |
| 		}
 | |
| 		conf->reshape_safe = mddev->reshape_position;
 | |
| 		allow_barrier(conf);
 | |
| 	}
 | |
| 
 | |
| read_more:
 | |
| 	/* Now schedule reads for blocks from sector_nr to last */
 | |
| 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 | |
| 	r10_bio->state = 0;
 | |
| 	raise_barrier(conf, sectors_done != 0);
 | |
| 	atomic_set(&r10_bio->remaining, 0);
 | |
| 	r10_bio->mddev = mddev;
 | |
| 	r10_bio->sector = sector_nr;
 | |
| 	set_bit(R10BIO_IsReshape, &r10_bio->state);
 | |
| 	r10_bio->sectors = last - sector_nr + 1;
 | |
| 	rdev = read_balance(conf, r10_bio, &max_sectors);
 | |
| 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
 | |
| 
 | |
| 	if (!rdev) {
 | |
| 		/* Cannot read from here, so need to record bad blocks
 | |
| 		 * on all the target devices.
 | |
| 		 */
 | |
| 		// FIXME
 | |
| 		mempool_free(r10_bio, conf->r10buf_pool);
 | |
| 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 | |
| 		return sectors_done;
 | |
| 	}
 | |
| 
 | |
| 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
 | |
| 
 | |
| 	read_bio->bi_bdev = rdev->bdev;
 | |
| 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
 | |
| 			       + rdev->data_offset);
 | |
| 	read_bio->bi_private = r10_bio;
 | |
| 	read_bio->bi_end_io = end_sync_read;
 | |
| 	read_bio->bi_rw = READ;
 | |
| 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
 | |
| 	read_bio->bi_error = 0;
 | |
| 	read_bio->bi_vcnt = 0;
 | |
| 	read_bio->bi_iter.bi_size = 0;
 | |
| 	r10_bio->master_bio = read_bio;
 | |
| 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
 | |
| 
 | |
| 	/* Now find the locations in the new layout */
 | |
| 	__raid10_find_phys(&conf->geo, r10_bio);
 | |
| 
 | |
| 	blist = read_bio;
 | |
| 	read_bio->bi_next = NULL;
 | |
| 
 | |
| 	for (s = 0; s < conf->copies*2; s++) {
 | |
| 		struct bio *b;
 | |
| 		int d = r10_bio->devs[s/2].devnum;
 | |
| 		struct md_rdev *rdev2;
 | |
| 		if (s&1) {
 | |
| 			rdev2 = conf->mirrors[d].replacement;
 | |
| 			b = r10_bio->devs[s/2].repl_bio;
 | |
| 		} else {
 | |
| 			rdev2 = conf->mirrors[d].rdev;
 | |
| 			b = r10_bio->devs[s/2].bio;
 | |
| 		}
 | |
| 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
 | |
| 			continue;
 | |
| 
 | |
| 		bio_reset(b);
 | |
| 		b->bi_bdev = rdev2->bdev;
 | |
| 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
 | |
| 			rdev2->new_data_offset;
 | |
| 		b->bi_private = r10_bio;
 | |
| 		b->bi_end_io = end_reshape_write;
 | |
| 		b->bi_rw = WRITE;
 | |
| 		b->bi_next = blist;
 | |
| 		blist = b;
 | |
| 	}
 | |
| 
 | |
| 	/* Now add as many pages as possible to all of these bios. */
 | |
| 
 | |
| 	nr_sectors = 0;
 | |
| 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
 | |
| 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
 | |
| 		int len = (max_sectors - s) << 9;
 | |
| 		if (len > PAGE_SIZE)
 | |
| 			len = PAGE_SIZE;
 | |
| 		for (bio = blist; bio ; bio = bio->bi_next) {
 | |
| 			struct bio *bio2;
 | |
| 			if (bio_add_page(bio, page, len, 0))
 | |
| 				continue;
 | |
| 
 | |
| 			/* Didn't fit, must stop */
 | |
| 			for (bio2 = blist;
 | |
| 			     bio2 && bio2 != bio;
 | |
| 			     bio2 = bio2->bi_next) {
 | |
| 				/* Remove last page from this bio */
 | |
| 				bio2->bi_vcnt--;
 | |
| 				bio2->bi_iter.bi_size -= len;
 | |
| 				bio_clear_flag(bio2, BIO_SEG_VALID);
 | |
| 			}
 | |
| 			goto bio_full;
 | |
| 		}
 | |
| 		sector_nr += len >> 9;
 | |
| 		nr_sectors += len >> 9;
 | |
| 	}
 | |
| bio_full:
 | |
| 	r10_bio->sectors = nr_sectors;
 | |
| 
 | |
| 	/* Now submit the read */
 | |
| 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
 | |
| 	atomic_inc(&r10_bio->remaining);
 | |
| 	read_bio->bi_next = NULL;
 | |
| 	generic_make_request(read_bio);
 | |
| 	sector_nr += nr_sectors;
 | |
| 	sectors_done += nr_sectors;
 | |
| 	if (sector_nr <= last)
 | |
| 		goto read_more;
 | |
| 
 | |
| 	/* Now that we have done the whole section we can
 | |
| 	 * update reshape_progress
 | |
| 	 */
 | |
| 	if (mddev->reshape_backwards)
 | |
| 		conf->reshape_progress -= sectors_done;
 | |
| 	else
 | |
| 		conf->reshape_progress += sectors_done;
 | |
| 
 | |
| 	return sectors_done;
 | |
| }
 | |
| 
 | |
| static void end_reshape_request(struct r10bio *r10_bio);
 | |
| static int handle_reshape_read_error(struct mddev *mddev,
 | |
| 				     struct r10bio *r10_bio);
 | |
| static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
 | |
| {
 | |
| 	/* Reshape read completed.  Hopefully we have a block
 | |
| 	 * to write out.
 | |
| 	 * If we got a read error then we do sync 1-page reads from
 | |
| 	 * elsewhere until we find the data - or give up.
 | |
| 	 */
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int s;
 | |
| 
 | |
| 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 | |
| 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
 | |
| 			/* Reshape has been aborted */
 | |
| 			md_done_sync(mddev, r10_bio->sectors, 0);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 	/* We definitely have the data in the pages, schedule the
 | |
| 	 * writes.
 | |
| 	 */
 | |
| 	atomic_set(&r10_bio->remaining, 1);
 | |
| 	for (s = 0; s < conf->copies*2; s++) {
 | |
| 		struct bio *b;
 | |
| 		int d = r10_bio->devs[s/2].devnum;
 | |
| 		struct md_rdev *rdev;
 | |
| 		if (s&1) {
 | |
| 			rdev = conf->mirrors[d].replacement;
 | |
| 			b = r10_bio->devs[s/2].repl_bio;
 | |
| 		} else {
 | |
| 			rdev = conf->mirrors[d].rdev;
 | |
| 			b = r10_bio->devs[s/2].bio;
 | |
| 		}
 | |
| 		if (!rdev || test_bit(Faulty, &rdev->flags))
 | |
| 			continue;
 | |
| 		atomic_inc(&rdev->nr_pending);
 | |
| 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
 | |
| 		atomic_inc(&r10_bio->remaining);
 | |
| 		b->bi_next = NULL;
 | |
| 		generic_make_request(b);
 | |
| 	}
 | |
| 	end_reshape_request(r10_bio);
 | |
| }
 | |
| 
 | |
| static void end_reshape(struct r10conf *conf)
 | |
| {
 | |
| 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 	conf->prev = conf->geo;
 | |
| 	md_finish_reshape(conf->mddev);
 | |
| 	smp_wmb();
 | |
| 	conf->reshape_progress = MaxSector;
 | |
| 	conf->reshape_safe = MaxSector;
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| 
 | |
| 	/* read-ahead size must cover two whole stripes, which is
 | |
| 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
 | |
| 	 */
 | |
| 	if (conf->mddev->queue) {
 | |
| 		int stripe = conf->geo.raid_disks *
 | |
| 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
 | |
| 		stripe /= conf->geo.near_copies;
 | |
| 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
 | |
| 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
 | |
| 	}
 | |
| 	conf->fullsync = 0;
 | |
| }
 | |
| 
 | |
| static int handle_reshape_read_error(struct mddev *mddev,
 | |
| 				     struct r10bio *r10_bio)
 | |
| {
 | |
| 	/* Use sync reads to get the blocks from somewhere else */
 | |
| 	int sectors = r10_bio->sectors;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct {
 | |
| 		struct r10bio r10_bio;
 | |
| 		struct r10dev devs[conf->copies];
 | |
| 	} on_stack;
 | |
| 	struct r10bio *r10b = &on_stack.r10_bio;
 | |
| 	int slot = 0;
 | |
| 	int idx = 0;
 | |
| 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
 | |
| 
 | |
| 	r10b->sector = r10_bio->sector;
 | |
| 	__raid10_find_phys(&conf->prev, r10b);
 | |
| 
 | |
| 	while (sectors) {
 | |
| 		int s = sectors;
 | |
| 		int success = 0;
 | |
| 		int first_slot = slot;
 | |
| 
 | |
| 		if (s > (PAGE_SIZE >> 9))
 | |
| 			s = PAGE_SIZE >> 9;
 | |
| 
 | |
| 		while (!success) {
 | |
| 			int d = r10b->devs[slot].devnum;
 | |
| 			struct md_rdev *rdev = conf->mirrors[d].rdev;
 | |
| 			sector_t addr;
 | |
| 			if (rdev == NULL ||
 | |
| 			    test_bit(Faulty, &rdev->flags) ||
 | |
| 			    !test_bit(In_sync, &rdev->flags))
 | |
| 				goto failed;
 | |
| 
 | |
| 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
 | |
| 			success = sync_page_io(rdev,
 | |
| 					       addr,
 | |
| 					       s << 9,
 | |
| 					       bvec[idx].bv_page,
 | |
| 					       READ, false);
 | |
| 			if (success)
 | |
| 				break;
 | |
| 		failed:
 | |
| 			slot++;
 | |
| 			if (slot >= conf->copies)
 | |
| 				slot = 0;
 | |
| 			if (slot == first_slot)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (!success) {
 | |
| 			/* couldn't read this block, must give up */
 | |
| 			set_bit(MD_RECOVERY_INTR,
 | |
| 				&mddev->recovery);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		sectors -= s;
 | |
| 		idx++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void end_reshape_write(struct bio *bio)
 | |
| {
 | |
| 	struct r10bio *r10_bio = bio->bi_private;
 | |
| 	struct mddev *mddev = r10_bio->mddev;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int d;
 | |
| 	int slot;
 | |
| 	int repl;
 | |
| 	struct md_rdev *rdev = NULL;
 | |
| 
 | |
| 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 | |
| 	if (repl)
 | |
| 		rdev = conf->mirrors[d].replacement;
 | |
| 	if (!rdev) {
 | |
| 		smp_mb();
 | |
| 		rdev = conf->mirrors[d].rdev;
 | |
| 	}
 | |
| 
 | |
| 	if (bio->bi_error) {
 | |
| 		/* FIXME should record badblock */
 | |
| 		md_error(mddev, rdev);
 | |
| 	}
 | |
| 
 | |
| 	rdev_dec_pending(rdev, mddev);
 | |
| 	end_reshape_request(r10_bio);
 | |
| }
 | |
| 
 | |
| static void end_reshape_request(struct r10bio *r10_bio)
 | |
| {
 | |
| 	if (!atomic_dec_and_test(&r10_bio->remaining))
 | |
| 		return;
 | |
| 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
 | |
| 	bio_put(r10_bio->master_bio);
 | |
| 	put_buf(r10_bio);
 | |
| }
 | |
| 
 | |
| static void raid10_finish_reshape(struct mddev *mddev)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
 | |
| 		return;
 | |
| 
 | |
| 	if (mddev->delta_disks > 0) {
 | |
| 		sector_t size = raid10_size(mddev, 0, 0);
 | |
| 		md_set_array_sectors(mddev, size);
 | |
| 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
 | |
| 			mddev->recovery_cp = mddev->resync_max_sectors;
 | |
| 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 | |
| 		}
 | |
| 		mddev->resync_max_sectors = size;
 | |
| 		if (mddev->queue) {
 | |
| 			set_capacity(mddev->gendisk, mddev->array_sectors);
 | |
| 			revalidate_disk(mddev->gendisk);
 | |
| 		}
 | |
| 	} else {
 | |
| 		int d;
 | |
| 		for (d = conf->geo.raid_disks ;
 | |
| 		     d < conf->geo.raid_disks - mddev->delta_disks;
 | |
| 		     d++) {
 | |
| 			struct md_rdev *rdev = conf->mirrors[d].rdev;
 | |
| 			if (rdev)
 | |
| 				clear_bit(In_sync, &rdev->flags);
 | |
| 			rdev = conf->mirrors[d].replacement;
 | |
| 			if (rdev)
 | |
| 				clear_bit(In_sync, &rdev->flags);
 | |
| 		}
 | |
| 	}
 | |
| 	mddev->layout = mddev->new_layout;
 | |
| 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
 | |
| 	mddev->reshape_position = MaxSector;
 | |
| 	mddev->delta_disks = 0;
 | |
| 	mddev->reshape_backwards = 0;
 | |
| }
 | |
| 
 | |
| static struct md_personality raid10_personality =
 | |
| {
 | |
| 	.name		= "raid10",
 | |
| 	.level		= 10,
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.make_request	= raid10_make_request,
 | |
| 	.run		= raid10_run,
 | |
| 	.free		= raid10_free,
 | |
| 	.status		= raid10_status,
 | |
| 	.error_handler	= raid10_error,
 | |
| 	.hot_add_disk	= raid10_add_disk,
 | |
| 	.hot_remove_disk= raid10_remove_disk,
 | |
| 	.spare_active	= raid10_spare_active,
 | |
| 	.sync_request	= raid10_sync_request,
 | |
| 	.quiesce	= raid10_quiesce,
 | |
| 	.size		= raid10_size,
 | |
| 	.resize		= raid10_resize,
 | |
| 	.takeover	= raid10_takeover,
 | |
| 	.check_reshape	= raid10_check_reshape,
 | |
| 	.start_reshape	= raid10_start_reshape,
 | |
| 	.finish_reshape	= raid10_finish_reshape,
 | |
| 	.congested	= raid10_congested,
 | |
| };
 | |
| 
 | |
| static int __init raid_init(void)
 | |
| {
 | |
| 	return register_md_personality(&raid10_personality);
 | |
| }
 | |
| 
 | |
| static void raid_exit(void)
 | |
| {
 | |
| 	unregister_md_personality(&raid10_personality);
 | |
| }
 | |
| 
 | |
| module_init(raid_init);
 | |
| module_exit(raid_exit);
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
 | |
| MODULE_ALIAS("md-personality-9"); /* RAID10 */
 | |
| MODULE_ALIAS("md-raid10");
 | |
| MODULE_ALIAS("md-level-10");
 | |
| 
 | |
| module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
 |